
Chapter 5

Cellular Automata

Literature

• J. VON NEUMANN, The Theory of Self-reproducing Automata, in: Essays
of Cellular Automata, ed.: A.W. BURKS, University of Illinois Press,
Urbana (1970).

• J. SCHMELZER, G. RÖPKE, and R. MAHNKE, Aggregation Phenomena
in Complex Systems: Principles and Applications, J. Wiley, 1999 + Refer-
ences.

• D. STAUFFER and AMONON AHARONY, Perkolationstheorie, VCH, 1995.

• S. WOLFRAM, Universality and Complexity in Cellular Automata in Cel-
lular Automata, ed.: FARMER et al. Proceedings of an Interdisplinary
Workshop, Physica D 10 (1984).

• S. WOLFRAM, Theory and Application of Cellular Automata, World Sci-
entific, Singapore (1986).

5.1 Dynamics of Complex Systems

The ubiquitous strategy in the description of complex physical systems
consists in modeling the system by disassembling it into small and tractable
parts (key elements) which may interact in one way or other. Such a sim-
plified procedure has been the key success factor of natural sciences for
several centuries but it is nonetheless an approximation. Complex systems
which have been addressed successfully by disintegration are

• ISING, HEISENBERG model for magnetism,

76

• VAN DER WAALS model for fluids,

• Spring models for lattice vibrations,

• LANDAU theory for phase transitions.

An alternative approach are cellular automata (CA). They have been
invoked to study

• Chemical reactions,

• Phase separation,

• Self criticality,

• Avalanches,

• Models to study chaos in physical systems.

Cellular automata are mathematical models of discrete dynamical sys-
tems whose behavior is completely specified in terms of a local relation. A
cellular automaton can be thought of as a stylized universe. Space is repre-
sented by a uniform grid, with each cell containing a few bits of data; time
advances in discrete steps and the laws of the ‘universe’ are expressed in,
say, a small look-up table, through which at each step each cell computes
its new state from that of its close neighbors. Thus, the system’s laws are
local and uniform.

The first cellular automaton was conceived by the mathematician J.
VON NEUMANN in the late 1940’s. He constructed an automaton which
qualified as an universal computer (property of universality: the computer
can emulate any desirable function of any other machine by the use of a
set of logical rules, and, particularly, it can reproduce itself); it was very
complex and consisted of two hundred thousand cells in any of 29 states.
J.H. CONWAY suspected that a cellular automaton with universal comput-
ing capabilities might be simpler. The key to this simplicity would be the
rules that dictated survival, birth, and death. CONWAY’s cellular automa-
ton had only two states: a cell would be either filled or empty, ‘alive’ or
‘dead’. . . , and so the Game of Life began.

Game of Life

It is a simple 2D-system which is supposed to describe the basic processes
of living systems. It describes the deterministic changes within a 2D-array
with time under the restriction that the state of one cell depends only on
the states of the surrounding eight neighbors. CONWAY had the following
objectives:

77

• He wanted to make sure that no simple pattern would obviously
grow without limit. It should not be easy to prove that any simple
pattern grows for ever.

• He wanted to ensure, nevertheless, that some simple pattern do grow
widely. There should be patterns that look like they might grow for-
ever.

• There should be simple patterns that evolve for a long time before
stabilizing. A pattern is stabilized by either vanishing completely or
by producing a constellation of stable objects.

There are three rules:

• A dead cell with exactly three living neighbors becomes a living cell
(birth).

• A living cell with two or three living neighbors stays alive (survival).

• In all other cases, a cell dies or remains dead (overcrowding or lone-
liness).

The game is played on a 2D grid of square cells (like a chessboard) ex-
tending infinitely in every direction or on a finite grid with with periodic
boundary conditions. A cell can be alive or dead and a living cell is rep-
resented by a marker. A dead cell is empty. Each cell on the grid has a
neighborhood consisting of the eight cells in every direction (including
diagonals).

