
Chapter 6

Fractals
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6.1 Introduction

Before the invention of computers fractals have come up twice as an im-
portant question. The first time was when British map makers discovered
the problem with measuring the length of Britain’s coast. On a zoomed out
map, the coastline was measured to be about 5,000 something or other (in
some odd units). But, anyway, by measuring the coast on more zoomed
in maps, it got to be longer, like 8,000. And by looking at really detailed
maps, the coastline was beyond twice the original. You see, the coastline of
Britain that’s on a map of the world doesn’t have all the bays and harbors.
A map of Britain has more of these, but not all the little coves and sounds.
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Figure 6.1: A typical MANDELBROT fractal.

The closer they looked, the more detailed and longer the coastline got. (A
finite area, aka Britain, being surrounded by an infinite line.)

The second instance of pre-computer fractals was noted by French math-
ematician G. JULIA. He wondered what a complex polynomial function
would look like, such as the ones named after him, in the form of z2 + c,
where c is a complex constant. The idea behind the formula is that you
take the x and y coordinates of a point and plug them into z in the form
z = x + iy, square this number and then add c, a constant. Then plug the
resulting pair of real and imaginary numbers back into z, run the equation
again, and keep doing so until the result is greater than some number, the
‘orbit’. The number of times you have to run the equations to get out of
its ‘orbit’ can be assigned a color and then the pixel (x, y) gets turned into
that color, unless those coordinates can’t get out of their orbit, in which
case they’re made black.

Later, B. MANDELBROT, an employee of IBM, thought about writing a
program with a formula such as Z(n)2 + c and then running it on IBM’s
many computers. They eventually got some pretty pictures. (See, for in-
stance, Fig. 6.1.) He also coined the notion fractal.

The basic concept of fractals is that they contain a large degree of self
similarity. This means that they usually contain little copies of themselves
buried deep within the original and they also have infinite detail. Like
the costal problem, the more you zoom in on a fractal, the more detail
(coastline) you get.

A wide variety of natural objects does not have well-defined and sim-
ple geometric shapes. Examples can be found in plants, sea shells, poly-
mers, thin films, colloids,1 and aerosols. Often these structures have un-

1Colloid: a substance consisting of very tiny particles that are usually between 1
nanometer and 1000 nanometers in diameter and that are suspended in a continuous
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usual, but pleasing shapes.
We will see that these unusual figures have non integer dimensions.

Some geometric objects are exact fractals with the same dimension for all
their points, while for other objects the dimension can be defined only lo-
cally or on the average. We will not study the theories that lead to fractal
geometry, but we will rather look at how some simple models and rules
produce fractal structures. To the extent that these models generate struc-
tures like those occurring in nature, it is reasonable to assume that the nat-
ural processes must be governed by similar rules. There are many physical
systems exhibiting fractal structures, but the detailed study would go be-
yond the scope of the present lecture note.

Consider a common abstract "object" such as the charge density of an
atom. There are an infinite number of ways to measure its "size", for exam-
ple: each moment of the distribution provides a measure of the size, and
there are infinite numbers of moments. Likewise, when we deal with com-
plicated objects that have fractional dimensions, there are different defi-
nitions of dimension conceivable, and each may give a somewhat differ-
ent answer. In addition, the fractal dimension is often defined by using a
measuring box the size of which approaches zero. In realistic applications
there is in general a smallest and a largest scale, respectively, which also
hampers the precise determination of the fractional dimension.

Our first definition of a fractional dimension df (or HAUSDORF dimen-
sion dH) is based on our knowledge that a line is of dimension 1, a rectan-
gle dimension 2, and a cube dimension 3. Let’s assume we have a mathe-
matical formula, that yields results in agreement with our experience for
regular objects. It seems perfectly legitimate, then, to apply this formula to
fractal objects, resulting in non-integer values for df . For simplicity, let us
consider objects that have the same length L on each side, as do equilat-
eral triangles and squares. We postulate that the dimension of an object is
determined by the dependence of its mass upon its length.

