
Chapter 8

Particle Transport in Matter

8.1 Introduction

Simulation of particle transport in matter became of increasing importance
in recent years. Basics have been developed in the late 1960s and early
1970s in connection with the development of better nuclear reactors, and,
of course, in connection with many atomic weapons programs. But with
ever increasing computer capacity and cheaper computing, simulation of
particle transport is nowadays of great importance in:

• Radiation therapy in cancer treatment: γ-knife, γ and X-ray radiation
treatment planning, electron radiation treatment, hadron-radiation
treatment (protons and neutrons), and the most recent application:
light ion radiation therapy. It is the aim here to improve energy depo-
sition in malignant tissue and to reduce radiation hazards for healthy
tissue.

• Simulation of the properties of radiation detectors. Research cen-
ters like CERN, DESY, etc. make increasingly use of simulation tech-
niques to improve detector performance in their experimental se-
tups.

• Design of particle sources, like spallation neutron sources. Design of
accelerators.

• Design of biological shields in high intensity radiation areas. This
helps to improve the radiation protection for the personnel.

Simulation of particle transport covers a huge variety of particles like
electrons, protons, neutrons, α-particles, photons (γ-radiation), muons, etc;

129



particle energies start from some TeV to parts of meV (ultra cold neutrons).
There are two major techniques:

1. Description of the particle transport using the BOLTZMANN trans-
port equation:
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Here, ϕi(x, E,Ω, t) is the angular flux of a particle if type i in the
volume dx dy dz around the space point x, in the energy interval dE
around E and in the space angle interval dΩ around Ω multiplied by
the particle velocity vi. The first term of Eq. (8.1) describes the trans-
lation of the particle, the second the change in energy, flight angle,
and particle type due to interaction between the transported particle
with matter. σij(. . .) is a cross-section and describes the probability
to generate a particle of type i from a particle of type j at the phase
space coordinates (x, EB,Ω′, t) due to some interaction process. This
term contains two contributions:

(a) σij(x, EB → E,Ω → Ω
′): Particles with energies (E) less than

the initial energy (EB) are generated.

(b) σij(x, E → EB,Ω → Ω
′): Particles with energies (E) greater

than the initial energy (EB) are generated.

The third term of Eq. (8.1) describes the continuous deceleration of
particles which results in a reduction of the particle energy. S is the
stopping power. The fourth term describes the annihilation of parti-
cles, and, finally, the fifth term allows generation of particles by ex-
ternal sources.

There are numerous techniques to solve the BOLTZMANN equation.
Approximations allow analytic solutions but most of the time such
an approach is not feasible in practical applications. Thus, Monte
Carlo methods are applied to solve the BOLTZMANN equation for
practical purposes. In particle transport, the BOLTZMANN equation
is applied to describe mainly neutron transport in matter. The appro-
priate energy range is 130 MeV to a few meV.
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2. The other approach to solving the problem of particle transport is to
involve so-called Analogue Monte Carlo techniques. This method tries
to simulate the transport process as close to the “real” process as
possible. Such an approach will also give insight into (maybe) signif-
icant fluctuations which can be expected in a real system and which
cannot be described using the BOLTZMANN equation because of its
statistical nature.

Common to both techniques is a minimum of necessary steps which a
simulation will have to follow:

1. The geometrical setup of the space area to be investigated is to be
defined an all necessary detail. This setup consists of a description
of the geometrical shape of the various elements and their relative
position as well as of the materials used to build the elements.

2. Definition of the type i of the particle to be traced on its path through
matter. This is the source particle.

3. Given a certain material, the mean free path of the source particle
in this material is to be determined. This mean free path defines the
next point in space at which the source particle will undergo an in-
teraction.

4. Is this point of interaction within the geometry to be investigated
and are there no internal boundaries to be crossed on the way to this
interaction point, then it will be possible to determine the interaction
type which usually depends on the material in which the particle
moves. This interaction could result in secondary particles which are
stored on a stack for later use. After the interaction the source particle
has a new energy and a new velocity as a result of the interaction
process.

5. Is this point of interaction outside the geometry the trace of the source
particle is finished and the first particle on stack (a secondary parti-
cle as a result of one of the interactions) is ‘popped’ and becomes the
source particle for tracing.

6. If an internal boundary is crossed on the way to the interaction point
the particle moves on a straight line until it reaches the internal bound-
ary. A new mean free path is determined if there is a material change
at this boundary and this defines a new interaction point. The simu-
lation moves to point 4 of this list.

