
Chapter 7

Markov Chain Monte-Carlo
(MCMC)

7.1 The Problem

Quite often integrals like

I =

∫

dNx f(x)g(x), x ∈ R
N , (7.1)

with g(x) ≥ 0 a PDF, are to be evaluated. Typically, N ≫ 1. The standard
example for this kind of an integral stems from statistical physics and is
given by

〈F 〉 =

∫

dNx f(x)
e−βE(x)

Z
︸ ︷︷ ︸

=g(x)

,

with the partition sum Z:

Z =

∫

dNx e−βE(x).

Here, N is the number of particles in the one dimensional problem and
equal to three times the number of particles in a 3D problem. As it is vir-
tually impossible to calculate such integrals analytically, the value I is to
be estimated using Monte-Carlo techniques.

Another important problem is defined by

I =
∑

x1,...,xn∈X

f(x)P (X). (7.2)

114



Here, X = {x1, . . . , xn} is a set discrete states (for instance, the ISING model
has X = {+1,−1}) and P (X) is the probability which is given by

P (X) = Z−1e−βE(X)

as follows from statistical physics. Furthermore,

Z =
∑

X

e−βE(X).

and the sum I is to be calculated using Monte-Carlo methods.

The POTTS Model, an Example

Many spin models can be found in the literature; some were born from
theoretical models, some are based on experiments. The POTTS model is a
classical model and is related to the physisorption of Krypton atoms on a
graphite surface.

The POTTS model is defined by a q-state variable, σ = 1, 2, 3, . . . , q,
which exists on each lattice site. The interaction between spins is described
by the Hamiltonian

H = −
∑

ij

Jijδσi,σj
. (7.3)

The sum goes over all lattice sites and Jij describes the exchange interac-
tion between lattice site i and j. Furthermore,

−Jijδσiσj
=

{
−Jij σi = σj ferromagnetism
0 σi 6= σj .

In the special case of nearest neighbor interaction, the Hamiltonian (7.3)
simplifies into:

H = −J
∑

〈ij〉

δσi,σj
. (7.4)

Obviously, the POTTS model has q equivalent ground states in which
all spins are identical but can acquire any of the q possible values. The
model is identical to the spin-1/2 ISING model for q = 2 but it is no longer
equivalent to the spin-1 ISING model for q = 3 because the three states
of the spin-1 ISING model are not equivalent to each other. Increasing the
temperature results in a transition to a paramagnetic phase. This transition
is continuous for q ≤ 4 but is of first order for q > 4. This makes the
POTTS model a model for collective magnetism, and it is also a valuable
test model for phase transitions.

If an external B-field is applied in the 1-direction we get a modified
Hamiltonian (7.4):

HB = −B
∑

i

δσi,1.

There are the following observables:
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Figure 7.1: Krypton atoms adsorbed on the basal plane of graphite show
coexisting regions of three ground states. According to M. KARDAR and
A.N. BERKER, Phys. Rev. Lett. 48, 1552 (1982).

• The internal energy

〈E〉 =
∑

S



−J
∑

〈ij〉

δσi,σj



P (S),

with S the complete set of states.

• Magnetization:

〈M〉 =
∑

S

(

B
∑

i

δσi,1

)

P (S).

• Magnetic susceptibility:

χ =
∂

∂B
〈M〉 = β

〈
(∆M)2

〉
.

Thus, POTTS model is a good example for expressions of type (7.2).
The POTTS model can be realized by Krypton atoms which have been

adsorbed on the basal plane of graphite. The surface of graphite exists of
hexagonal rings of carbon atoms and it is advantageous for an adsorbed
krypton atom to come to rest inside of such a ring. On the other hand,
krypton atoms are rather large and is not favorable for another krypton
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atom to populate a carbon ring in the immediate neighborhood of an al-
ready occupied carbon ring. Thus, the krypton atoms occupy, at best, only
one third of the triangular lattice. Nevertheless, there are three completely
equivalent positions for these triangular krypton lattices, the sub-lattices
a, b, and c shown in Fig. 7.1. Thus, the system shows the symmetry of a
q = 3 POTTS model. The lattice position i corresponds to a triplet of ad-
sorption rings and σi = 1, 2, 3 corresponds to the three possibilities that
the adsorbed krypton atoms belong to the sub-lattices a, b, or c.