M(L) = ALdf . (6.1)

Here A is a constant and the power df is the fractal dimension. As you
may verify, this rule works with the regular figures of our experience, so
it must make some sense. Yet we will see that when we apply it to some
unusual objects, this rule produces fractional values for df .

Fractals have technological applications. Antennas have always been a
tricky subject. The usual long, thin wires aren’t the best way. Antenna ar-
rays, another approach, consist of thousands of small antennas which are
either placed randomly or regularly spaced. Fractals provide the perfect
mix between randomness and order, and with fewer components. Parts of
fractals have the disorder, while the fractal as a whole provides the order.
Fractal antennas can now be found in many mobile phones and they are

medium, such as a liquid, a solid, or a gaseous substance.
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approximately 25% more effective than traditional antenna designs. They
are also cheaper and can operate multiple bands because for an antenna to
work equally well at all frequencies it must be symmetrical around a point
and must be self-similar, both of which fractals can provide.

6.2 The SIERPINSKI Gasket

We generate our first fractal, shown in Fig. 6.2, by placing dots on a plane
according to the following rules

1. Draw an equilateral triangle with vertices P1, P2, and P3.

2. Place a dot at an arbitrary point P = (x0, y0) within the triangle.

3. Choose an integer i ∈ {1, 2, 3} at random and place a dot halfway
between P and vertex Pi.

4. Keep repeating step 3 upon using the last dot as the new P .

Algorithm 13 MATLAB Code: SIERPINSKI Gasket
function X = sierp_fct(P,N_pts)
rx = rand(1,1) * .5;
ry = rand(1,1);
if (ry > 2 * rx)

rx = rx + .5; ry = 1-ry;
end
X = zeros(N_pts,2);
X(1,:) = [rx ry];
n = unidrnd(3,[N_pts,1]);

% integer random number from {1,2,3}
for i = 2: N_pts

X(i,:) = (X(i-1,:) + P(n(i),:))/2;
end
return

%---------------------------------------

N_pts = 50000;
P = [0 0; 1 0; .5 1; 0 0];
X = sierp_fct(P,N_pts);
plot(P(:,1),P(:,2),’-k’);
hold on
plot(X(2:end,1),X(2:end,2),’.k’,’markersize’,1);
drawnow;
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After 50000 points, one obtains a collection of dots like in Fig. 6.2.

Figure 6.2: A SIERPINSKI gasket containing 50000 points. This pattern has
been found in the tile work of medieval monasteries and on the shells of
sea animals. Each filled part of this figure is self-similar.

Algorithm 14 MATLAB Code: Fractal Dimensions
N_pts = 15000;
N_rep = 100;
L = 10; N = 2ˆL;
alpha = zeros(N_rep,1);
for ir = 1: N_rep

X = sierp_fct(P,N_pts);
X = ceil(X * N); % map onto grid
A = zeros(N,N);
A(sub2ind([N,N],X(:,1),X(:,2))) = 1;
for i = 1: L

LL(i) = 2ˆi;
m(i) = sum(sum(A(1:LL(i),1:LL(i))));

end
ind = find(m > 0);
ln_LL = log(LL(ind));
ln_m = log(m(ind));
[p,S] = polyfit(ln_LL,ln_m,1);
alpha(ir) = p(1);

end
fprintf(’alpha = %10.3f +/- %10.3f \n’,...

mean(alpha),std(alpha)/sqrt(N_rep));

98



The numerical result for the fractal dimension for a sample of size
Nrep = 100 reads

α = 1.59 ± 0.01.

6.3 Analytic Determination of the Fractal Dimen-

sion

The topology of Fig. 6.2 was first analyzed by the Polish mathematician
SIERPINSKI. Observe that there is the the same structure in a small region
as there is in the entire figure. In other words, if the figure were infinitely
dense, any point of the figure could be scaled up in size and will be similar
to the whole. This property is called self-similarity.