This description shows that book keeping is a major task in particle trans-
port simulation. Nevertheless, we see that the simulation, in particular if
we concentrate on Analogue Monte Carlo, consists of two basic elements:
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Figure 8.1: An elementary process.

• Description of the interaction processes, the elementary processes.

• The particle transport simulation, i.e.: how does the particle move
from one interaction point to the next?

8.2 Particle Transport in Analogue Monte Carlo

8.2.1 Elementary Processes

The elementary process is the interaction of the source particle with a
building element of the material within which the source particle moves.
Such a process is described by the relativistic law of impact which requires
the conservation of four-momentum (Fig. 8.1):
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4 . (8.2)

The four-momentum is defined as

pµ = (m0c, m0v),

with m0 the particle’s rest mass. Thus, Eq. (8.2) results in the following two
laws of conservation:
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The conservation of total mass (8.3) and the conservation of kinetic energy
(8.4). Only this relativistic expansion of the classical laws of impact made
it possible to describe particle type transformation due to interaction pro-
cesses. We also see that these equations are not sufficient to determine the
finals states pµ

3 and pµ
4 from the sole knowledge of the initial states pµ

1 and
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pµ
2 . The required additional information is derived from the physical prop-

erties of the particular interaction process (indicated by the question mark
in Fig. 8.1). This information is contained in the interaction cross-section.

The important observable is the particle flux Φ which is defined as par-
ticle velocity per unit volume (units: m−2s−1). We assume the material foil
to be very thin and we can assume that the particle flux is only little per-
turbed. Thus, we assume the number C of interactions which will take
place in unit time and unit volume within the foil to be proportional to the
number N of atoms per unit volume and to be proportional to the particle
flux which hits the foil:

C ∝ NΦ.

The constant of proportionality is the microscopic cross-section and it is, in
general, dependent on matter, particle type and particle energy. Thus, we
write:

C = σNΦ,

or

σ =
C

NΦ
.

According to this relation, the cross-section is the number of interactions
in unit area which can occur per number of atoms and source particles. It
is better to write

Σ = Nσ =
C

Φ

(unit: barn = 10−24 cm2). Thus, Nσ is of dimension area and σ is the active
cross-section of an atom for possible interactions. Σ is the macroscopic cross-
section.

The cross-section describes quantum mechanical processes and one
has to apply Quantum Field Theory to describe cross-sections theoreti-
cally. For instance, Quantum Electrodynamics describes the interaction of
photons (γ-particles), electrons or positrons with matter, the so-called elec-
trodynamic shower. Hadron and high energy interaction is described by
Quantum Chromodynamics. Because of the quantum mechanical nature
of all those processes, the cross-section describes the probability that some
particular process can indeed happen within given matter for a given par-
ticle type and energy. Of course, cross-sections can also be acquired using
various experimental techniques and these data, together with theoretical
models are the backbone of the description of elementary processes parti-
cles undergo in their ‘travel’ through matter.

If we investigate the elementary interaction processes a source particle
can undergo with matter we have to decide which of all the possible pro-
cesses will indeed take place at a given interaction point. Each process is
described by a cross-section and we may have, for instance, cross-sections
for elastic, inelastic scattering, particle capture, particle fission, particle fu-
sion, etc. Thus, we have a problem of ‘probability mixing’ of P possible
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processes numbered by an index i. The numbers i = 1, . . . , P are possible
values of a random variable I and their distribution is described by the
PDF

p(i) =

i∑

j=1

σj

σt

, σt =

P∑

i=1

σi,

with σt the total cross-section. σi is the microscopic cross section of the pro-
cess of type i. The random variable is sampled using a equally distributed
random number r ∈ [0, 1) and the condition

p(i − 1) < r < p(i), p(0) = 0 (8.5)

defines the process type i and, thus the PDF σi which determines the
physics. [p(0) stands for the possibility that nothing happens.] It is the fi-
nal job to calculate the final state of the particles after the interaction using
the conservation laws (8.3) and (8.4).

In general, the final state of the interaction process is given by, say, n
parameters µ = (µ1, µ2, . . . , µn) and the differential cross-section is of the
form

dnσ

dµn
= g(µ).

Using

σ =

∫

dnµ g(µ)

reproduces the microscopic cross-section. For instance,

d2σi

dεdΩ

is the probability in a process of type i to find a particular particle in the
energy interval [ε, ε + dε] and in the space angle element dΩ around the
final velocity direction Ω.