7.2 Solution

An estimate of

〈f(X)〉 =

∑
∫

x f(x)g(x)
∫

dx g(x)
(7.5)

is to be determined using Monte-Carlo integration. Here, g(x) is a PDF
and f(x) is the function one is interested in. In Monte-Carlo integration
samples {Xt, t = 1, . . . , n} from g(x) are generated and Eq. (7.5) is approx-
imated by:

〈f(x)〉 ≈ 1

n

n∑

i=1

f(Xt). (7.6)

This replaces the expectation value 〈f(X)〉 by the sample expectation value
〈f(x)〉. If the set of samples {Xt} is independent (uncorrelated) it is guar-
anteed by the central limit theorem that it is possible to make the approxi-
mation as exact as it is required by simply increasing n.

Nevertheless, there is no need for the set {Xt} to be independent. This
set may be generated by any process which allows to draw samples cor-
rectly weighted by the PDF g(x). Obviously, one possibility exists in the
use of a Markov chain which uses g(x) as the stationary PDF. This possibil-
ity resulted in the development of the Markov Chain Monte-Carlo (MCMC)
Method or Dynamic Monte Carlo Simulation.

It is, in principle, rather easy to set up a dynamic Monte Carlo method
for generating samples from an equilibrium distribution π. It suffices to
invent a stochastic matrix P satisfying the following two conditions:

(a) Ergodicity (Irreducibility). For each pair xα, xβ ∈ S, there exists an

n ≥ 0 for which p
(n)
αβ > 0.

(b) Stationarity of π. For each xβ ∈ S,

∑

α

παp
(n)
αβ = πβ .
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Then Theorem 1.4 shows that simulation of the MARKOV chain P con-
stitutes a legitimate Monte Carlo method for estimating averages with
respect to π. We can start the system in any state xα, and the system is
guaranteed to converge to equilibrium as t → ∞ [at least in the averaged
sense of Eq. (1.25)]. Long-time averages of any possible f will converge
with probability 1 to π-averages (strong law of large numbers), and will
do so with fluctuations of size ∼ n−1/2 (central limit theorem).

Often the MARKOV chain is started in some chosen configuration xα.
For instance, in an ISING model, xα might be the configuration with “all
spins up”; this is sometimes called an ordered or cold start. Alternatively,
the MARKOV chain might be started in a random configuration chosen
according to some simple probability distribution pα. For instance, in an
ISING model, we might initialize the spins randomly and independently,
with equal probabilities of up and down; this is sometimes called a ran-
dom or hot start. In all these cases, the initial distribution pα is clearly not
equal to the equilibrium distribution π. Therefore, the system is initially
“out of equilibrium”. Theorem 1.4 guarantees that the system approaches
equilibrium as t → ∞, but we need to know something about the rate of
convergence to equilibrium.

Lacking rigorous knowledge of the rate of convergence one assumes
that after a long equilibration phase, say, after m iterations the set of samples
{Xt, t = m + 1, . . . , n} to be approximately distributed according to the
equilibrium distribution π. The results of this equilibration phase will be
discarded and we find the estimate

〈f(x)〉 =
1

n−m

n∑

t=m+1

f(Xt);

the ergodic mean.
There is a last problem to be solved: how to construct a MARKOV chain

which has a equilibrium distribution π which mimics the PDF g(x) of
Eq. (7.5)? A possibility can be found in Algorithm 4. The probability of
acceptance of a test state Xt is given by:

P (AXt|X) = min

(

1,
g(Xt)

g(X)

)

.

If we have to deal with a BOLTZMANN distribution, we get

g(Xt)

g(X)
= e−βE(Xt)+βE(X) = e−β∆E ,

with ∆E the energy difference between the two states {Xt} and {X}.

7.3 Statistical Analysis

A simulation can nowadays be divided into two parts, the data generation
part and the data analysis part. The interface between these two parts con-
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sists of time series of measurements of relevant physical observables taken
during the actual simulation. Once the system is in equilibrium (which, in
general, is non-trivial to assure), we save Xn = X[{xi}]n, where n labels
the measurements.