Another construction of the SIERPINSKI gasket is suggested by Fig. 6.2.
Fill the original triangle with black color. Remove an inverted equilateral
triangle of size L/3. The resulting figure consists of three black equilateral
triangles. Keep on removing inverted triangles from the center of the filled
triangles. At each iteration the figure contains filled triangles, all of the
same size. Finally, we scale the figure up so that each filled triangle has the
original size.

Next, we analyze how the density ρ = mass
area depends on size. Assume

that each triangle has size r and mass m. The density of the single triangle
reads:

ρ(L = r) =
M = m

r2

def
= ρ0.

Next, for the triangle with side L = 2r the density is:

ρ(L = 2r) =
M = 3m

(2r)2
=

3m

4r2
=

3

4
ρ0.

We see that the extra white space leads to a density that is 3/4 the density
of the previous stage. In the next step we obtain

ρ(L = 4r) =
M = 9m

(4r)2
=

(

3

4

)2
m

r2
=

(

3

4

)2

ρ0.

We see that as we continue the construction process, the density of each
new structure is 3/4 the density of the previous one. This is unusual. For
ordinary objects the density is an insensitive quantity, independent of the
size of the object. For this strange object, there is a power-law dependence
of the density on the size of the object

ρ = CLα,

where C is some constant. The power α is determined via:

α =
∆ log ρ(L)

∆ log(L)
=

log(1) − log(3/4)

log(1) − log(2)
=

log(3)

log(2)
− 2 ≃ −0.41504.
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This means that, as the gasket gets larger and larger, it contains more and
more open space. So even though its mass approaches infinity, its density
approaches zero! And since a two-dimensional figure like a solid triangle
has a constant density as its length increases, a 2D figure would have α =
0. Since the SIERPINSKI gasket has a nonzero α value, it is not a 2D object!
The fractional dimension df is defined by

M(L) = ρ(L) ∗ L2 = CLα+2 = CLdf .

Hence
df = α + 2 ≃ 1.58496,

which is in perfect agreement with the numerical result. We see that the
SIERPINSKI gasket has a dimension between that of a 1D line and a 2D
triangle; that is, it has a fractional dimension.

6.4 Length of a Coastline

MANDELBROT asked the classic question "What is the length of the coast-
line of Britain?". MANDELBROT’s answer introduces another definition to
our study of fractals, namely using box counting to determine fractal di-
mension.

As illustrated in Fig. 6.3, the plane is divided into squares of size s
and we count the number of cells N which are crossed by the object under
consideration. Then the scale s is changed and the box counting is repeated
leading to the dependence of the number of crossed cells N(s) on the scale
s. For 1D objects, we have

N(s) ∝ s−1,

and for 2D objects the relation is:

N(s) ∝ s−2.

The dimension d enters into the power law as

N(s) ∝ s−d,

and we extend this formula to fractal objects.
The fractal dimension is then determined from a straight line fit to the

N(s) data on a log-log scale. Points close to the scales s = 1 and s = L have
to be omitted, as the self-similarity breaks down at these points because
the surface is constructed with a finite resolution s = 1 and has finite size
s = L.

Fig. 6.4 contains the fractal dimension df for different surfaces during
the growth process. Due to the finite range of the surface, the fractal di-
mension is a random variable and varies during the growth process. The
average fractal dimension is df = 1.22.
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Figure 6.3: Illustration of the box counting method. The surface has been
tilted to make the counting procedure more obvious. On scale s = 8 the
curve passes through N8 = 70 (blue) boxes, while N32 = 14 (red) boxes are
crossed on the scale s = 32.

6.5 Ballistic deposition

There is a number of physical processes in which particles are deposited
on a surface to form a film. Here we consider particles that are evaporated
thermally from a hot filament. The emission, the propagation to the surface
and the diffusion on the surface are random processes. Nonetheless, the
films produced by deposition turn out to have well-defined structures. We
will simulate this growth process on the computer by simplified rules.

Simulation

Consider particles falling onto and sticking to a horizontal line of length
L. The emission and propagation process to the final destination on the
surface is mimicked by the following rules.