Algorithm 10 MATLAB Code: Game of Life
L = 20;
A = unidrnd(2,[L,L])-1;

% initial configuration
i1 = [2:L, 1]; i2 = [L, 1:L-1];

% n.n. tableaux with pbc
while (1)
N = A(i1,:) + A(i2,:) + A(:,i1) + A(:,i2) + ...
A(i1,i1) + A(i1,i2) +A(i2,i1) + A(i2,i2);
A = N==3 | (N==2 & A==1);
spy(A);
pause(0.25);

end

78

5.2 One Dimensional Cellular Automata

Cellular automata are useful to analyze and understand the laws that gov-
ern complex phenomena. In natural sciences, non-linear phenomena are
often described by reaction-diffusion equations. Non-linear space-time dy-
namics of interacting particles, chemical or biological systems can generate
numerous local and non local effects far from equilibrium such as steady-
state multiplicity, oscillations like limit cycles, propagating fronts, target
patterns, spiral waves, pulses as well as stationary spatial patterns. In 1D
these processes can be described generally by

∂

∂t
ρ(r, t) = f [ρ(r, t)] +

∂2

∂r2
ρ(r, t),

where f stands for the reaction function. They are suitable for continuous
systems with not too many degrees of freedom.

An alternate or complementary approach in discrete space-time is pro-
vided by 1D cellular automata. They are the most simple case: a 1D array
of cells which take on the values zero and one. In each time step the values
of each cell are modified according to some simple rules, the neighborhood
relations or evolution rules and the update rules.
A simple example:

• States: zero and one.

• Neighborhood: the two neighbor cells: NCN with C the cell under
observation.

• Update rules: we have three relevant cells which can be in two pos-
sible states. Thus, we need 23 = 8 rules:

0 0 0 → 0 1 0 0 → 1
0 0 1 → 1 1 0 1 → 1
0 1 0 → 1 1 1 0 → 0
0 1 1 → 0 1 1 1 → 0.

We start with a configuration of only one cell having the value one and
find the following time series:

Time 0 : 1

Time 1 : 1 1 1

Time 2 : 1 . . . 1

Time 3 : 1 1 1 . 1 1 1

Time 4 : . . . 1 . . . 1 . . . 1 . . .

Time 5 : . . 1 1 1 . 1 1 1 . 1 1 1 . .

Time 6 : . 1 . . . 1 . . . 1 . . . 1 .

79

with the zeros replaced by dots. This very primitive CA shows already
signs of self organization, i.e.: certain patterns evolve in the time series. The
result corresponds closely to the result shown in Fig. 5.1 for the (01111000)
rule.

S. WOLFRAM studied these linear CAs quite extensively and intro-
duced the following fundamental rules for 1D-CAs:

1. The CA consists of discrete lattice points,

2. The CA develops in discrete time steps,

3. Each cell can take on a finite number of states (values),

4. The value of each cell develops according to one and the same up-
dating rule,

5. This rule depends solely upon the states of the nearest neighbor cells.

Furthermore, he was able to establish the existence of four classes:

• Class 1: After a finite number of steps, a homogeneous general final
state is reached (all cells are either dead or alive).

• Class 2: Initially simple local patterns evolve, they transform some-
times in vertical stripes. Frozen configurations are found where ini-
tial activity ceased and stable structures reigned.

• Class 3: The states distribute seemingly without rules but now and
then typical patterns can be observed.

• Class 4: This class displays behavior which is not disordered, but
complex, and some times long-lived. CAs of this class are capable of
propagating information and this class contains universal automata.
The processes depend heavily on the initial conditions.

A CA can be viewed as an idealization of the reaction-diffusion equa-
tion for discrete time where the state ρ is mapped on a finite set of pos-
sible values only. CAs are in general deterministic, but stochastic forces
can be included as well (stochastic cellular automata). Such systems can ex-
hibit phase transitions as function of the noise level. Updating rules are
employed either sequentially or in parallel.

A very simple binary CA consists of a one dimensional lattice of cells.
The cell at site i has a value ai(t) at time t which is either zero or one. A
possible local updating rule is

ai(t + 1) = [ai−1(t) + ai+1(t)] mod2.

Starting from a particular initial state a(t) the system develops in time.

80

Deterministic 1D Local Binary CA

The most general deterministic 1D local binary CA is defined by the map-
ping

ai(t + 1) = F [ai−r(t), . . . , ai(t), . . . , ai+r(t)] , ai ∈ {0, 1},

with r being the range of the local generation rule. The boundary condi-
tions are still at our disposal. Let us study the most simple CA, namely for
r = 1, in some detail. The evolution rule reads in this case

ai(t + 1) = F [ai−1(t), ai(t), ai+1(t)] , ai ∈ {0, 1}.