7.3.1 Estimates

If the time series data result from an importance sampling MC simulation,
the expectation value 〈X〉 can be estimated as as simple arithmetic mean
over the MARKOV chain:

x̄ =
1

N

N∑

j=1

xj , (7.7)

where we assumed that the time series contains a total of N measure-
ments. Conceptually, it is important to distinguish between the expecta-
tion value 〈X〉 which is an ordinary number, and the estimator x̄ which is
a random number fluctuating around the theoretically expected value. Of
course, in practice one does not probe the fluctuations of the mean value
directly (which would require repeating the whole MC simulation many
times) but rather estimate its variance

var(x̄) =
〈
[x̄− 〈x̄〉]2

〉
=
〈
x̄2
〉
− 〈x̄〉2 (7.8)

from the distribution of the individual measurements Xj. If the N subse-
quent measurements were all uncorrelated, then the relation would sim-
ply be

var(x̄) =
var(Xj)

N
, var(Xj) =

〈
X2

j

〉
− 〈Xj〉2 . (7.9)

var(Xj) is the variance of the individual measurement. Here, one assumes,
of course, that the simulation is in equilibrium and uses time-translational
invariance of the MARKOV chain. (See Sec. 1.3.2.) Equation (7.9) is true for
any distribution P (Xj) of Xj .

Whatever form the distribution P (X) assumes, by the central limit the-
orem, the distribution of the mean value is Gaussian, at least for uncor-
related data in the asymptotic limit of large N . The variance of the mean,
var(x̄), is the squared width of this (N dependent) distribution which is
usually taken as the “one-sigma” squared error ε2

x̄ = var(x̄), and quoted
together with the mean value x̄. Under the assumption of a Gaussian dis-
tribution, the interpretation is that about 68% of all simulations under the
same conditions would yield a mean value in the range [x̄ − std(x̄), x̄ +
std(x̄)].
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7.3.2 Autocorrelation Times

Things become more involved for correlated measurements. Starting from
Eq. (7.8) and by inserting Eq. (7.7) we obtain

var(x̄) =
〈
x̄2
〉
− 〈x̄〉2 =

1

N2

N∑

i,j=1

〈XiXj〉 −
1

N2

N∑

i,j=1

〈Xi〉 〈Xj〉 .

By collecting diagonal and off-diagonal terms, we arrive at

var(x̄) =
1

N2

N∑

i=1

(〈
X2

i

〉
− 〈Xi〉2

)
+

1

N2

N∑

i6=j

(〈XiXj〉 − 〈Xi〉 〈Xj〉) .

The first term is identified as var(Xi)/N . In the second term we first use
the symmetry i←→ j to reduce the summation

N∑

i6=j

· · · = 2

N∑

i=1

N∑

j=i+1

· · ·

Then we reorder the summation and use time translational invariance to
derive

var(x̄) =
1

N

[

var(Xi) + 2

N∑

k=1

(〈X1Xk+1〉 − 〈X1〉 〈Xk+1〉)
(

1− k

N

)]

,

where, due to the last factor the k = N term may trivially be kept in the
summation. Factoring out var(Xi), we get

var(x̄) =
var(Xi)

N
2τ ′

X,int. (7.10)

Here we have introduced the so-called (proper) integrated autocorrelation
time

τ ′
X,int =

1

2
+

N∑

k=1

A(k)

(

1− k

N

)

(7.11)

with

A(k) =
〈XiXi+k〉 − 〈Xi〉 〈Xi+k〉
〈X2

i 〉 − 〈Xi〉 〈Xi〉
, (7.12)

denoting the renormalized autocorrelation function, A(0) = 1. For large time
separations the autocorrelation function decays exponentially

A(k)
k→∞−→ ae−k/τX,exp ,

where τX,exp is the exponential autocorrelation time and a a constant.
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Due to the exponential decay of A(k) as k → ∞ in any meaningful
simulation with N ≫ τX,exp the correction term in parenthesis in Eq. (7.11)
can safely be neglected. The usually employed definition of the integrated
autocorrelation time is thus

τX,int =
1

2
+

N∑

k=1

A(k).

Notice that, in general, τX,int (and also τ ′
X,int) is different from τX,exp. In fact,

one can show that τX,int ≤ τX,exp in realistic models.
The important point of Eq. (7.10) is that due to temporal correlations

of the measurements the statistical error εx̄ on the MC estimator x̄ is en-
hanced by a factor of

√
2τX,int. This can be rephrased by writing the statis-

tical error similar to the uncorrelated case as εx̄ =
√

var(Xj)/Neff but now
with a parameter

Neff =
N

2τX,int

≤ N,

describing the effective statistics. This shows more clearly that only every
2τX,int iterations the measurements are approximately uncorrelated and
gives a better idea of the relevant effective size of the statistical sample.

An estimator Â(k) for the autocorrelation function is obtained by re-
placing in Eq. (7.12) the expectation values by mean values, e.g.: 〈XiXi+k〉
by XiXi+k. With increasing k the relative variance of Â(k) diverges rapidly.
To get, at least, an idea of the order of magnitude of τX,int and, thus, the
correct error estimate (7.10) it is useful to record the “running” autocorre-
lation time estimator

τX,int(kmax) =
1

2
+

kmax∑

k=1

Â(k)

which approaches τX,int in the limit of large kmax where, however, the sta-
tistical error increases rapidly.