1. Start with a flat substrate and zero film thickness hi = 0; ∀i.

2. Determine at random the site i at which the particle(s) will stick
eventually.

3. Decide how many particles shall be added to this place.

hi =

{

hi + 1, if hi ≥ hi−1 and hi ≥ hi+1;
max(hi−1, hi+1), otherwise
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Figure 6.4: Simulation of the ballistic deposition on a 1D substrate (left
panel). The top (black curve) represents the final surface. The other marks
indicate heights, taken on during the growth process. The right panel
shows the fractal dimensions of the surface during the growth process.

The reason for the last step is the acceleration of the time consuming dif-
fusion process on the surface. The sticking probability is higher at edges
than on plane surfaces patches. To model this effect, the hight is increased
by one if the particle lands on a flat surface patch, otherwise the height at
site i is set to the maximum height of its neighbors.

A representative result of a simulation is shown in Fig. 6.4. We observe
several randomly distributed empty regions in the figure on the left panel.
They are a consequence of the plotting algorithm and have no physical
meaning for the final film. Below the surface, which is indicated by black
dots, all columns are completely filled. The fractal internal structure is a
remnant of the growth process. Grey dots indicate surfaces of previous
iterations. The empty parts of the columns occur when particles hit an
edge, which is subsequently filled in one time step according to deposition
rule (3). The average height increases linearly with time (see right panel of
Fig. 6.4) and the surface has a fractal structure.

6.6 Diffusion-limited Aggregation

Diffusion-limited aggregation (DLA) takes place in non-living (mineral
deposition, lightning paths) or living (corals) nature and results in objects
with unusual geometry. We will first discuss the meaning of the terms in
the notion ’DLA’.
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Diffusion is a random motion of particles as has already been discussed
in Sec. 1.4.2. Individual particles move typically far away from their orig-
inal position. The distance, measured by the square-root of the variance,
grows as:

d =
√

var(x) ∝
√

t.

In contrast to a normal flow, where all particles under consideration move
more or less into the same direction, the average distance 〈x〉 covered by
the particles within a random walk (Brownian motion) is zero. In diffusion
there might be a net transport of material, when the starting density is not
uniform. If you pour a drop of ink into a glass of water the ink spreads. But
diffusion is not only a phenomenon in fluids, it can also occur in solids. It
just takes much more time in the latter case.

The driving force for diffusion is the entropy. The energy of a state
where all ink molecules are piled up in one corner could be the same as
the energy for a state in which the ink is spread homogeneously. Conse-
quently, each ’microstate’ has the same statistical (BOLTZMANN-) weight.
However, there are overwhelmingly more states supporting a homoge-
neous density then there are states yielding a significant inhomogeneity
and the later has vanishing odds to be observed.

Aggregations are formed, when particles attract each other and stick
together. Depending on the strength of the forces the resulting aggregates
differ. Strong forces lead to compact and well ordered crystalline struc-
tures. When the forces are weaker it may happen that particles stick to-
gether for a while and then travel around again. The resulting aggregates
have no distinct shape. Each aggregate is unique. Fluffy, not compact,
maybe tree like clusters emerge.

DLA-clusters are aggregates, where the shape of the cluster is con-
trolled by the possibility of particles to reach the cluster. DLA-clusters are
ideal objects for computer simulations. One approach is to simulate the
random walk of the particles and their aggregation. Typically one uses
a lattice, puts an initial seed particle at some origin and another particle
somewhere on the lattice. Then the second particle moves around in ran-
dom motion, step by step from lattice site to lattice site. Finally it will meet
the first particle. Then another particle is thrown onto the lattice, it walks
around and after a while meets the first two. This is continued for as many
particles as one likes, one after the other.

There are many variations of the DLA model with more realistic prop-
erties depending upon the application of interest.

Applications

DLA structures occur in the following applications:

• Exploitation of oil resources embedded in sand by means of water
pressed into the sand. So water-oil-surface may or may not exhibit
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shapes which resemble those of DLA.

• Catalyst forming. These materials of great value in chemical engi-
neering may also show strongly branched surfaces with many holes
and channels. The very large surface area is often relevant for the
catalytic process.