Since there are 23 = 8 possible input values, we may construct in general
28 = 256 different CA rules specified by

F (0, 0, 0) = f0

F (0, 0, 1) = f1

F (0, 1, 0) = f2

F (0, 1, 1) = f3

F (1, 0, 0) = f4

F (1, 0, 1) = f5

F (1, 1, 0) = f6

F (1, 1, 1) = f7.

The vector (f0, f1, f2, f3, f4, f5, f6, f7) defines the local rule. Three examples
are given below.

Algorithm 11 MATLAB Code: 1D Binary CA
N = 601;
M = 300;
A = zeros(1,N); A((N+1)/2) = 1;
B = zeros(M,N); B(1,:) = A;
rule = [0 1 1 1 1 1 1 0];
ii = [1: N]’;
ind = [(ii-1) ii (ii+1)];
ind(1,1) = N; ind(N,3) = 1;
for l = 2: M
A = rule(bi2de(A(ind))+1);
B(l,:) = A;

end
spy(B);

81

Figure 5.1: Cellular automata for rule (01111000).

Figure 5.2: Cellular automata for rule (01101001).

Figure 5.3: Cellular automata for rule (01101010) with chaotic behavior on
the lhs and fairly regular structures on the rhs.

82

Figures 5.1 and 5.2 display typical fractal structures, which will be
discussed later on. They also show signs of self organization. Obviously,
Fig. 5.3 is the most complex. It is a standard example for a chaotic struc-
ture created by deterministic local CA. The analysis of the structure of the
generated objects is called complexity problem. KOLMOGOROV coined the
notion complexity as measure for the expense or length of all inner struc-
tures, which are necessary to generate, construct or describe the object.

5.3 Two-dimensional Cellular Automata

The generalization to 2D CAs is straight forward. The evolution rule for
nearest neighbor coupling reads in this case

ai,j(t + 1) = F [ai,j−1(t), ai,j(t), ai,j+1(t), ai−1,j(t), ai+1,j(t)] .

Since there are 4 nearest neighbors on a square lattice, there are 224

= 65536
possible update rules. The number of rules grows rapidly with the number
of neighbors and with the spatial dimension. PACKARD and WOLFRAM

proposed to resort to random sampling with the expectation that the se-
lected rules are representative.

5.4 Applications

5.4.1 Traffic Flow Studied by CA Models

Recent simulations of traffic flow based on CA have gained considerable
importance. Here we will show that rather simple stochastic Cellular Au-
tomata can reproduce features of real traffic including jamming transition
from low density laminar flow to high density congested flow, where stop-
and-go waves are dominant.

Modern versions of CA for traffic flow are called particle hopping mod-
els. Studies of traffic flow based on CA trace back to the year 1956 but they
received wide attention in 1992 with papers by SCHRECKENBERG. The 1D
road is represented by a string of cells, which are either occupied by ex-
actly one car or empty. If all cars are updated simultaneously (parallel up-
date), then the particle hopping model is formally analogous to a 1D CA
described before. NAGEL and SCHRECKENBERG introduced the following
CA for 1D traffic with pbc (circular lane) called stochastic traffic cellular
automata (STCA). In this model, the space coordinate i of the road, the
time t and the velocity vi(t) are discrete variables. The length of the road is
L. Each particle (the total number N is fixed) can have an integer velocity v

between 0 and some maximum velocity vmax. A configuration is character-
ized by the position of the particles (cars) and their respective velocities.
Each cell has a value v between −1 and vmax, where v = −1 represents an

83

empty cell (no car), while other values indicate the presence of a car with
velocity v.

The update rule consists of four consecutive steps:

1. Acceleration: If the velocity v is lower than vmax and if the distance to
the next car (# of empty sites ahead) is larger than v + 1, the speed is
increased by one (v → v + 1).

2. Slowing down: Let d be the distance to the next car ahead. If d ≤ v,
then the speed is reduced to d − 1 (v → d − 1) (No accidents!).

3. Stochastic breaking: With probability psd the velocity of a moving ve-
hicle is reduced by one (v → v − 1).

4. Propagation: Each car proceeds by the value of its velocity v.

The dynamics of the traffic flow is determined by the density

ρ =
#cars
#sites

,

by the initial configuration, and by the probability p.
The traffic flow consists of undisturbed motion with more or less con-

stant velocity (laminar flow), at low densities. We find car clusters (small
jams) at high densities, which are formed randomly due to fluctuations of
velocity. One can also observe the phenomena ’congestion from nowhere’.

