Magnetic vacancies in Graphene: Disordered impurity physics within the variational cluster approach

Martin Nuss¹

Institute of Theoretical and Computational Physics, Graz University of Technology, Austria

May 21, 2012

Martin Nuss (ITP) Magnetic vacancies May 21, 2012 1 / 50

¹supervision: Prof. Wolfgang von der Linden, Prof. Enrico Arrigoni

Table of contents

- 1 Graphene, Disorder & Correlations
- 2 Manybody Cluster Methods
 - Model Hamiltonians for strongly correlated systems
 - Cluster Perturbation Theory
 - Variational Cluster Approach
 - Disorder extension
- 3 Disorder in Graphene with correlations
 - Graphene + homogeneous interactions
 - Graphene + non-magnetic vacancies: disorder
 - Graphene + magnetic vacancies: disorder + correlations

Many Body Cluster Group at Technical University Graz

Outline

- Graphene, Disorder & Correlations
- 2 Manybody Cluster Methods
 - Model Hamiltonians for strongly correlated systems
 - Cluster Perturbation Theory
 - Variational Cluster Approach
 - Disorder extension
- 3 Disorder in Graphene with correlations
 - Graphene + homogeneous interactions
 - Graphene + non-magnetic vacancies: disorder
 - Graphene + magnetic vacancies: disorder + correlations

Graphite (natural allotrope of Carbon)

Castro Neto A.H., Peres N.M.R., Novoselov K.S., Geim A. K., Rev. Mod. Phys. 81, 1, 109-162 (2009)

Graphene - basic properties

- very high electrical + thermal conductivity (transparent conductor)
- mechanically very strong + stretchable
- Dirac-like Fermions (QED)
- anomalous integer quantum hall effect
- Klein tunneling
- spin injection, valleytronics, nano electronics

$$\vec{a}_1 = \frac{a}{2}(3, \sqrt{3}), \vec{a}_2 = \frac{a}{2}(3, -\sqrt{3})$$

Profeta G., Calandra M. and Mauri F. Nat. Phys. 8, 2, 131-134 (2012).

Magnetism

lattice defects: vacancies

Lehtinen P.O., Foster A.S., Ma Y., Krasheninnikov A.V. and Nieminen R.M., Phys. Rev. Lett. 93, 18, 1-4 (2004).

V. M. Pereira, J. M. B. Lopes dos Santos and A. H. Castro Neto, Modeling disorder in graphene, Phys. Rev. B 77, 115109 (2008)

Resistivity in metals (I)

Resistivity in metals (II)

What about susceptibility?

J.Mydosh: lecture notes on Kondo problem

Kondo effect in Graphene

- Proton irradiation -> (single) vacancies
 - STM: Ugeda MM, Brihuega I and Go JM, Missing Atom as a Source of Carbon Magnetism, 096804, 1-4 (2010).
 - DFT: Lehtinen PO, Foster AS, Ma Y, Krasheninnikov AV and Nieminen RM, Irradiation-Induced Magnetism in Graphite: A Density Functional Study. Phys. Rev. Lett. 93, 18, 1-4 (2004).
 Yazyev OV and Helm L, Defect-induced magnetism in graphene, Phys. Rev. B 75, 125408 1-5 (2007).

Chen J-H, Li L, Cullen WG, Williams ED and Fuhrer MS, Tunable Kondo effect in graphene with defects, Nat.Phys. 7, 7, 535-538 (2011).

Kanao T, Matsuura H and Ogata M, Theory of Defect-Induced Kondo Effect in Graphene: Numerical Renormalization Group Study. J. Phys. Soc. Jpn. (2012)

Dilute problem so single impurity picture valid.

Disorder is a complicated problem

Correlations are a complicated problem

• What about disorder + correlations?

Outline

- Graphene, Disorder & Correlations
- Manybody Cluster Methods
 - Model Hamiltonians for strongly correlated systems
 - Cluster Perturbation Theory
 - Variational Cluster Approach
 - Disorder extension
- 3 Disorder in Graphene with correlations
 - Graphene + homogeneous interactions
 - Graphene + non-magnetic vacancies: disorder
 - Graphene + magnetic vacancies: disorder + correlations

Generic lattice model

$$\begin{split} \hat{\mathcal{H}} &= \sum_{ij} \mathbf{t}_{ij} \, c_i^{\dagger} \, c_j^{} + \sum_{ijkl} \mathbf{U}_{ijkl} \, c_i^{\dagger} \, c_j^{\dagger} \, c_k^{} \, c_l^{} \\ &= \hat{\mathcal{H}}_I(t) + \hat{\mathcal{H}}_{II}(U) \end{split}$$

To apply a perturbative method one has to expand in some parameter. Usually the hopping (strong coupling) or the interaction (weak coupling) are considered.