• When metals like copper or gold are separated electrolytically out of
a solution, shapes like DLA-cluster form under certain conditions.

• When metals are deposited onto surfaces from the gaseous phase to
get very thin films a DLA-growth is observed.

• Deposition of carbon on the walls of a Diesel engine exhibit DLA
structures.

• Generation of polymers out of solutions may follow a DLA-mechanism.

Simulation

Here we study the most simple DLA simulation on a 2D lattice:

1. Define a simple square lattice of vacant grid points.

2. The linear size L of the lattice should be ’sufficiently large’ in order
to avoid boundary effects.

3. Place a seed particle (first element of the cluster) at the center of the
lattice.

4. Draw a circle C1 that only just fits into the square and map it onto
the grid points.

5. The points in and on C1 defines the area A1.

6. Add a particle at random on C1.

7. The particle performs a random walk with equal probability in the
four nearest neighbor directions.

8. The random walk stops if

(a) the particle escapes from A1.

(b) the particle touches the aggregate.
Add the particle to the aggregate.

9. If the aggregate has not yet the desired size go to 6.
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Figure 6.5: Setup of the DLA simulation.

In this form the algorithm is highly inefficient as it takes a long time
until the particle eventually touches the aggregate. Since we are not in-
terested in the dynamics itself but rather in the form of the aggregate, the
simulation can be accelerated considerably due to the following reasoning.
Consider a circle of radius r1 centered around the seed particle that is only
slightly bigger than the aggregate at a given point in time. The situation is
depicted in Fig. 6.5.

In order to reach the aggregate the random walk particle has to cross
the circle. Due to symmetry, all points on the circle are crossed with equal
probability. Hence, the particle can be added straight away somewhere on
the circle with equal probability. This circle plays the role of circle C1 de-
fined above. However, now we cannot stop the random walk if a particle
leaves A1. This would imply a bias since the escape probability is smaller
on parts of the circle which are close to the aggregate than at parts which
are far away. Therefore, we introduce an outer circle C2 of radius r2 > r1

which defines the escape radius. If a particle crosses C2 it is lost and a
new particle is added on C1. Figure 6.6 shows a typical result of a DLA
simulation .

The fractal dimension is determined analogously to the definition (6.1)
via the mass M(s) or rather the density ρ(s). Here it is sensible to consider
the mass contained in concentric circles C(s) of radius s around the seed
particle. The mass M(s) is defined as the number of aggregate cells inside
the circle of radius s. The corresponding volume V (s) is the total num-
ber of cells within C(s). The density reads ρ(s) = M(s)/V (s). The fractal
dimension is given by the power law dependence

M(s) ∝ sdf .
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Figure 6.6: The left panel shows an aggregate with N = 16700 particles on
a grid of linear size L = 3000 constructed with r2/r1 = 6. The right panel
exhibits the density ρ as functions of scale s (lower curve) along with the
local fractal dimension determined from the slope of 5 neighboring points
and the cumulative average of the later.

In Fig. 6.6 we observe that the fractal dimension of the bulk of the graph is
df ≃ 1.7 while it decreases towards zero at the outer fringes. It is reason-
able that the dimension decreases once the outer fringes of the aggregate
are reached. A fractal dimension df = 0 means that the mass is constant
beyond a certain radius.

6.7 Percolation

6.7.1 Introduction

A representative question is as follows: Assume we have some porous ma-
terial and we pour some liquid on top. Will the liquid be able to make
its way from hole to hole and reach the bottom? We model this physi-
cal question mathematically as a three dimensional network of N3 points
(or vertices). The connections (or edges) between each two neighbors may
be open with probability p or closed with probability 1 − p. What is the
probability that an open path (open cluster) exists from top to bottom? (A
cluster is a number of connected edges.) Mostly we are interested in the
behavior for large N . As is quite typical, it is actually easier to examine an
infinite network than just large ones. In this case the corresponding ques-
tion is: Does there exist an infinite open cluster? Here we may use KOL-
MOGOROV’s Zero-One Law (see Appendix C) to see that for any given p
the probability that an infinite cluster exists is either zero or one. Thus,
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there must be a critical probability pc below which the probability for the
existence of an open cluster is always zero and above which this probabil-
ity is always equal to one.

