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Generic lattice model

Ĥ =
∑
ij

tij c
†
i cj +

∑
ijkl

Uijkl c
†
i c
†
j ck cl

= ĤI(t) + ĤII(U)

To apply a perturbative method one has to expand in some parameter.
Usually the hopping (strong coupling) or the interaction (weak coupling)
are considered.
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Atomic limit

G(z; t, U) =

〈
1

z − Ĥ(t, U)

〉

strong coupling perturbation theory (in hopping t)
consider G(t = 0) as starting point
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Extrapolate cluster to thermodynamic limit:

Cluster Perturbation Theory (CPT)
Variational Cluster Approach (VCA)
Cluster/Cellular Dynamical Mean-Field Theory (CDMFT)
Dynamical Cluster Approximation (DCA)
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Cluster Perturbation Theorya b

aC. Gros and R. Valenti, Phys. Rev. B 48, 418 (1993) (I)
bD. Sénéchal, D. Perez, and M. Pioro-Ladriére, Phys. Rev. Lett. 84, 522 (2000)

By means of strong coupling perturbation theory it can be shown that the
first order result for the lattice Green function G is

G−1(ω,k) = Gcluster
−1(ω)− T(k)

Gcluster = exact Green’s function of the cluster
T = inter-cluster off diagonal one particle terms (i.e. hopping)
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Cluster Perturbation Theory - Limits

CPT is exact for
t→ 0,
U → 0,
L→∞.

CPT captures short-range correlations exactly, long-range correlations
are neglected.
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Variational Cluster Approacha

aM. Potthoff, M. Aichhorn, and C. Dahnken, Phys. Rev. Lett. 91, 206402 (2003)

VCA = variational extension to CPT - rigorously developed within
the Self-Energy Functional Approach (SFA)ab,
does not implement a variational principle in the sense of a
Rayleigh-Ritz variational principle,
is applicable to broken-symmetry/ordered phases.

aM. Potthoff, Eur. Phys. J. B 32, 429 (2003)
bM. Potthoff, Eur. Phys. J. B 36, 335 (2003)
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Luttinger-Ward functional Φ[G]

Φ[Ω] = sum of all two-particle irreducible diagrams

The functional derivative of Φ[G] is the self-energy:

δΦ[G]
δG

= Σ

It is a universal functional of G.
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Legendre Transform of Φ[G]

It can be shown that

δΦ[G]
δG

= Σ ,

is locally invertible.
Legendre Transform of the Luttinger-Ward functional:

F [Σ] = Φ[Σ]− Tr {ΣG} .

It can be shown that the generalized grand potential functional is given
by:

Ω[Σ] = F [Σ]− Tr
{(
−G−1

0 + Σ
)}

.
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Grand Potential Functional Ω[Σ]

Dyson’s equation is recovered at the stationary point of the grand
potential functional Ω[Σ]

δF [Σ]
δΣ

= −G

δΩ[Σ]
δΣ

= −G +
(
G−1

0 − Σ
)−1 != 0 .
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VCA Reference System (I)

Since systems which share the same interaction part ĤII(U) have the
same Φ[G] (or F [Σ]) we construct a reference system:

Ĥ′ = ĤI(t′) + ĤII(U)

defined on the same lattice,
having the same interaction as the original system,
but may have entirely different single-particle operators /
parameters.
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VCA Reference System (II)

The reference system Ĥ′ may be used to eliminate the Luttinger-Ward
functional: (This is still exact!)

Ω[Σ] = F [Σ]− Tr
{

ln
(
−G−1

0 + Σ
)}

Ω′[Σ] = F [Σ]− Tr
{

ln
(
−G′−1

0 + Σ
)}

−
∑

Ω[Σ] = Ω′[Σ] + Tr
{

ln
(
−G′−1

0 + Σ
)}
− Tr

{
ln
(
−G−1

0 + Σ
)}

= Ω′[Σ] + Tr
{

ln
(
−G′[Σ]

)}
− Tr {ln (−G[Σ])}
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Evaluation of the grand potential

The self-energy Σ(x) is given by the self-energy of the reference system
Σ(x′), where x denotes the single particle parameters, restricting the
space of available self-energies.
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VCA - Overview

Grand potential

Ω(x′) = Ω′(x′) + Tr
{

ln
(
−G(x′)

)}
− Tr

{
ln
(
−G′(x′)

)}
.

Stationarity condition:

∇x′Ω(x′) != 0 .