Non-interacting Cars

We start out with very low traffic density, which corresponds to isolated
cars. The motion describes a random walk in which with probability q =
1 − psd the speed increases by one and with probability psd = 1 − q the
car retains its speed. In N steps the mean number of acceleration steps is
Nq. Starting with velocity zero, it takes on average N = vmax

q
steps until the

car reaches the maximum speed allowed. After this ’equilibration’ phase
in which a car reached the maximum speed the behavior is fairly simple.
Starting from v = vmax it retains vmax with probability q, while the speed
is reduced to vmax − 1 with probability psd. In case it starts from velocity
vmax − 1 it increases its speed to vmax with probability q and keeps the ve-
locity vmax − 1 with probability psd. It can, however, never reduce its speed
to vmax − 2 or lower, once it has reached v ≥ vmax − 1. Hence, after the
equilibration phase, the probability for vmax is 1 − psd and the probability
for vmax − 1 is psd. The average speed for ’non-interacting’ cars is therefore

〈v〉 = vmax(1 − psd) + (vmax − 1)psd = vmax − psd.

84

0 20 40 60 80 100

50

100

150

200

time

po
si

tio
n

Car Trajectories

ρ = 0.005
p

slow
 = 0.3

v
max

 = 5
<v> = 4.66

Figure 5.4: One car is on the road. It slows down stochastically with p = 0.3
and has a maximum speed v = 5. The average speed 〈v〉 = 4.66 agrees with
the general formula 〈v〉 = vmax − p.

0 20 40 60 80 100

50

100

150

200

time

po
si

tio
n

Car Trajectories

ρ = 0.2
p

slow
 = 0

v
max

 = 5
<v> = 3.93

Figure 5.5: Parameters are ρ = 0.2, psd = 0, and vmax = 5. The average
speed is reduced to 〈v〉 = 3.93 due to the presence of other cars. Apart
from occasional minor slowing downs, the traffic is still laminar.

85

0 20 40 60 80 100

50

100

150

200

time

po
si

tio
n

Car Trajectories

ρ = 0.2
p

slow
 = 0

v
max

 = 20
<v> = 3.93

Figure 5.6: Parameters are ρ = 0.2, psd = 0, and vmax = 20. Although the
maximally allowed speed has been increased significantly, the traffic flow
looks very similar to that of the previous figure. It is laminar with an av-
erage speed of 〈v〉 = 3.93.

0 20 40 60 80 100

50

100

150

200

time

po
si

tio
n

Car Trajectories

ρ = 0.2
p

slow
 = 0.3

v
max

 = 20
<v> = 2.21

Figure 5.7: Parameters are ρ = 0.2, psd = 0.3, and vmax = 20. The stochas-
tic slowing down leads to an erratic traffic flow with congestion and a
reduced average speed of 〈v〉 = 2.21.

86

0 20 40 60 80 100

50

100

150

200

time

po
si

tio
n

Car Trajectories

ρ = 0.4
p

slow
 = 0.3

v
max

 = 20
<v> = 0.875

Figure 5.8: Parameters are ρ = 0.4, psd = 0.3, and vmax = 20. A further
increase of the traffic density leads to ’stop-and-go’ waves and the average
speed is merely 〈v〉 = 0.88.

0 5 10 15 20
0

5

10

15

20

v
max

av
er

ag
e

ve
lo

ci
ty

stochastic traffic cellular automata (p
sd

 = 0)

ρ = 0.01

ρ = 0.1

ρ = 0.2

Figure 5.9: Average speed versus vmax for different densities without
stochastic slowing down (psd = 0). The solid line shows the theoretical
result for non-interacting cars.

87

0 5 10 15 20
0

5

10

15

20

v
max

av
er

ag
e

ve
lo

ci
ty

stochastic traffic cellular automata (p
sd

 = 0.3)

ρ = 0.01

ρ = 0.1

ρ = 0.2

Figure 5.10: Average speed versus vmax for different densities with stochas-
tic slowing down (psd = 0.3). The solid line shows the theoretical result for
non-interacting cars.