Sometimes it is easier to open and close vertices rather than edges. This
is called site percolation while the model described above is called bond per-
colation.

From all this we deduct that percolation is the simplest model for ran-
dom media. One typical application is the simulation of the formation of
gypsum. As percolation clusters can also be grown from one single seed,
percolation gives rise to models for the spreading of epidemics.

6.7.2 The Model

We will argue the case on the basis of a site percolation model. For this
purpose we investigate an alloy which consists of two components, atoms
A and B. The concentration of A-atoms is described by p and both compo-
nents are randomly distributed. Atom A carries a spin and there exists a
short range magnetic interaction between next nearest neighbor A-atoms.
B-atoms do not carry a spin. The alloy can only develop magnetic prop-
erties if an infinite net of connected A-atoms exists. Thus, we can assume
that there exists a critical concentration pc at which the alloy starts to de-
velop magnetic properties and we observe a phase transition from non-
magnetic to magnetic behavior.

Phase transitions can only be observed in infinite systems. In contrast,
the computer only allows to study finite systems. But even for finite sys-
tems one will be able to observe a signature of the phase transition in the
vicinity of pc.

At small concentrations we expect to see only a number of small clus-
ters of A-atoms in the sea of B-atoms and there will be no magnetic order-
ing. With increasing concentration p the average size of the clusters will
increase until, at the critical value pc, one cluster will spread across the
whole sample. This is the percolation cluster or infinite cluster. pc is the crit-
ical concentration or percolation level. For infinite sample size pc is a well
defined property and for a quadratic two-dimensional lattice with four
nearest neighbors pc = 0.59275 ± 0.00003 as was proved numerically. In a
finite size system there will only be a certain probability - dependent on p
- that an infinite cluster can exist.

There are many interesting properties besides the plain value of pc.
For instance, how does pc depend on lattice symmetry or the percolation
model? How does the average size of finite clusters change when p ap-
proaches pc from below? How does the density of the infinite cluster in-
crease for p > pc? Can one gain information on the distribution of the
cluster size throughout the sample? What is the structure of the infinite
cluster at pc?
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Let us try to establish (without proof) a few concepts. We define, first
of all, the average size R(s) of a cluster which consists of s elements using

R2(s) =
1

s(s − 1)

∑

i6=j

(ri − rj)
2, i, j = 1, . . . , s. (6.2)

Here, i and j are indices which are used to identify the elements of the
cluster and ri is the lattice position of element i. Thus, the average size ξ
of a finite cluster is defined by

ξ =
√

〈R2(s)〉s<∞, (6.3)

with 〈· · ·〉s<∞ the mean value over all finite clusters in the system. ξ di-
verges at pc and close to pc we have

ξ ∼ |p − pc|−ν . (6.4)

This holds for all percolation models and ν is an universal critical exponent.
Universal means that ν depends only on dimension, for instance in 2D one
gets ν = 3/4 and for 3D a ν ≃ 0.88 is reported.

We introduce, furthermore, the probability P (p) that some arbitrary A-
atom belongs to the infinite cluster. Obviously P (p) = 0 for p < pc because
no infinite cluster exists. Thus, P (p) grows from P (pc) = 0 to P (1) = 1,
and, again, close to pc

P (p) ∼ (p − pc)
β, p

>∼ pc. (6.5)

Here, β is another universal critical exponent; for 2D one gets β = 5/36 ≃
0.14. Thus P (p) increases very rapidly.

The density pcP (pc) of the infinite cluster at pc is, obviously, zero ac-
cording to the above definition of P (p). Nevertheless, the infinite cluster
exists and it has a very interesting structure: it is a fractal. Thus, we intro-
duce another item, M(L). L is the linear dimension of a square clipping of
the lattice and M(L) is the number of elements of the infinite cluster inside
this square clipping. As the infinite cluster is a fractal at pc we have

〈M(L)〉 ∝ LD, p = pc, (6.6)

with 〈· · ·〉 the mean value over various clippings and D the fractal dimen-
sion. For 2D one gets D = 91/48 ≃ 1.89 and D is an universal exponent.

