

time-independent SEQ

$$\hat{H} \Psi_n = E_n \Psi_n$$

Ĥ contains total energy of the system

wave-functions / states Ψ_n = eigenvectors of \hat{H} total energy in a state Ψ_n = eigenvalue E_n of \hat{H}

most relevant quantum mechanical systems

free particle

particle in a box

 $E_n \sim \frac{n^2}{L^2}$

 $E = \frac{\hbar^2 k^2}{2m}$

harmonic oscillator (parabolic potential V=kx²)

$$E_n \sim \hbar \omega (n+rac{1}{2})$$
 Her

lermite polynoms

coulomb potential, H atom

$$E_n \sim \frac{Z^2}{n^2}$$

(2l+1) x degenerate

$$\Psi_{nlm} = R_{nl}(r) \times Y_{lm}(\theta, \phi)$$

spherical harmonics $Y_{Im}(\phi, \theta)$, Laguerre polynoms 3 quantum numbers {n,l,m}

tunnelling

time-dependent SEQ

iħ ($\delta/\delta t$) $\Psi(t) = \hat{H} \Psi(t)$

 $\Psi(t)$ superposition of Ψ_n

planes waves, wave packets

approximations - perturbation theory

time-independent PT

$$E_n^{(1)} = \langle \Psi_m^0 | \hat{H}_{int} | \Psi_n^0 \rangle$$
$$\Psi_n^{(1)} = \sum_m \frac{\langle \Psi_m^0 | \hat{H}_{int} | \Psi_n^0 \rangle}{E_m^0 - E_n^0} \Psi_m^0$$

$$\hat{H} = \hat{H}_{0} + \hat{H}_{int} \qquad (\hat{H}_{int} \ll \hat{H}_{0})$$

time-dependent PT

for $\hat{H}_{_{int}}$ periodic or constant in time

$$k_{if} = rac{2\pi}{\hbar} |\langle \Psi_i | \hat{H}_{int} | \Psi_f
angle|^2 \delta(E_i - E_f)$$

(FERMIs Golden Rule)

 \rightarrow transition rates

symmetries

 \hat{S} is a symmetry operator if $[\hat{H},\hat{S}]=0$ \hat{H} and \hat{S} have common set of eigenvectors

for each system \hat{H} several \hat{S}_i can exist each eigenvector fully determined by *set* of eigenvalues of \hat{H} and *all* \hat{S}_i

properties of S can be used to solve SEQ

Ŝ leads to a preserved quantity (NÖTHER theorem) eigenvalues ↔ "good quantum numbers"

spin of particle determines how it interacts with identical particles

half-numbered spin:fermions
bosonsFermi distribution (PAULI principle)
Bose Einstein distribution

spin cannot be derived within non-relativistic quantum mechanics

each quantum mechanical system is associated to a Hilbert space *H* (of wave functions)
 each dynamical variable (observable) is associated to a hermitian operator Ĉ acting on elements *H* measurable values (observables) are eigenvalues of Ĉ (discrete or continuous)
 NOTE: time is a parameter -> no operator to MEASURE time; indirectly from temporal evolution of other operators
 Schrödinger equation (SEQ) -> partial differential equation

 \hat{H} from Hamilton function via correspondence principle

time-independent SEQ

$$\hat{H} \Psi_n = E_n \Psi_n$$

 \hat{H} contains total energy of the system wave-functions / states Ψ_n = eigenvectors of \hat{H} total energy in a state Ψ_n = eigenvalue E_n of \hat{H}

most relevant systems

free particle

particle in a box

harmonic oscillator

coulomb potential, H atom

tunnelling

approximations - perturbation theory

time-independent PT

time-dependent SEQ

 $\Psi(t)$ superposition of Ψn

symmetries $[\hat{H},\hat{S}] = 0$

Ĥ and Ŝ have common set of eigenv (with different eigenvalues, to giver

properties of Ŝ can be used to solve SEQ Ŝ is a preserved quantity (NÖTHER theorem eigenvalues <-> "good quantum

spin of particle determines how it interacts with identical particles
 half-numbered spin:
 fermions
 Fermi distribution (PAULI principle)
 Bose Einstein distribution

- each quantum mechanical system is associated to a Hilbert space *H* (of wave functions)
- each dynamical variable (observable) is associated to a hermitian operator Ĉ acting on elements *H* measurable values (observables) are eigenvalues of Ĉ (discrete or continuous)

NOTE: time is a parameter -> no operator to MEASURE time; indirectly from temporal evolution of other operators

• Schrödinger equation (SEQ) (*) -> partial differential equation

 $\label{eq:hamilton} \begin{array}{l} i\hbar~(d/dt)~\Psi_{n}=~\hat{H}~\Psi_{n}\\ \hat{H}~from~Hamilton~function~via correspondence~principle\\ bound~states:~E_{n}<0 \end{array}$

time-independent SEQ

$$\hat{H} \Psi_n = E_n \Psi_n$$

 \hat{H} contains total energy of the system wave-functions / states Ψ_n = eigenvectors of \hat{H} total energy in a state Ψ_n = eigenvalue E_n of \hat{H}

most relevant quantum mechanical systems

free particle

particle in a box

harmonic oscillator

coulomb potential, H atom

tunnelling

approximations - perturbation theory time-independent PT

time-dependent SEQ

iħ (d/dt) $\Psi_n = \hat{H} \Psi_n$

 $\Psi(t)$ superposition of Ψ_n

time-dependent PT

FERMIs Golden Rule

symmetries

 \hat{S} is a symmetry operator if $[\hat{H}, \hat{S}] = 0$ \hat{H} and \hat{S} have common set of eigenvectors

for each system \hat{H} several \hat{S}_i can exist each eigenvector fully determined by set of eigenvalues of \hat{H} and *all* \hat{S}_i

properties of S can be used to solve SEQ

Ŝ is a preserved quantity (NÖTHER theorem) eigenvalues ↔ "good quantum numbers"

spin of particle determines how it interacts with identical particles

half-numbered spin: **fermions** *integer* spin: **bosons** *Bose* Einstein distribution

spin cannot be derived within non-relativistic quantum mechanics