Quantum Impurity Models in and out of equilibrium studied by means of Variational Cluster Perturbation Theory

Martin Nuss¹

TU Graz, Austria

January 20, 2012

¹supervision: Prof. Wolfgang von der Linden, in cooperation with: Prof. Enrico Arrigoni

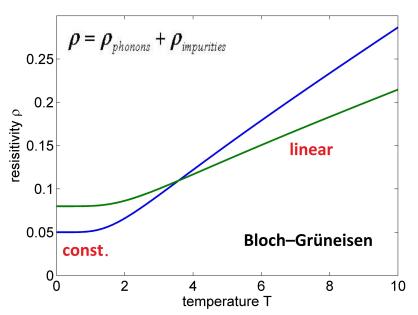
Table of contents

- Quantum Impurity Problems
 - Magnetic impurities in metals
 - Quantum dots
 - Modeling of magnetic impurities
- Manybody Cluster Methods
 - Cluster perturbation theory
 - Variational cluster approach
- Results
 - Results in equilibrium
 - Results in a non-equilibrium situation

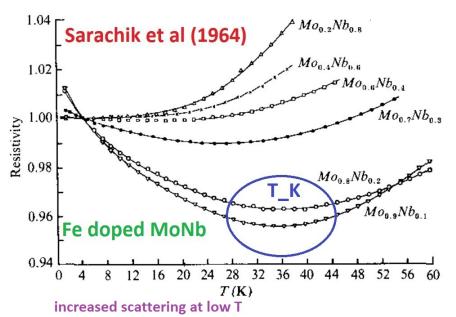
Magnetic impurities in metals Quantum dots Modeling of magnetic impurities

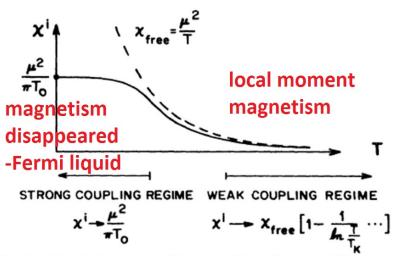
Quantum Impurity Problems

Resistivity in metals (I)

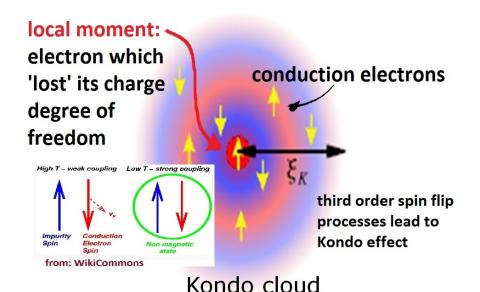


Resistivity in metals (II)

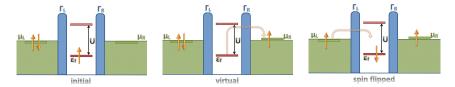




J.Mydosh: lecture notes on Kondo problem

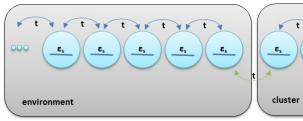


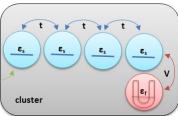
Quantum dot <-> Kondo physics, 1990's



- new experimental playground
- versatile
- tunable
- control over many parameters

Single Impurity Anderson Model - Cluster decomposition





Manybody Cluster Methods

Generic lattice model

$$\begin{split} \hat{\mathcal{H}} &= \sum_{ij} \mathbf{t}_{ij} \, c_i^{\dagger} \, c_j^{} + \sum_{ijlk} \mathbf{U}_{ijkl} \, c_i^{\dagger} \, c_j^{\dagger} \, c_k^{} \, c_l^{} \\ &= \hat{\mathcal{H}}_I(t) + \hat{\mathcal{H}}_{II}(U) \end{split}$$