There are many other properties of the system which develop exponen-
tial behavior close to the critical concentration. They are described by other
universal critical exponents. Nevertheless, these singularities are not inde-
pendent of each other as the theory of phase transitions based on renor-
malization group theory proves. They depend on each other via scaling
laws.
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We emphasized already that the critical exponents are defined only for
infinite systems. On the other hand, the computer can handle only finite
systems. There is no phase transition in such systems, no sharply defined
critical concentration, and there are no divergencies. Is it possible to con-
clude from the properties of finite systems to the properties of the infinite
system? The answer to this question is given by finite scaling.

Let M(p, L) be the average number of elements in a cluster which tra-
verses a quadrat of linear dimension L. (This is the finite size equivalent
of the infinite cluster.) For each value of L one can calculate M(p, L) as a
function of p which results in a congruence of curves. Scaling theory of
critical phenomena tells us that such a congruence of curves is close to the
critical point described by one universal function f after appropriate scal-
ing. The scale for M(p, L) and L can either be given in powers of p− pc, or
using Eq. (6.4), in terms of ξ. Thus, we describe L in units of ξ and M(p, L)
in units of ξx:

M(p, L) ∼ ξx f

(

L

ξ

)

. (6.7)

Initially, f(L/ξ) is an unknown function and x is yet another critical expo-
nent. We use L = kξ, with k a constant, and get from Eq. (6.6) x = D. Thus,
we measure L in units of ξ and M(p, L) in units of ξD. Consequently,

M(p, L) ∼ ξD f(k), (6.8)

or

M(p, L)

Ld
∼ ξD

Ld
f(k)

∼ ξD

kd ξd
f(k)

∼ ξD−d f(k), (6.9)

with d the dimension of the system. Thus, Ld is the number of lattice points
and M(p, L)/Ld is the probability for a lattice point to belong to the cluster
under investigation. For large L we get:

M(p, L)

Ld
≃ pP (p) ∼ (p − pc)

β. (6.10)

Using Eqs. (6.4) and (6.9) we, finally, arrive at

M(p, L)

Ld
∼ ξD−d f(k) ∼ pP (p)

(p − pc)
ν(D−d) ∼ (p − pc)

β,

or
β = (d − D)ν. (6.11)
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As a result, the three exponents D, β, and ν are linked by a scaling law.
This scaling law also helps in finding information on the dependence

of the ‘singularities’ on the lattice size L. We use Eqs. (6.4) and (6.7) and
get

M(p, L) ξ−D ∼ f

(

L

ξ

)

M(p, L) |p − pc|Dν ∼ f̃
[

(p − pc)L
1/ν

]

. (6.12)

Thus, the concentration p and the system size L are linked close to the
critical point (p = pc, L = ∞).

In a first step we can determine the fractal dimension D. It has al-
ready been defined in Eq. (6.6). For L ≪ ξ the finite system looks like
the infinite system (self similarity of fractals) and we find using Eq. (6.6)
M(p, L) ∼ LD. This enables us to calculate from the increase of the number
of elements inside the infinite cluster, M(pc, L), with lattice size L numeri-
cally the fractal dimension D.

In order to determine pc we develop another scaling law. Let π(p, L)
be the probability for an infinite cluster to exist within a sample of size L.
Thus,

π(p,∞) =

{

0 p ≤ pc,

1 p > pc,

in the infinite system. In finite systems this step function will become
smoothed out. For L = ∞ and p > pc π(p,∞) is constant and the scale
exponent has the value zero. Thus, we write in analogy to Eq. (6.12)

π(p, L) = g
[

(p − pc)L
1/ν

]

, (6.13)

with g(x) a still unknown function. Nevertheless, if we occupy the lattice
sites with probability p and increase p the clusters will grow in size. At
some level pc(L) we will find an infinite cluster.

