
Chapter 4

Molecular Dynamics

Literature

• D.C. RAPAPORT, The Art of Molecular Dynamics Simulation, Cambridge
University Press, 1995.

It is still an important field of research to describe macroscopically ob-
servable properties of matter on the basis of microscopical kinematics and
dynamics of molecules. On the other hand, the simultaneous motion of a
large number of interacting bodies cannot be described analytically and,
thus, statistical mechanics is required to make some simplifying assump-
tions in order to arrive at practical solutions. Nevertheless, it is hard to
make estimates on the influence those simplifications might have on the
solutions acquired. From this the necessity of numerical simulations be-
comes obvious. There are essentially two methods to determine physical
quantities over a restricted set of states, namely Molecular Dynamics (MD)
and Monte Carlo (MC).

Molecular dynamics is a widely used method to study classical sys-
tems. But quantum systems can also be studied by MD and the number of
applications is steadily increasing. In quantum problems one is interested
in the motion of atoms in molecules and solids. Due to their much lighter
mass, the electron dynamics is much faster than that of the nuclei and it
is in most cases a good approximation, to treat the dynamics of the nuclei
classically, i.e.: by NEWTON’s equation of motion

ẍiα(t) =
1

mi

Fiα[r(t), t] = fiα[r(t), t], (4.1)

where xiα is the α-th coordinate of particle i. The vector r stands for the
collection of coordinates {xiα}. Similarly, we introduce the vector f for the

65

set {fiα}, and all this results in the equation of motion:

r̈(t) = f [r(t), t]. (4.2)

The force acting on the nuclei originates from the direct Coulomb interac-
tion between the nuclei plus the indirect contribution stemming from elec-
trons. The latter is either approximated by parameterized two-particle po-
tentials (e.g. LENNARD-JONES) or it is determined quantum mechanically
from the electronic ground state (CAR-PARRINELLO). MD is widely used
for studying many-particle systems. It consists of integrating the equations
of motion numerically. It can, therefore, be viewed as a simulation of the
system as it develops over a period of time. The dynamics coincides with
the actual trajectories, as compared to Monte-Carlo dynamics. The great
advantage of MD is that it provides both, thermodynamic averages and
dynamical properties even far from equilibrium.

For finite systems boundary conditions are important. The vast ma-
jority of MD simulations is performed for periodic boundary conditions
(pbc), which means that the finite system is surrounded by identical sys-
tems with exactly the same configuration in phase-space. Forces act across
the boundary of neighboring replicas. Another common situation are open
boundary conditions (obc). The angular momentum is not conserved if
pbc are imposed.

The time average is restricted to finite times for obvious reasons. For
liquid argon, which is a widely studied system in MD since it can be de-
scribed reliably by simple LENNARD-JONES pair forces, the typical time
step used in the numerical integration of the equations of motion is about
10−14 seconds, which means that a total simulation time of about 10−8 sec-
onds can be covered; this corresponds to 106 time steps. The correlation
time has to be much smaller than this in order to yield reasonable results.
In addition, the influence of the finite system size will be noticeable after
some time. One would expect to observe differences as soon as the par-
ticles have travelled on average more than half the linear system size. In
practice such effects show up at much longer time scales, which are of the
order of the recurrence time.

The numerical integration algorithm is not infinitely accurate. There is
always a tradeoff between accuracy and speed. As a matter of fact, the MD
trajectory will gradually deviate from the true trajectory the system would
follow in reality.

4.1 MD at constant energy

If the forces acting on the particles depend on the their mutual relative po-
sition, then energy and total momentum are conserved. Trivially, particle
number and volume are conserved, as well. The time averages correspond

66

to microcanonical or (NV E) ensembles. Here we describe the microcanon-
ical ensemble in some detail. The rough structure of the algorithm is

• Initialization,

• Start simulation and let the system reach equilibrium,

• Continue simulation and store (measure) results.