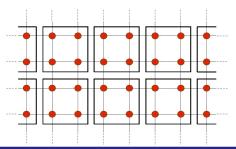
Perturbative methods

expand in some parameter:

- interaction (weak coupling)
- hopping (strong coupling)

Cluster Perturbation Theory b

- ^aC. Gros and R. Valenti, Phys. Rev. B 48, 418 (1993)
- ^bD. Sénéchal, D. Perez, and M. Pioro-Ladriére, Phys. Rev. Lett. 84, 522 (2000)



Extrapolate cluster to thermodynamic limit:

$$G^{-1}(\omega, \mathbf{k}) = \frac{G_{\text{cluster}}^{-1}(\omega) - T(\mathbf{k})$$

- G . . . lattice Green's function
- G_{cluster} ... exact Green's function of the cluster
- T ... inter-cluster off diagonal one particle terms (i.e. hopping)

Variational Cluster Approach a

^aM. Potthoff, M. Aichhorn, and C. Dahnken, Phys. Rev. Lett. 91, 206402 (2003)

- VCA = variational extension to CPT rigorously developed within the Self-Energy Functional Approach^{ab},
- grand potential functional:

$$\Omega[\Sigma, \mathsf{G}_0] = F[\Sigma] - \mathsf{Tr} \ln \left(-\mathsf{G}_0^{-1} + \Sigma \right).$$

• Luttinger-Ward functional $F[\Sigma] = \operatorname{sum}$ of all **two-particle** irreducible diagrams

$$\Phi = \bigcirc + \bigcirc + \bigcirc + \bigcirc + \cdots$$

^aM. Potthoff, Eur. Phys. J. B 32, 429 (2003)

^bM. Potthoff, Eur. Phys. J. B 36, 335 (2003)

VCA Reference System (I)

same interaction part $\hat{\mathcal{H}}_{II}(U) o$ same $F[\Sigma]$

$$\hat{\mathcal{H}}' = \hat{\mathcal{H}}_I(t') + \hat{\mathcal{H}}_{II}(U)$$

- same lattice,
- same interaction,
- may have entirely different single-particle operators / parameters.

VCA Reference System (II)

The reference system $\hat{\mathcal{H}}'$ may be used to eliminate the Luttinger-Ward functional: (This is still exact!)

$$\begin{split} \Omega[\Sigma] &= F[\Sigma] - \mathsf{Tr} \left\{ \ln \left(-\mathsf{G}_0^{-1} + \Sigma \right) \right\} \\ \underline{\Omega'[\Sigma] &= F[\Sigma] - \mathsf{Tr} \left\{ \ln \left(-\mathsf{G}_0'^{-1} + \Sigma \right) \right\} | - \\ \underline{\Omega[\Sigma] &= \Omega'[\Sigma] + \mathsf{Tr} \left\{ \ln \left(-\mathsf{G}_0'^{-1} + \Sigma \right) \right\} - \mathsf{Tr} \left\{ \ln \left(-\mathsf{G}_0^{-1} + \Sigma \right) \right\} } \\ &= \Omega'[\Sigma] - \mathsf{Tr} \left\{ \ln \left(-\mathsf{G}'[\Sigma] \right) \right\} + \mathsf{Tr} \left\{ \ln \left(-\mathsf{G}[\Sigma] \right) \right\} \end{split}$$

Grand Potential Functional $\Omega[\Sigma]$

Dyson's equation is recovered at the stationary point of the grand potential functional $\Omega[\Sigma]$

$$\begin{split} \beta \, \frac{\delta F[\Sigma]}{\delta \Sigma} &= -\mathsf{G} \\ \beta \, \frac{\delta \Omega[\Sigma,\mathsf{G}_0]}{\delta \Sigma} &= -\mathsf{G} + \left(\mathsf{G}_0^{-1} - \Sigma\right)^{-1} \stackrel{!}{=} 0 \,. \end{split}$$

VCA - Overview

Grand potential

$$\Omega(t') = \Omega'(t') + \operatorname{Tr}\left\{\ln\left(-\mathsf{G}(t')\right)\right\} - \operatorname{Tr}\left\{\ln\left(-\mathsf{G}'(t')\right)\right\} \ .$$

• Stationarity condition:

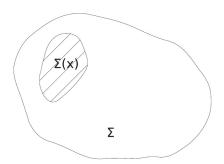
$$\nabla_{t'}\Omega(t') \stackrel{!}{=} 0$$
.