Figure 5.9 depicts the average velocity as a functions of vmax in the ab-
sence of stochastic slowing down. In the low density limit the results agree
with those for non-interacting cars. Since there is no stochastic slowing
down, the cars drive with maximum speed. Also for higher densities the
cars drive with the maximum speed allowed as long as vmax is small. Be-
yond a certain value v∗

max the average speed levels off at about v∗

max. With
increasing density the critical velocity v∗

max decreases. The behavior can be
understood easily. If Nc cars are arranged equidistantly along the road of
length L, then the distance between cars is d = L

Nc

= 1

ρ
. According to the

STCA rules, the speed is limited to d − 1, which is the number of empty
cells between successive cars. Hence,

v∗

max ≃ d − 1 =
1 − ρ

ρ
.

In figure 5.10 stochastic slowing down is included. We observe a simi-
lar overall behavior, merely the critical velocities are reduced.

5.4.2 Forest Fires

We use a strongly simplified model to simulate forest fires. Starting from a
two-dimensional simple cubic arrangement of cells with periodic bound-
ary conditions, we place trees with occupation probability p in each cell.

88

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

3

3.5

4

p

t/L

burning time

Figure 5.11: Dependence of the burning time on probability p. System size
200 × 200

The interpretation is either literally: occupied cells contain trees and empty
cells do not, or occupied cells contain trees which catch fire and empty cells
are such that even if there is a tree it does not catch fire when neighboring
trees are burning.

The rules of the CA are as follows.

• Initialize the forest f(x, y).

– Vital tree f = 1

– Empty cell f = 4.

– Burning tree f = 2.

– Burnt-out tree f = 3.

• Light the fire in the center

• Update rule

– A vital tree (f = 1) catches fire if any of its nearest neighbors
burns f = 2.

– Trees burn one time step, afterward they are burnt-out f = 3.

System parameters are the system size and the probability for the presence
of an inflammable tree p.

89

Algorithm 12 MATLAB Code: Forest Fire
p = 0.6;
L = 100;
i1 = [L, 1:L-1]; i2 = [2:L, 1];

% n.n. tableaux
forest = (rand(L,L)<p);

% randomly arranged trees
forest(forest == 0) = 4; % empty cells
forest(L/2,L/2) = 2;

% start fire in center
fig = image(forest,’erasemode’,’xor’);
colormap([.1 .7 .1; 1 0 0; 0 0 0; 1 1 1]);

% green,red,black, white
while sum(forest(:)==2) > 0
ind = find(forest==2);

% indices of burning trees
forest((forest==1) & ...
(forest(i1,:)==2|forest(i2,:)==2|...
forest(:,i1)==2|forest(:,i2)==2)) = 2;

forest(ind) = 3;
set(fig,’cdata’,forest);
drawnow;

end

5.5 Self-organized Criticality

Self-organized criticality is a phenomenon which can be observed in a va-
riety of natural systems: earthquakes, traffic flow, forest fires, river cur-
rents, sand piles, avalanches, etc. It is a general feature of dynamical sys-
tems. We will study the flow of a river by the following simple model:

• One-dimensional arrangement of L blocks, connected by springs to
its nearest neighbors.

• There is a friction between the blocks and the underlying plane.

• The flow is driven by an external force.

• The block slips, if the force on a block exceeds the maximum static
friction.

• The slip of a block changes the forces on its nearest neighbors, which
results in further slips and the chain moves.

Question: If we place a glass of water on a block in the middle, is it possible
to pull in such a way that the water in the glass would never be spilled?

90

The answer is NO. If the length of the chain L becomes very large, the
probability of spilling tends to unity. This fact reflects the essence of self-
organized criticality.

In a more formal way, the motion of the chain in the steady state is
characterized by an average velocity vav. The quantity of interest, however,
is the distribution of the kinetic energy of a block

P (ε) = P (|E − Eav| > ε).

Two scenarios are conceivable:

A) The energy fluctuations are characterized by a fixed parameter ε0

independent of the number of blocks L and we have typically

P (ε) ∝ e−ε/ε0 ,

where ε0 is a cutoff independent of L. The exponential law corre-
sponds to a smooth motion, if ε0 is sufficiently small.