Initialization:

The number of particles and the finite size volume are specified. The tem-
perature is usually of greater interest than the total energy and is therefore
specified as an input parameter. We will discuss below how to fix the tem-
perature in a MD simulation.

The particles are assigned positions and momenta. Typically the posi-
tions are chosen on a regular grid or at random, while the momenta (ve-
locities) pi are generated according to the BOLTZMANN distribution

p(vα) ∝ e−mv2
α/(2kBT).

A vanishing total momentum is achieved by subtracting the mean mo-
mentum pi from all particle momenta.

Measurement

Of particular interest are growth processes, phase transitions, molecular
vibrations, reactions etc. The thermodynamic (ensemble) average is ob-
tained via averaging over time. For an observable O the expectation value
reads

〈O〉 = lim
T→∞

1

T

∫ T

0

dt O(t).

For instance, the inner energy U = 〈E〉. The MD simulations are per-
formed for constant energy first. For a microcanonical ensemble, constant
temperature simulations are required, which can be achieved by rescaling
the kinetic energy from time to time. The thermodynamic average reads

〈O〉 =

∑

x e−βE(x)O(x)
∑

x e−βE(x)
.

The virial theorem (see Appendix B)

3

2
PV =

1

2

〈 N∑

j=1

pj ·
∂H

∂pj

〉

−
1

2

〈 N∑

j>k=1

rjk ·
∂Φ(rjk)

∂rjk

〉

67

can be exploited in order to determine the pressure. It holds for a station-
ary motion. Obviously, the first term is the kinetic energy, which in a mi-
crocanonical ensemble is given by 3

2
kBTN , hence

3

2
PV =

3

2
kBTN −

1

2

〈 N∑

j>k=1

rjk ·
∂Φ(rjk)

∂rjk

〉

βP/N = 1 −
β

3N

〈 N∑

j>k=1

rjk ·
∂Φ(rjk)

∂rjk

〉

,

with β = 1/(kBT) and kB is BOLTZMANN’s constant. The right hand site
can easily be measured during the simulation.

4.1.1 Verlet algorithm

We will concentrate on the most widely used algorithm, which is both,
simple and yet reliable, the Verlet algorithm.

r(τ) = r(0) + τ ṙ(0) +
τ 2

2
r̈(0) +

τ 3

6

...
r (0) + O(τ 4)

r(−τ) = r(0) − τ ṙ(0) +
τ 2

2
r̈(0) −

τ 3

6

...
r (0) + O(τ 4)

r(τ) + r(−τ) = 2r(0) + τ 2 f [r(0), 0] + O(τ 4).

The Verlet algorithm uses the relation

r(τ) = 2r(0) − r(−τ) + τ 2 f [r(0), 0]. (4.3)

Since, r(−τ) is not known, one employs the simpler discretization

r(τ) = r(0) + τ v(0) +
τ 2

2
f [r(0), 0]. (4.4)

for the first time step. The corresponding discretization error is O(τ 3),
which occurs, however, only once, while the O(τ 4) error is encountered
in each time step and also adds up to NO(τ 4) = O(τ 3).

VERLET ALGORITHM

r(t + τ) = 2r(t) − r(t − τ) + τ 2 f [r(t), t], t = τ, 2τ, . . .

r(τ) = r(0) + τ v(0) +
τ 2

2
f [r(0), 0].

68

There is another alternative which is more robust against rounding er-
rors. For the velocities

v(τ/2) − v(−τ/2)

τ
= v̇(0) + O(τ 2)

we obtain
v(τ/2) = v(−τ/2) + τ f [r(0), 0] + O(τ 3).

We use, likewise, for the positions

r(τ/2 + τ/2) − r(τ/2 − τ/2)

τ
= ṙ(τ/2) + O(τ 2)

which leads to
r(τ) = r(0) + τ v(τ/2) + O(τ 3).

