
Ising model and XY model

1 Ising Model

The Ising model is one of the simplest and most fundamental models of statistical mechanics.
It can be used to describe such diverse phenomena as magnets; liquid/gas coexistence; alloys
of two metals; and many others, even outside of physics.

Each such system can be described by elementary variables si, usually called “spins”
with 2 possible values si = ±1. The 2 values stand for, e.g., an elementary magnet pointing
up or down; a piece of liquid or gas; an atom of metal A or B; etc.). These variables usually
live on the sites i of some lattice. One associates an energy

E = − J
∑

neighbors i,j

si sj (1)

with each configuration of spins, where J is some constant. Each state of the system occurs
with probability given by the Boltzmann factor

p =
1

Z
exp(− E

kBT
) , (2)

where T is temperature, kB the Boltzmann constant, and Z a normalization factor.
Even though the Ising model is drastically simplified from realistic situations, it is able

to describe, often quantitatively, the occurence of order at low temperatures and disorder
at high temperatures, and especially the phase transition between those situation, in which
spin correlations over very large length scales become essential.

The Ising model can be solved exactly only in the simplest cases (in one spatial dimension,
and on a two-dimensional square lattice). In most cases of practical interest, one has to resort
to either analytical approximations like series expansions for high or for low temperature, or
to numerical techniques like Markov Chain Monte Carlo simulations.

1.1 Simulation methods

Our simulation demonstrates essential features of the Ising model. It implements a Markov
Chain Monte Carlo with importance sampling, in which configurations of spins are generated
iteratively, and eventually appear with Boltzmann probabiliy. It uses one of two methods.

It uses the Metropolis method, im which the spins are changed one by one, with appropri-
ate probabilities depending on their neighbors. With this method the fluctuations of spins
are clearly visible, but it can take very many iterations before a statistically independent
new spin configuration is reached.
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Interactive simulation

The simulation shows the two-dimensional Ising model. Every little box of the spin field
represents one of the two possible states si = ±1. The constants J and kB are omitted.

You can control the temperature either by typing a positive real number into the tem-
perature field or by adjusting the slide rule with the mouse. The critical temperature of the
model is Tcrit = 2

ln(1+
√

2)
= 2.269... The magnetization is simply the mean of all spins.

You can also adjust the lattice size.
The graphs show magnetization and energy of the current configuration.

Observe the following:

1. Set the temperature to be well above the critical temperature (2.26...). You will see that
the spin arrangement converges to a nearly random arrangement, independent of the
starting state: ”Cold”, or ”Hot”, and fluctuates quickly. Hence, above the critical tem-
perature, there is a single thermodynamic state, with zero magnetization. At infinite
temperature the spin arrangement is truly random.

2. Start well below the critical temperature with initial state ”Cold”.
All the spins will start with equal value. You will see that just a few small clusters of op-
posite spins appear, and there is a non-zero magnetization. The analogouous situation
would occur if initially all spins were reversed. Hence, below the critical temperature,
there are two thermodynamic states (the ”up spin” state with positive magnetization
and the ”down spin” state negative magnetization). With the Metropolis method the
system stays in one or the other depending on how the spins are initialized.

3. Start well below the critical temperature with initial state ”Hot”.
You see that the system initially cannot make up its mind whether to go into the ”up
spin” or ”down spin” state. Large clusters of each spin form. Eventually, if you let the
simulation run for a long time, one of the states will win. Which one wins depends
on the random thermal fluctuations. There is equal probability for it to be in the ”up
spin” or ”down spin” state.

4. Start at or close to the critical temperature. You will see large clusters of spins with
the same orientation, which fluctuate only very slowly. The typical size of these clusters
is the so called correlation length ξ which is maximal at the critical temperature, where
it would diverge on an infinitely large system.

The slow fluctuation of spins with the Metropolis method is called critical slowing
down. Fluctuations of spins travel through the lattice locally in this method, like in
a random walk. Therefore they are associated with a time scale of τ ' ξ2 iterations.
The system thus keeps a long memory of its initial state, and many iterations must
be discarded before useful averages can be taken. These then need many iterations to
converge, especially on large systems.
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2 XY model

In the classical xy-model, the variables are two-dimensional unit vectors ~si on each lattice
site, equivalent to an angle θ. This model is a limiting case of the Heisenberg spin model. The
vectors correspond to the directions of spins (originally quantum mechanical) in a material
in which the z-component of spins couples less than the x and y components. (The opposite
case leads to the Ising model.)