• Green's function of the physical system G

$$G^{-1} = G'^{-1} - T$$
.

Restriction of self-energies

The self-energy $\Sigma(t)$ is given by the self-energy of the reference system $\Sigma(t)$, where t denotes the single particle parameters, **restricting the** space of available self-energies.



Results in equilibrium

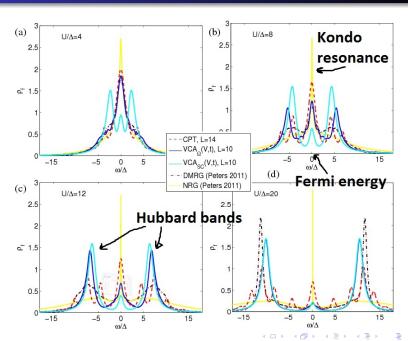
Spectral properties

Local impurity density of states (single-particle spectral function):

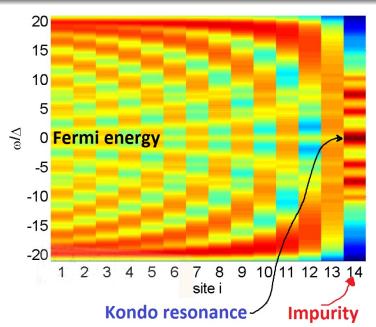
$$A_f^\sigma(\omega) = -\frac{1}{\pi} \operatorname{Im} \mathsf{G}_{ff}^{\sigma,\mathrm{ret}}(\omega) \; .$$

- Probability to find electronic states at a given energy ω .
- Fermi energy = 0

Spectral properties



Spectral properties (spatial)



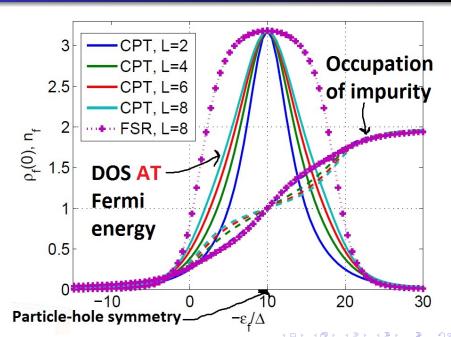
Impurity Occupation (I)

• The Friedel sum rule is "naturally" fulfilled within VCA $_{\Omega}$ where $\mathbf{x} = \{\epsilon_s, \epsilon_f\}$:

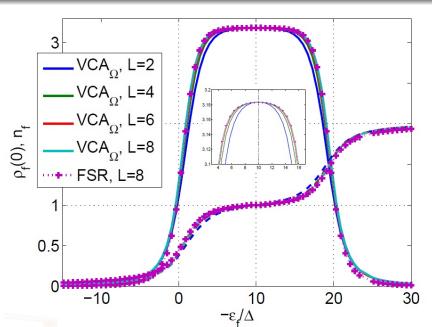
$$\rho_{f,\sigma}(0) = \frac{\sin^2\left(\pi < n_{\sigma}^f > \right)}{\pi\Delta} .$$

Local version of Luttinger theorem in Fermi liquid theory.

Impurity Occupation (II)



Impurity Occupation (III)



Kondo Temperature

- Since the height of the Kondo resonance is fixed by the Friedel sum rule, the spectral weight (area) of Kondo peak and it's FWHM are proportional to T_K.
- The Kondo temperature (symmetric SIAM) is given by Bethe Ansatz²

$$T_K = \sqrt{\frac{\Delta U}{2}} e^{-\gamma \frac{\pi}{8\Delta} U}$$
 , $\gamma = 1$.