7.3.3 Conclusion

There are two fundamental - and quite distinct - issues in dynamic MC
simulation:

• Initialization bias. If the MARKOV chain is started in a distribution
p(xα) which is not equal to the stationary distribution π, then there
is an “initial transient” in which the data do not reflect the desired
equilibrium distribution π. This results in a systematic error (bias).

• Autocorrelation in equilibrium. The MARKOV chain, once it reaches
equilibrium, provides correlated samples from π. This correlation causes
the statistical error (variance) to be a factor 2τX,int larger than in inde-
pendent sampling.
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Initialization bias

The system is initially out of equilibrium. Theorem 1.4 guarantees that the
system approaches equilibrium as t → ∞ and we need to know the rate
of convergence to equilibrium. Using the exponential autocorrelation time
τexp one can set an upper bound on he amount of time we have to wait
before equilibrium is “for all practical purposes” attained. There are two
difficulties with this bound. Firstly, it is usually impossible to apply it in
practice, since one almost never knows τexp. Secondly, even if we can apply
it, it may be overly conservative; indeed, there exist perfectly reasonable
algorithms with τexp =∞.

Lacking rigorous knowledge of the autocorrelation time τexp one should
try to estimate it both theoretically and empirically. To make a heuristic
theoretical estimate of τexp, we attempt to understand the physical mech-
anism(s) causing slow convergence to equilibrium. To make a rough em-
pirical estimate, we measure the (unnormalized) autocorrelation function
for a suitably large set of observables X . In both cases there is always the
chance to overlook something and to grossly underestimate τexp. Never-
theless, it is usual to determine empirically when “equilibrium” has been
achieved by plotting selected observables as a function of time and noting
when the initial transient disappears.

Once we know (or guess) the time needed to attain “equilibrium”, we
simply discard the data from the initial transient up to some time and
include only the subsequent data in the averages.

Autocorrelation in Equilibrium

As already explained in the preceeding section, the variance of the sample
mean x̄ in a dynamic MC method is a factor 2τX,int higher than it would
be in independent sampling. Otherwise put, a run of length N contains
only N/(2τX,int) “effectively independent data points”. This means that
the computational efficiency of the algorithm is determined principally by
its autocorrelation time. The knowledge of τX,int is also essential for de-
termining run lengths and for setting error bars on the estimates of the
expectation values. Roughly speaking, the error bars will be of the order
√

τ/N . Above all, there is a basic self-consistency requirement: the run
length N must be much greater than the estimates of τ produced by that
same run, otherwise none of the results from that run should be believed.
While self-consistency is a necessary condition for the trustworthiness of
MC data, it is not a sufficient condition.

7.4 The METROPOLIS-HASTINGS Algorithm

This method samples the test state {XT} from a particular proposition
probability.
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1. We start with the state {Xν} of the MARKOV chain after ν steps.

2. The test state {XT} is sampled according to a proposition probability
q(XT |Xν):

q(XT |X) ≥ 0,

∫

dXT q(XT |X) = 1.

(a) We get, for instance for the POTTS model:

i. Choose a lattice site using:

i = int(rN) + 1,

ii. choose the state at lattice site i

σi = int(rq) + 1,

using an equally distributed random number r ∈ [0, 1). This
generates a new test state S

T
ν from Sν .

(b) If there is a stationary number of degrees of freedom in X ∈ R
N

one proceeds along the following steps:

i. Sample states using the proposition probability

q(XT |Xν) = (2πσ2)−N/2 exp

{

−
(
XT −Xν

)2

2σ2

}

,

ii. and define a random direction, n̂ in R
N :

X
T = Xν + λn̂,

with λ sampled from a CAUCHY-distribution:

p(λ) =
β

π(β2 + λ2)
, β > 0, −∞ < λ <∞.

3. The probability of acceptance is given by:

P (AXT |Xν) = min

(

1,
g(XT )

g(Xν)

q(Xν |XT )

q(XT |Xν)

)

. (7.13)

Obviously, for q(Xν |XT ) = q(XT |Xν), the METROPOLIS-HASTINGS

algorithm is equivalent to the standard METROPOLIS-algorithm 4.