This approach is called the leap-frog algorithm due to the way, the time
axis is ’touched’. Space-coordinates are computed at 0, τ, 2τ, . . . and veloc-
ities are provided at intermediate times τ/2, 3τ/2,

LEAP-FROG ALGORITHM I

r(t + τ) = r(t) + τ · v(t + τ/2) t = 0, τ, . . .

v(t + τ/2) = v(t − τ/2) + τ · f [r(t), t] t = τ, 2τ, . . .

v(τ/2) = v(0) +
τ

2
· f [r(0), 0].

Next we consider yet another modification, which we call leap-frog II.

r(t + τ) = r(t) + τ · v(t) +
τ 2

2
r̈(t) + O(τ 3)

= r(t) + τ · v(t) +
τ 2

2
f [r(t), t] + O(τ 3)

and
v(t + τ) = v(t) + τ r̈(t + τ/2) + O(τ 3).

This approach would require the knowledge of r̈(t + τ/2), which can be
approximated by

r̈(t + τ) + r̈(t)

2
= r̈(t + τ/2) + O(τ 2) .

Hence, we end up with

69

LEAP-FROG ALGORITHM II

r(t + τ) = r(t) + τ · v(t) +
τ 2

2
f [r(t), t]

v(t + τ) = v(t) + τ
1

2
{f [r(t), t] + f [r(t + τ), t + τ]} .

This form is completely equivalent to the other two schemes as long as
all computational steps are performed with infinite accuracy, but it is less
susceptible to numerical errors.

4.1.2 Example I: Harmonic Oscillator

Here we consider the harmonic oscillator since it allows to asses the sta-
bility of the algorithms analytically. The equation of motion for the 1D
harmonic oscillator reads

ẍ = −ω2 x.

For t > 0 the Verlet algorithm reads

x(t + τ) − 2x(t) + x(t − τ) = −τ 2ω2 x(t), (4.5)

For t = 0 we have v̇ = f and, therefore, v(τ) = v(0) + τf [x(0)]. Along with
the initial condition v(0) = 0 we have

x(τ) = x(0) −
τ 2

2
ω2x(0). (4.6)

Eqs. (4.5) can be expressed in matrix form if we use the assignment xn =
x(n τ) for n ∈ N0:

1 −2 1
1 −2 1

1 −2
. . .

.

︸ ︷︷ ︸

:=M

x = −τ 2ω2x.

Zero matrix elements are supressed. Thus, the eigenvalue equation Mx =
λx has to solved for the given eigenvalue λ = −(τω)2. Since x(t) = eiωt is
the exact solution for the harmonic oscillator, we try the ansatz

xn = eiα n. (4.7)

70

The general condition, for τ > 0, reads

eiα(n+1) − 2eiαn + eiα(n−1) = −(τω)2 eiαn

or rather
eiα − 2 + e−iα = −(τω)2.

Hence,
1 − (τω)2/2 = cos(α). (4.8)

This implicit equation for α has real solutions only for

−1 ≤ (τω)2/2 − 1 ≤ 1

or rather
0 ≤ τω ≤ 2.

In other words, the discretization has to obey

τ ≤
2

ω
, (4.9)

otherwise, α becomes complex and the solution (4.7) obtains exponentially
increasing components, as we see in Fig. 4.3. Equation (4.8) has always
two roots, namely ±α∗. Hence, the general solution, obeying the initial
condition reads

x(nτ) = Aeiαn + Be−iαn = a cos(αn + ϕ),

with parameters which are fixed by the initial conditions x(t = 0) = x(0)
and v(0) = 0, i.e.: x(0) = a cos(ϕ). We still have to satisfy the first equation,
Eq. (4.6)

a cos(α + ϕ) = a cos(ϕ) −
(τω)2

2
a cos(ϕ)

a cos(α + ϕ) = a cos(ϕ)

[

1 −
(τω)2

2

]

.

Along with Eq. (4.8) we have

cos(α + ϕ) = cos(ϕ) cos(α)

cos(α) cos(ϕ) − sin(α) sin(ϕ) = cos(ϕ) cos(α)

sin(ϕ) = 0.