 \bullet An analytic calculation for a two-site reference system yields for VCA_Ω

$$\gamma = 0.6511$$
 .

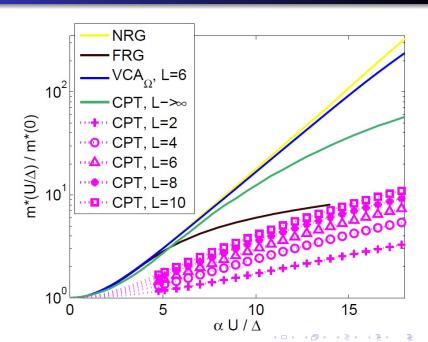
²A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, 1997)

Effective Mass

 The effective mass (quasi-particle renormalization) is inversely proportional to the Kondo temperature³:

$$\frac{m^*(U)}{m^*(0)} = 1 - \frac{d[\operatorname{Im} \Sigma_{ff}^{\sigma}(i\omega, U)]}{d\omega} \bigg|_{\omega = 0^+}$$

³C. Karrasch, R. Hedden, R. Peters, T. Pruschke, K. Schönhammer, and V. Meden, J. Phys.: Condensed Matter 20, 345205 (2008)

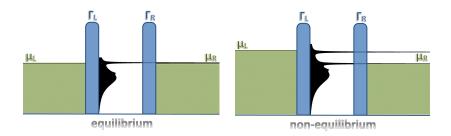


Conclusion

- VCA » CPT
- Kondo peak + exponential scale in U
- Hubbard bands (position + width)
- all parameter regions (pinning of Kondo resonance)
- ullet Σ exact for high Matsubara frequency
- extension to many orbitals, arbitrary dimensions, non-equilibrium feasible
- fast

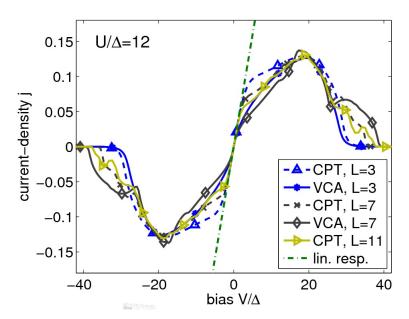
Results in a non-equilibrium situation

Nonequilibrium extension of VCA

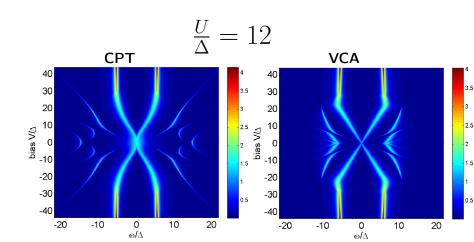


- requires CPT/VCA reformulation for Keldysh Green's functions
- Initial state: three decoupled systems in equilibrium
- At some time t_0 the coupling is switched on.
- We are interested in the long time steady-state properties.

Current for a single impurity orbital



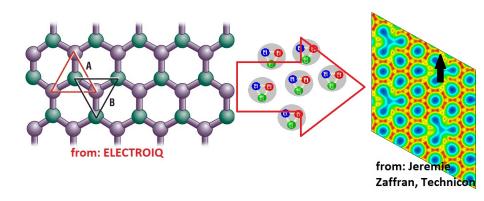
Non-equilibrium density of states



Thank you for your attention!

I acknowledge financial support from the Förderungsstipendium of the TU Graz and the Austrian Science Fund (FWF) P18551-N16.

Magnetic vacancies in Graphene



- Proton irradiation → vacancies
- these behave like local moments and exhibit a Kondo effect
- effect of disorder
- requires CPT/VCA extension by means of Green's function averaging

Density of states for a given vacancy concentration

