
The Ising model

Model

The Ising model is one of the simplest and most fundamental models of statistical mechanics.
It can be used to describe such diverse phenomena as magnets; liquid/gas coexistence; alloys
of two metals; and many others, even outside of physics.

Each such system can be described by elementary variables si, usually called “spins”
with 2 possible values si = ±1. The 2 values stand for, e.g., an elementary magnet pointing
up or down; a piece of liquid or gas; an atom of metal A or B; etc.). These variables usually
live on the sites i of some lattice. One associates an energy

E = − J
∑

neighbors i,j

si sj (1)

with each configuration of spins, where J is some constant. Each state of the system occurs
with probability given by the Boltzmann factor

p =
1

Z
exp(− E

kBT
) , (2)

where T is temperature, kB the Boltzmann constant, and Z a normalization factor.
Even though the Ising model is drastically simplified from realistic situations, it is able

to describe, often quantitatively, the occurence of order at low temperatures and disorder
at high temperatures, and especially the phase transition between those situation, in which
spin correlations over very large length scales become essential.

The Ising model can be solved exactly only in the simplest cases (in one spatial dimension,
and on a two-dimensional square lattice). In most cases of practical interest, one has to resort
to either analytical approximations like series expansions for high or for low temperature, or
to numerical techniques like Markov Chain Monte Carlo simulations.

Simulation methods

Our Mathlab simulation demonstrates essential features of the Ising model. It implements a
Markov Chain Monte Carlo with importance sampling, in which configurations of spins are
generated iteratively, and eventually appear with Boltzmann probabiliy. It uses one of two
methods.

In the Metropolis method, the spins are changed one by one, with appropriate probabil-
ities depending on their neighbors. With this method the fluctuations of spins are clearly
visible, but it can take very many iterations before a statistically independent new spin
configuration is reached.
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With cluster updates, big regions of equal spins are constructed stochastically, again with
probabilities depending on the current values of spins. The spins in these clusters are then
flipped together. While each update with this method is fairly slow, new independent spin
configurations are reached within one or a few iterations.

Interactive simulation

The simulation shows the two-dimensional Ising model. Every little box of the spin field
represents one of the two possible states si = ±1. The constants J and kB are omitted.

You can control the temperature either by typing a positive real number into the temper-
ature field (followed by a TAB) or by adjusting the slide rule with the mouse. The critical
temperature of the model is Tcrit = 2

ln(1+
√

2)
= 2.269... The magnetization is simply the

mean of all spins.
You can also adjust the lattice size, the initial magnetization, and the number of iterations

(updating each spin once) to be performed before the simulation pauses. The currently
chosen update algorithm is shown on the right.

The first and third graphs show magnetization and energy of the current configuration.
For each temperature, the other two graphs display the average magnetization and average
energy of the configurations generated so far. The exact results (for infinite size lattices) are
denoted by the green line.

After the simulation pauses, it can be resumed at the same temperature, or the current
averages can be accepted as an estimate for the true result, or the average accumulated so
far can be discarded.

Observe the following:

1. Set the temperature to be well above the critical temperature (2.26...). You will see that
the spin arrangement converges to a nearly random arrangement, independent of the
starting state: ”Cold”, or ”Warm”, and fluctuates quickly. Hence, above the criti-
cal temperature, there is a single thermodynamic state, with zero magnetization. At
infinite temperature the spin arrangement is truly random.

2. Start well below the critical temperature with initial state ”Cold”.
All the spins will start with equal value. Use the Metropolis method. You will see that
just a few small clusters of opposite spins appear, and there is a non-zero magnetization.
The analogouous situation would occur if initially all spins were reversed. Hence, below
the critical temperature, there are two thermodynamic states (the ”up spin” state with
positive magnetization and the ”down spin” state negative magnetization). With the
Metropolis method the system stays in one or the other depending on how the spins
are initialized.

3. Start well below the critical temperature with initial state ”Warm”.
Use the Metropolis method. You see that the system initially cannot make up its mind
whether to go into the ”up spin” or ”down spin” state. Large clusters of each spin
form. Eventually, if you let the simulation run for a long time, one of the states will
win. Which one wins depends on the random thermal fluctuations. There is equal
probability for it to be in the ”up spin” or ”down spin” state.
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4. Start well below the critical temperature with the cluster method. You see that now
the system moves easily between the two states with mostly positive and with mostly
negative magnetization. (The metropolis method would need an enormously long time
to do the same). The initial state does not matter with the cluster method.

5. Start at or close to the critical temperature. Use the Metropolis method. You will see
large clusters of spins with the same orientation, which fluctuate only very slowly. The
typical size of these clusters is the so called correlation length ξ which is maximal at
the critical temperature, where it would diverge on an infinitely large system.

The slow fluctuation of spins with the Metropolis method is called critical slowing
down. Fluctuations of spins travel through the lattice locally in this method, like in
a random walk. Therefore they are associated with a time scale of τ ' ξ2 iterations.
The system thus keeps a long memory of its initial state, and many iterations must
be discarded before useful averages can be taken. These then need many iterations to
converge, especially on large systems.

6. Start at or close to the critical temperature. Use the cluster method. While each iter-
ation with this method takes longer than with Metropolis, the generated spin config-
urations quickly become independent of each other, so that much fewer iterations are
needed and overall, results converge much more quickly.
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