The function

P (µ) =
g(µ)

σ
(8.6)

is, obviously normalized to one and has the properties of a PDF. This PDF
is sampled to determine a random variable M which determines the final
state of the interaction. This determines the number of particles generated
during the interaction together with the four-momentum of one final-state
particle. The conservation law (8.2) allows to determine the final states of
all other particles involved. Is one of the final-state particles of the source
particle’s type then this particle becomes the new source particle. All other
particles are put on stack.

Thus we have the following procedure:
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1. An equally distributed random number r ∈ [0, 1) is sampled. This
determines the type of interaction according to Eq. (8.5).

2. A random number is sampled from PDF (8.6) which describes inter-
action process i. This determines the final state of one particle and
the number of particles of the final state. The final states of all other
particles are calculated using the conservation law (8.2).

This procedure ascertains that all possible processes will be considered
according to their probability.

8.2.2 Particle Transport

Particle transport can be regarded as Brown’s motion of a particle in mat-
ter with the difference that the stochastic force is replaced by quantum me-
chanical interactions of the traced particle with the elements matter con-
sists of. Non charged particles do not experience the equivalence of the
viscosity term, charged particles experience Bremsstrahlung as the equiva-
lence of a viscosity term.

In simulations of Brown’s motion the distance between interaction points
(where the stochastic force hits) is just the mean free path and the parti-
cle moves ‘freely’ between two interaction points. In particle transport we
also assume that particles move freely between two interaction points, i.e.:
non-charged particles move along a straight line, charged particles under
the influence of the Bremsstrahlung. The interval between two interactions
is in principle determined by the mean free path

λ =
1

Σt

=
M

NAρσt

.

Here, M is the molecular weight of matter, NA LOSCHMIDT’s number (AVO-
GADRO’s number), ρ the matter’s density, and σt the total cross-section of
one molecule. The probability of an interaction to take place in the interval
[x, x + dx] is then determined by

P (dx) =
dx

λ
.

In general, the mean free path is not a constant along the trajectory of a
particle through matter. The material may change but the particle may
also loose energy which changes σt which depends on particle energy. We
introduce the ‘number of mean free paths’ a particle traverses in its way
from x0 to the next interaction point x

Nλ =

x∫

x0

dx λ−1(x)
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because, in contrast to Brown’s motion and to BOLTZMANN’s equation the
particle must not necessarily experience an interaction after traveling pre-
cisely one mean free path. The mean free path is a statistical information
and can only be used as a basis in our simulation of a purely stochastic
process. Let N be a random variable which gives the (non integer) number
of mean free paths traveled by the particle from x0 to the next interaction
point x. We have to determine the probability P (N |B) which is the basis
for the PDF which determines the random variable N . Let P (x|λ,B) be
the probability for x to be the next interaction point for a given value of λ
which is assumed to follow a POISSON distribution

P (x|λ,B) =
1

λ
exp {−x/λ} .

We find using the marginalization theorem:
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P (Nλ|B) =
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0

dλ̃ e−NλP (λ̃|B)

= e−Nλ
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0
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=1

= e−Nλ .

This results in the CDF

F (N) = P (N < Nλ) = 1 − exp {−Nλ} , Nλ > 0
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which ensures that we have with certainty an interaction as Nλ → ∞ while
the probability for an interaction becomes very unlikely as Nλ → 0.

This CDF defines the number of traversed mean free paths traveled
by the source particle from one interaction point to the next one. To cal-
culate this number we generate an equally distributed random number
r ∈ [1, 0). The random number r′ = 1 − r is also equally distributed and
Nλ is calculated using the inverse transformation method (see Sec. 1.2.2):

Nλ = − ln(r), r ∈ (0, 1]. (8.7)

As flight direction and momentum of all particles generated in the fi-
nal state of the interaction are known it is possible to determine the next
interaction point for the source particle:

1. Calculate the mean free path at the momentary position of the source
particle.

2. Generate a random number r1 ∈ (0, 1] which determines Nλ accord-
ing to Eq. (8.7). ℓ1 = λNλ corresponds to the (fictuous) position of the
next interaction.

3. Calculate the distance d1 along the flight path to the next internal
boundary.

4. Let ℓ2 = min(ℓ1, d1) and the particle moves the distance ℓ2.

5. For ℓ2 = ℓ1 the particle reached the next interaction point and this
loop is terminated.

6. For ℓ2 = d1 an internal boundary has been reached. Is there a new
material, the loop starts at point 1, otherwise we proceed at point
two. If the boundary is an outer boundary the particle is going to
leave the geometry and it will not be traced any longer. A new par-
ticle is popped from the stack and treated as a new source particle.
The loop starts at point 1.
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