B) The sequences of blocks at rest form clusters of growing size. When
the force at the edge of a cluster exceeds the maximum static friction,
the motion of the whole cluster is triggered. A block, involved in this
motion, performs a big jump giving rise to a considerable fluctuation
of the kinetic energy. If the size distribution of the clusters has no
characteristic length except L, there are no cutoff parameters in the
system in the limit of large L. Therefore, the energy distribution for
large L can be written in the form

P (ε) ∝ ε−τ ,

where τ is a constant. The power law implies unlimited large fluctu-
ations in the course of motion.

The concept of self-organized criticality claims the necessity of the second
kind of behavior.

We are now ready to explain both parts of the term "self-organized
criticality". The word "criticality" comes from the theory of second-order
phase transitions. The critical state in thermodynamics is associated with
self-similar fluctuations of observable values. Self-similarity means the ab-
sence of a characteristic scale or infinite correlation lengths. This means, in
turn, that correlation functions obey power laws at the phase transition. To
reach the critical point, one should tune one of parameters, e.g. the tem-
perature, with high accuracy. In contrast to thermodynamics, dissipative
dynamical systems drive themselves to the critical state, or "self-organize"
themselves, automatically, without any fine-tuning of parameters.

The paradigm of self-organized critical systems is a pile of sand. Let us
drop grains of sand on a horizontal plane at randomly chosen places, one

91

grain at a time. At some point in time, the average slope of the pile reaches
a steady state corresponding to the angle that cannot be exceeded no mat-
ter how long we carry on adding sand. The stationary state of the sandpile
is not completely uniform since variations of the local slopes are possible.
If we add a grain of sand, which causes the local slope to exceed the critical
angle, an avalanche is triggered. We encounter a model, that is quite sim-
ilar to our spring-block model. The regular input of sand represents the
external force of the previous example. The addition of particles leads to
avalanches similar to the clusters of moving blocks. As a result, we obtain
an extremely irregular output of sand or energy having no characteristic
intervals between peaks and therefore obeying the power-law distribu-
tion.

To examine these observations mathematically, BAK, TANG, and WIESEN-
FELD proposed a CA model. The sandpile model on the two-dimensional
square lattice can be defined as follows: Consider a rectangular lattice of
linear dimension L. Each site i of the lattice is characterized by an integer
zi, the number of particles or the local height at this site. One drops a grain
of sand on a site i chosen at random, thereby increasing its height by one:

zi → zi + 1.

If this new height exceeds a maximum stable value, say 4, then the column
of sand at site i becomes unstable and topples. The height zi decreases by
4 and each of the four nearest neighbors j of the site i receives one particle:

zi → zi − 4, zj → zj + 1, j : n.n. of site i.

(Here, ‘n.n’ means nearest neighbor.) If a toppling occurs at the edge of the
lattice, the toppled site gives one particle to each of three neighbors while
one grain drops out of the system.

To watch the evolution of the sandpile in time, we assume that one
adds a particle to a stable configuration at each discrete point in time. If
the height zi reaches 5 somewhere, there is a toppling wherein 4 particles
are transferred from the unstable site to its neighbors. The transferred par-
ticles may cause instabilities among new sites. The toppling of the latter
perturbs next neighbors and a chain reaction propagates up to the moment
when all sites get stable again. One assumes the updating to be done con-
currently, with all sites updated simultaneously. The relaxation processes
are assumed to be quick enough to be completed by the next discrete time.
A collection of s distinct sites relaxed during an interval between two suc-
cessive discrete moments of time forms an avalanche of size s. If a toppling
at a given site causes instabilities at all nearest neighbors, the initial site re-
ceives 4 particles back and gets unstable after the next updating and there-
fore topples again. Typically, almost all sites inside a large avalanche un-
dergo multiple topplings. The total amount of topplings in the given time
interval is the mass m of the avalanche. The duration t of an avalanche is

92

the number of updatings for the relaxation process to complete. The for-
mulated rules describe a CA which is useful for computer simulations.
The very first investigations of sand piles displayed clear power-law de-
pendencies for distributions of all basic characteristics of the model:

D(s) ∝ s−τ

D(m) ∝ m−κ

D(t) ∝ t−α

and provided rough estimates for the critical exponents τ, κ, α in the size,
mass, and duration distributions.

93

	Molecular Dynamics
	MD at constant energy
	Verlet Algorithm
	Harmonic Oscillator