This model is particularly important in two spatial dimensions, where it shows a pecu-
liar phase transition, the so called Kosterlitz Thouless (KT) transition, which is observed
experimentally also in liquid crystals (LCD displays), thin films of liquid helium, films of su-
perconducters, probably including the layered high temperature superconductors. In addition
the model can be mapped to so called SOS (solid on solid) models, describing, e.g. crystal
growth and roughening transitions.

The energy of a configuration of spins is similar to that of the Ising model,

E = − J
∑

neighbors i,j

~si ~sj = − J
∑

neighbors i,j

cos(θi − θj) . (3)

Again, each state of the system occurs with probability given by the Boltzmann factor

p =
1

Z
exp(− E

kBT
) , (4)

where T is temperature, kB the Boltzmann constant, and Z a normalization factor. The en-
ergy is invariant under a global continuous rotation of all spins, i.e., it possesses a continuous
global “O(2)” symmetry.

In two spatial dimensions, the Mermin-Wagner theorem shows rigorously that such a
continuous symmetry cannot be broken spontaneously at any finite temperature. Thus the
XY-model cannot have an ordered phase at low temperature like the Ising model does. Yet
in two dimensions it does show the very peculiar Kosterlitz-Thouless (KT) transition, which
is very soft, of infinite order. Above the transition temperature TKT , correlations between
spins decay exponentially as usual, with some correlation length ξ. Below the transition
temperature, they decay instead like a power of distance, with temperature-dependent ex-
ponents. Thus in the whole low temperature phase the exponential correlation length is
infinite.

The relevant degrees of freedom for this phase transition turn out to be “vortices”. i.e.
points on the lattice around which the spins wind an integer number of times. In the low
temperature phase, there are few vortices, closely coupled as vortex-antivortex pairs. In
the high temperature phase, many vortices are present, in a so called condensed phase or
vortex plasma. Another suitable indication of the phase transition is given by the “spin
stiffness”, which measures the response of the system to a twist of a spin on the boundary.
The spin-stiffness exhibits a discontinuous jump (!) at the phase transition in an infinite
system.

The XY-model can be better understood theoretically by mapping it, exactly, to a com-
pletely different looking so called SOS (Solid On Solid) model, in which the degrees of
freedom are not continuous vectors, but instead discrete height variables at each lattice site.
They can be interpreted, e.g., as the height of a crystal surface (measured in atoms), or the
height of a layer of material deposited by Molecular Beam Epitaxy (MBE). Fortunately, a
closely related SOS model is one of the few models in statistical mechanics which can be
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solved exactly, in two dimensions. This is the BCSOS or (in yet another guise) the 6-vertex-
model, closely related also to the spin 1

2
quantum Heisenberg XXZ chain. This model turns

out to indeed possess the previously conjecture KT transition, which is under full control in
this case.

Because of the algebraic decay, and because important effects depend only logarithmically
on system size, it is notoriously difficult to obtain the relevant physics of the XY-model
directly. For simulations, in order to see the correct asymptotic algebraic decay of correlation
functions, lattice sizes exceeding 100002 are necessary. The best available numerical results
have therefore been obtained indirectly, by matching the behavior of the system on different
size lattices (the Renormalization Group flow) to that of the BCSOS model in simulations
of systems up to size 5122.

Our applet shows a simulation of the two-dimensional XY model, using the Metropolis
algorithm. For each single-spin-update, a rotation of that spin by a finite angle is proposed,
taken from a suitable continuous range. The spins in the applet are displayed in 8 different
colors accouding to the octant of their orientation, so that the degree of order of the spin
configuration can be easily visualized. Vortices and anti-vortices are marked by big colored
dots, and one can easily see the proliferation of vortices at high temperature. At low tem-
perature, on the other hand, this simulation takes a fairly long time to reach an equilibrium
configuration. Other simulation methods, especially cluster algorithms, help to improve such
simulations.
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