123



Proof of Eq. (1.24), “Detailed Balance”

We apply the marginalization rule and rewrite the transition probability
as:

P (Xt+1|Xt) =

∫

dXT P (Xt+1 ⊓XT |Xt).

The product rule, furthermore, results in

P (Xt+1|Xt) =

∫

dXT P (Xt+1|XT , Xt) P (XT |Xt)
︸ ︷︷ ︸

=q(XT |Xt)

,

with q(XT |Xt) the proposition probability. We mark the acceptance of a
trial state XT by the symbol A and its rejection by the symbol Ā and find
applying, again, the marginalization rule:

P (Xt+1|Xt) =

∫

dXT P (Xt+1 ⊓ (A ⊔ Ā)|XT , Xt)q(X
T |Xt)

=

∫

dXT
[
P (Xt+1 ⊓A|XT , xt)

+P (Xt+1 ⊓ Ā|XT , xt)
]
q(XT |Xt)

=

∫

dXT




P (Xt+1|AXT , Xt)
︸ ︷︷ ︸

=δ(XT −Xt+1)

P (A|XT , Xt)
︸ ︷︷ ︸

=α(XT ,Xt)

+ P (Xt+1|ĀXT , Xt)
︸ ︷︷ ︸

=δ(Xt+1−Xt)

P (Ā|XT , Xt)
︸ ︷︷ ︸

=1−α(XT ,Xt)




 q(XT |Xt)

= α(Xt+1, Xt)q(Xt+1|Xt)

+δ(Xt+1 −Xt)

∫

dXT
[
1− α(XT , Xt)

]
q(XT |Xt).

(7.14)

Exchanging Xt+1 and Xt in Eq. (7.14) results in:

P (Xt|Xt+1) = α(Xt, Xt+1)q(Xt|Xt+1)

+δ(Xt+1 −Xt)

∫

dXT
[
1− α(XT , Xt)

]
q(XT |Xt).

(7.15)

In order to arrive at Eq. (1.24) we multiply Eq. (7.14) with P (Xt), the prob-
ability for the existence of state Xt and Eq. (7.15) with P (Xt+1). This results
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in:

P (Xt+1|Xt)P (Xt) = α(Xt+1, Xt)q(Xt+1|Xt)P (Xt)

+δ(Xt+1 −Xt)P (Xt)

×
∫

dXT
[
1− α(XT , Xt)

]
q(XT |Xt),

(7.16)

P (Xt|Xt+1)P (Xt+1) = α(Xt, Xt+1)q(Xt|Xt+1)P (Xt+1)

+δ(Xt+1 −Xt)P (Xt+1)

×
∫

dXT
[
1− α(XT , Xt)

]
q(XT |Xt). (7.17)

We now make use of Eq. (7.13) which defines the probability of acceptance
and find:

q(X|Y )P (Y )α(X, Y ) = q(X|Y )P (Y )min

(

1,
P (X)q(Y |X)

P (Y )q(X|Y )

)

= min

(

q(X|Y )P (Y )
P (X)q(Y |X)

P (Y )q(X|Y )
, q(X|Y )P (Y )

)

= min (q(X|Y )P (Y ), q(Y |X)P (X)) . (7.18)

This expression is symmetric in X and Y and, after exchanging X and Y
in Eq. (7.18), we arrive at:

q(Y |X)P (X)α(Y, X) = min (q(Y |X)P (X), q(X|Y )P (Y ))

= q(X|Y )P (Y )α(X, Y ).

This is, finally, used in Eq. (7.16) and we get the result:

P (Xt+1|Xt)P (Xt) = P (Xt|Xt+1)P (Xt+1). (7.19)

Thus, the METROPOLIS-HASTINGS-algorithm obeys Eq. (1.24) and it is,
therefore, guaranteed that elements P (Xt+1|Xt) of a stochastic matrix with
distribution P (X) are generated.

7.5 Importance Sampling

This problem is easily motivated: we define

Θ =

1∫

0

dx f(x) =

1∫

0

dx
f(x)

g(x)
g(x)

=

1∫

0

dG(x)
f(x)

g(x)
,
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for any function g(x), and, furthermore,

G(x) =

x∫

0

dy g(y).

Let g(x) > 0, ∀x ∈ [0, 1] and

G(1) =

1∫

0

dy g(y) = 1. (7.20)

Thus, G(x) is a CDF in the interval 0 ≤ x ≤ 1 and if r is a random number
sampled on basis of G(r) we conclude that f(r)/g(r) has the expectation
value Θ and the variance

var(f/g) =

1∫

0

dG(x)

(
f(x)

g(x)
−Θ

)2

.