The solution, therefore, reads

xn = x0 cos(αn). (4.10)

71

In the original representation this yields (continuum limit) x(t) = x(0) cos(α
τ
t),

which corresponds to the exact solution for α
τ

= ω. For τω ≪ 1 Eq. (4.8)
yields

1 − (τω)2/2 ≃ 1 −
α2

2
α ≃ τω,

and the numerical solutions approaches the correct solution for τ → 0. Ob-
viously, there is a tradeoff between the accuracy and the total ‘real’ time,
that can be simulated by a fixed number of iterations.

The figures 4.1, 4.2 and 4.3 show the time dependence of x(t) for differ-
ent parameters τω. We see that the simulation is stable over many periods,
if τω ≪ 1, while it goes off course when τω approaches 2. As anticipated,
the trajectory diverges for τω > 2.

We estimate the number of periods until the discretization error be-
comes significant. The result of the Verlet algorithm oscillates with fre-
quency α/τ . According to Eq. (4.10) the position at time t = nτ is given by
xv(t) = x0 cos(αn). A typical time t∗ after which the result goes off course
is when xv(t∗) = −x(t∗), i.e.: when the phase error is π:

|ωt∗ − αt∗/τ | = π

t∗ =
π

|ω − α/τ |
.

The number N∗ of periods T = 2π/ω corresponding to t∗ is:

N∗ =
t∗

T
=

ωτ

2 |ωτ − α|
.

The leading order Taylor expansion of α yields

|ωτ − α| =
(ωτ)3

24
,

end hence

N∗ =
12

(ωτ)2
. (4.11)

Alternatively, if a certain number N∗ of stable periods is required, the con-
dition for the discretization reads

ωτ = 2

√

3

N∗

,

or rather

M∗ =
T

τ
= π

√

N∗

3
,

72

0 2 4 6 8 10

−1

−0.5

0

0.5

1

t / T

x(t)

ω⋅ dt = 0.100

390 392 394 396 398 400

−1

−0.5

0

0.5

1

t / T

ω⋅ dt = 0.100

Figure 4.1: Simulation of the harmonic oscillator with ωτ = 0.1. According
to Eq. (4.11) it takes N∗ = 1200 cycles for the Verlet algorithm to go off
course.

0 2 4 6 8 10

−1

−0.5

0

0.5

1

t / T

x(t)

ω⋅ dt = 1.000

Figure 4.2: Simulation of the harmonic oscillator with the foolish choice
ωτ = 1. The result of formula (4.11), N∗ = 12, is corroborated by the simu-
lation.

73

which gives the number of partitions of one period. E.g. for N∗ = 1000
stable periods we need M∗ = 57 time steps τ for each period.

An important issue for practical implementations is the efficient com-
putation of the forces. Details are given in the textbook mentioned at the
beginning of this chapter.

The time needed to reach equilibrium depends on the initial condition
and on the details of the forces. To check whether equilibrium has been
reached, it is advisable to monitor global physical properties such as ki-
netic energy, pressure, etc.

To perform simulations for a predefined temperature T rather than the
total energy, the velocities of all particles are rescaled during the equilibra-
tion phase, i.e.:

vi(t) → λvi(t) , ∀i = 1, . . . , N,

with

λ =

√

(N − 1)3/2kBT

1/2
∑

i mv2
i

.

The factor (N − 1) originates from the fact that the total momentum is
conserved if no external forces are applied and therefore the number of
independent velocities, entering the kinetic energy, are reduced by one for
each spatial direction.

74

0 2 4 6 8 10

−1

−0.5

0

0.5

1

t / T

x(t)

ω⋅ dt = 2.000

0 2 4 6 8 10
−5

0

5

t / T

x(t)

ω⋅ dt = 2.001

Figure 4.3: For illustration purposes the simulations for ωτ = 2. and
ωτ = 2.001 are also shown. Obviously, the phase becomes complex for
ωτ > 2 leading to an exponential increase of the amplitude.

75

	Molecular Dynamics
	MD at constant energy
	Verlet Algorithm
	Harmonic Oscillator