The Green’s function of the physical system G is obtained in
CPT/VCA by Dyson’s equation

G−1 = G′−1 − T .

The matrix T = G′−1
0 − G−1

0 contains all single particle terms not
included in the reference system (as in CPT) as well as the deviation,
introduced by VCA, ∆x ≡ x′ − x of the single-particle parameters of
the reference system x′ with respect to the ones of the original
system x.
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Single Impurity Anderson Model - Cluster decomposition
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Grand potential for infinite reference systems

The reference system here consists of two parts:
a cluster part and
an infinite environment.

It is possible to find a regular expression for the grand potential (at
zero temperature):

Ω− Ω′0,env = Ω′0,cluster + tr {T}

− 1
π

∑
σ

∫ ∞
0

dω ln
∣∣∣det(11cc − Σ̃cc(iω)G′cc(iω)

)∣∣∣ .
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Numerical implementation

The Green’s function of the reference system are obtained by

Lanczos/Band-Lanczos method for the cluster part,
analytically for the environment part.
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Results in equilibrium

Results

Spectral properties (comparison to NRG, FRGa, DMRGb,
CTQMC),
Impurity density of states and occupation (Friedel sum rule)
(comparison to Hubbard-X operator technique resultsc, “Crossover"
diagram (comparison to mean field resultsd))
Low energy properties, Kondo temperature , effective mass, static
spin susceptibility

aC. Karrasch, R. Hedden, R. Peters, T. Pruschke, K. Schönhammer, and V. Meden,
J. Phys.: Condensed Matter 20, 345205 (2008)

bR. Peters, 1103.5837 (2011)
cT. Lobo, M. S. Figueira, and M. E. Foglio, Nanotechnology 21, 274007 (2010)
dP. Coleman, AIP Conference Proceedings 629, 79 (2002)
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Impurity Occupation



Impurity Occupation



“Crossover" diagram
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Kondo Temperature

Since the height of the Kondo resonance is fixed by the Friedel sum
rule, the spectral weight (area) of Kondo peak and it’s FWHM are
proportional to TK .
The Kondo temperature (symmetric SIAM) is given by Bethe
Ansatz2

TK =

√
∆U

2
e−γ

π
8∆

U , γ = 1 .

An analytic calculation for a two-site reference system yields for
VCAΩ

γ = 0.6511 .

2A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University
Press, 1997)
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Comparison to CTQMC
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Conclusion

VCA » CPT
Kondo peak + exponential scale in U
Hubbard bands (position + width)
all parameter regions (pinning of Kondo resonance)
Σ exact for high Matsubara frequency
extension to many orbitals, arbitrary dimensions,
non-equilibrium feasible
fast
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Nonequilibrium extension of VCA (I)

Initial state: three decoupled systems in equilibrium

left lead - cluster - right lead.

At some time t0 the coupling is switched on.
We are interested in the long time steady-state properties.
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Nonequilibrium extension of VCA (II)

Keldysh - formalism to obtain steady-state properties.
VCA reformulated in terms of self-consistently determined
variational parameters where the self-consistency conditions are
static expectation values (for example):〈

n̂fσ

〉
cluster,ε′f ,ε

′
s

!=
〈
n̂fσ

〉
CPT,εf ,εs,ε′f ,ε

′
s

L−1∑
i

〈
n̂iσ
〉
cluster,ε′f ,ε

′
s

!=
L−1∑
i

〈
n̂iσ
〉
CPT,εf ,εs,ε′f ,ε

′
s
.

Green’s functions calculated in Keldysh space on the real energy
axis:

G̃(ω) =
(
Gret(ω) Gkeld(ω, µ)

0 Gadv(ω)

)
The initial Gkeld(ω, µ) of the decoupled system is given by

Gkeld(ω, µ) =
(
Gret(ω)− Gadv(ω)

)
(1− 2 pFD(ω, µ, β))



Manybody Cluster Methods
Results in equilibrium

Application to non-equilibrium situations

Current for a single impurity orbital

The expression for the current between sites i and j is given by:

Iij = tRe
(
Gkeld
ij (t = 0)

)
=
t

2

∫ +∞

−∞

dω

2π
Re
(
Gkeld
ij (w)− Gkeld

ji (w)
)
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Current for a single impurity orbital



Non-equilibrium density of states

U
∆ = 12

CPT VCA
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Thank You!

Thank you for your attention!

I acknowledge financial support from the Förderungsstipendium of the TU
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