Importance sampling is based on the idea to concentrate trial states in those
parts of the interval which are “most important” for the problem at hands.
(Usually, one would distribute the trial states equally over the interval.) If
f(x) ≥ 0, ∀x ∈ [0, 1] were valid one could choose g(x) proportional to f(x),
for instance g(x) = c f(x). As a consequence c = 1/Θ and var(f/g) = 0!
This appears to be the perfect Monte Carlo method which always gener-
ates the exact result. But, if we want to make use of this method, we will
have to sample f(x)/g(x) and, thus, have to know g(x). This requires the
knowledge of Θ which we want to calculate.

Nevertheless, the consequence of this example is that one gets an esti-
mate for Θ using any positive function g(x). Thus, one has to find a func-
tion g(x) which results in a variance reduction of our estimate. This es-
timate is in this case the mean value of observed values of f(x)/g(x) and
the sampling variance will be small if f(x)/g(x) is as ‘constant’ as possible.
Consequently, g(x) should follow f(x) as closely as possible. On the other
hand, functions used for g(x) are supposed to be easily integrable in order
to comply with Eq. (7.20) without particular efforts.

Interesting enough, the MCMC method which was discussed in the
previous section corresponds to importance sampling as we will demon-
strate in the following paragraphs.

A set of states

C = {x1,x2, . . . ,xM}, xi ∈ R
N ,

is generated according to the probability P (x) [or according to the PDF
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g(x)] using a MARKOV chain. As a result, Eq. (7.6) results in:

I =
∑
∫

x

f(x)g(x) = lim
M→∞









1

M

M∑

i=1

f(xi)

︸ ︷︷ ︸

=FM ({x})









.

Here, FM({x}) depends on the samples {x} of the MARKOV chain.
We calculate the variance of FM({x}):

• The central limit theorem results in

P (FM) = N
(

µ = I, σ =
σf√
M

)

, M ≫ 1,

with N the normal distribution. We find immediately:

〈FM〉 = I

var (FM) =
σ2

f

M
=

1

M

∑
∫

x

(f(x)− I)2 g(x).

Nevertheless, the central limit theorem is only valid for M →∞ and
cov(xi,xj) = 0, ∀i 6= j, and, thus, only for uncorrelated states {x}.
Therefore, it cannot be applied to make an estimate of the variance
achieved with MCMC-methods which make use of correlated states
on purpose.

• We start an alternative analysis with

〈FM〉 =
1

M

M∑

i=1

〈f(xi)〉 ,

and all xi obey the PDF g(x). We find

〈
F2

M

〉
=

1

M2

M∑

i,j=1

〈f(xi)f(xj)〉

=
1

M2

M∑

i,j=1




〈∆f(xi)∆f(xj)〉
︸ ︷︷ ︸

=Cij

+ 〈f(xi)〉 〈f(xj)〉






=
1

M2

M∑

i,j=1

Cij + 〈f(x)〉2 ,
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with the elements of the covariance matrix Cij. We find for the vari-
ance

var(FM) =
1

M2

M∑

i,j=1

Cij

=
var(f(x))

M

1

M

M∑

i,j=1

〈∆f(xi)∆f(xj)〉
var(f(x)

︸ ︷︷ ︸

=Rij

,

with the autocorrelation coefficient Rij. We get the important result:

var(FM) =
var(f(x))

M

(

1 +
1

M

M∑

i6=j=1

Rij

)

.

The autocorrelation coefficient is symmetric

Rij = Rji = a(|i− j|),
and of the general form

a(d) =
M∑

ν=1

cνe
−d/τν ,

with the eigenvalues τν of the covariance matrix. This expression is,
for d≫ 1, dominated by the slow decay and we approximate

a(d) ∼ e−d/τexp ,

where τexp is the exponential correlation time. This, furthermore, re-
sults in:

1

M

M∑

i6=j=1

Rij =
2M

M

∞∑

d=1



e−1/τexp

︸ ︷︷ ︸

=q





d

= 2
q

1− q
.

Thus, we get in the most disadvantageous case τexp ≫ 1

q ≈ 1− 1

τexp

1

M

∑

i,j

Rij ∼ 2τexp,

and consequently:

var(FM) ∼ var(f(x))

M
(1 + 2τexp) =

var(f(x))

Meff
.

Here, Meff is the effective number of uncorrelated MCMC states.

This proves that the MCMC method can indeed result in a variance reduc-
tion.
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