The probability to find pc(L) within an interval [p, p+dp] is determined
by the derivative (dπ/dp)dp at pc(L). Obviously, dπ/dp develops a maxi-
mum which diverges for L → ∞ and pc(L) → pc(∞), the critical concen-
tration of the infinite system. Because of statistical fluctuations, the maxi-
mum of dπ/dp is rather hard to determine and it is advisable to calculate
the mean value

〈pc(L)〉 =

∫

dp p
dπ

dp
(6.14)

and the variance, var(pc(L)). Eq. (6.13) results in the scaling law

〈pc(L)〉 =

∫

dp pL1/νg′
[

(p − pc)L
1/ν

]

.

Using z = (p − pc)L
1/ν and

∫

dp (dπ/dp) = π(1, L) − π(0, L) = 1 (because
for p = 1 an infinite cluster exists independently of L) we arrive at

〈pc(L)〉 − pc ∼ L−1/ν . (6.15)
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Algorithm 15 MATLAB Code: Simple Percolation
p = 0.5; % choose probability for A-atoms
L = 100; % choose lattice size
lat = zeros(L,L); % fill lattice with B-atoms
for i = 1:L

for j = 1:L
if rand(1) < p

lat(i,j) = 1; % make A-atom
end;

end;
end

If we now calculate pc(L) for many simulations of a system of length L and
if we repeat this for many other (big) values of L it will be possible to fit
the mean value 〈pc(L)〉 to Eq. (6.15) which will result in values for pc and
ν. Thus, the critical concentration pc and the two exponents D and ν have
been determined using systems of finite size. Furthermore, applying the
same algorithm to calculate 〈pc(L)2〉 will finally give for the variance:

var(pc(L)) =
〈

pc(L)2
〉

− 〈pc(L)〉2

=
〈

[pc(L) − pc]
2
〉

− 〈pc(L) − pc〉2

∼ L−1/ν . (6.16)

Thus, the standard deviation of pc(L) can be used to determine directly the
critical component ν.

6.7.3 The Algorithm

A simple algorithm is presented as Algorithm 15. It creates a random pat-
tern of zeros (representing B-atoms) and ones (representing A-atoms) on
a square lattice of linear dimension L for a given concentration p of A-
atoms. We see that it is rather easy to generate the percolation pattern. The
problem we are now confronted with is that we have to extract the desired
information by ‘asking’ the appropriate questions.

First of all one needs an algorithm to identify clusters of connected
lattice points. One possibility is to give cluster numbers to all occupied
lattice sites with the provision that each lattice site which is not connected
to a lattice site we have visited before receives a new cluster number. This
method allows to visit each lattice site only once with the disadvantage
that parts of the same cluster may be identified by different cluster num-
bers. At the end of the identifying algorithm these conflicts are resolved
using book-keeping methods. A typical result is presented if Fig. 6.7 for a
20 × 20 lattice and p = 0.5.

Finally, Fig. 6.8 demonstrates that the procedure discussed in the pre-
vious section which allows to derive the critical concentration pc of the
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a) b)

Figure 6.7: Frame a): A result of Algorithm 15 for p = 0.5 on a square
lattice with L = 20. Frame b): Lattice sites occupied by A-atoms identified
by cluster numbers.

Figure 6.8: π(p, L) for a quadratic two-dimensional lattice. The black solid
curve shows the critical behavior of the infinite sample. This graphs
demonstrates the applicability of the procedure described above which
allows to determine pc from finite size samples only.

112



infinite system from finite size results only does indeed work. The fig-
ure shows the probability π(p, L) for an infinite cluster to exist within a
sample of size L. The region in which dπ/dp displays a maximum agrees
well with the critical value pc = 0.592746 of the infinite system. We also
see that the slope dπ/dp close to pc gets steeper with increasing lattice
size L. The curves have been generated using 100 simulations per occupa-
tion probability p. All curves cross within a rather narrow region around
π(p = 0.592746, L) = 0.5.
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