Atomic limit

$$G(z;t,U) = \left\langle \frac{1}{z - \hat{\mathcal{H}}(t,U)} \right\rangle$$

- strong coupling perturbation theory (in hopping t)
- consider G(t=0) as starting point

◆ロ > ◆母 > ◆き > ◆き > き め Q @

Manybody Cluster Methods

Extrapolate cluster to thermodynamic limit:

- Cluster Perturbation Theory (CPT)
- Variational Cluster Approach (VCA)
- Cluster/Cellular Dynamical Mean-Field Theory (CDMFT)
- Dynamical Cluster Approximation (DCA)

Illustration of Cluster Perturbation Theory

Correlated lattice model

given: Hamiltonian e.g. Hubbard model $\hat{\mathcal{H}}$

ask for: Green's function

G = ?

in general intractable ... :(

Illustration of Cluster Perturbation Theory

Cluster Tiling

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_{cluster}$$

$$\mathbf{G}^{-1} = \mathbf{G}_{\mathbf{cluster}}^{-1}$$

(numerically) exactly solvable ... :)

... but isn't this quite different from original system ... :(

Illustration of Cluster Perturbation Theory

Cluster Perturbation Theory²

First order result for the lattice Green function G

- G_{cluster} = exact Green's function of the cluster
- \bullet T = inter-cluster off diagonal one particle terms (i.e. hopping)

²C. Gros and R. Valenti, Phys. Rev. B 48, 418 (1993)

³D. Sénéchal, D. Perez, and M. Pioro-Ladriére, Phys. Rev. Lett. 84, 522 (2000)

Cluster Perturbation Theory - Motivation

Heuristic derivation using **Dyson's equation**:

$$\begin{aligned} \mathbf{G}^{-1} &= \mathbf{G}_0^{-1} - \boldsymbol{\Sigma} \\ \mathbf{G}_{\text{cluster}}^{-1} &= \mathbf{G}_{\text{cluster},0}^{-1} - \boldsymbol{\Sigma}_{\text{cluster}} \end{aligned}$$

• 0 = non-interacting Green's functions

$$\mathsf{G}_0^{-1} = \omega + \mu - V$$

- \bullet V = hopping matrix
- $\Sigma = \text{self-energy}$

◆ロト ◆個ト ◆重ト ◆重ト 重 りへで

Cluster Perturbation Theory - Motivation

$$\begin{split} \mathsf{G}^{-1} &= \mathsf{G}_0^{-1} - \Sigma \\ &\thickapprox \mathsf{G}_0^{-1} - \Sigma_{\mathsf{cluster}} \\ &= \mathsf{G}_0^{-1} - \left(\mathsf{G}_{\mathsf{cluster},0}^{-1} - \mathsf{G}_{\mathsf{cluster}}^{-1}\right) \\ &= \mathsf{G}_{\mathsf{cluster}}^{-1} - \left(\mathsf{G}_{\mathsf{cluster},0}^{-1} - \mathsf{G}_0^{-1}\right) \\ &= \mathsf{G}_{\mathsf{cluster}}^{-1} - \mathsf{T} \end{split}$$

- Approximation: take self-energy of the cluster
- T = inter-cluster hopping:

$$\begin{split} \left(\mathsf{G}_{\mathsf{cluster},0}^{-1} - \mathsf{G}_{0}^{-1}\right) &= (\omega + \mu - V_{\mathsf{cluster}}) - (\omega + \mu - V) \\ &= V - V_{\mathsf{cluster}} = \mathsf{T} \end{split}$$

Cluster Perturbation Theory - Limits

CPT is exact for

- $t \rightarrow 0$.
- $U \rightarrow 0$,
- $L \to \infty$.

CPT captures **short-range correlations** exactly, long-range correlations are neglected.

CPT is usually improved not by considering higher order expansions in the inter-cluster hopping but by **increasing the cluster** size.

Variational Cluster Approach⁴

- VCA = variational extension to CPT rigorously developed within the Self-Energy Functional Approach (SFA)^{ab},
- does not implement a variational principle in the sense of a Rayleigh-Ritz variational principle,
- is applicable to broken-symmetry/ordered phases.

```
<sup>a</sup>M. Potthoff, Eur. Phys. J. B 32, 429 (2003)
```

⁴M. Potthoff, M. Aichhorn, and C. Dahnken, Phys. Rev. Lett. 91, 206402 (2003)

Martin Nuss (ITP) Magnetic vacancies May 21, 2012 25 / 50

^bM. Potthoff, Eur. Phys. J. B 36, 335 (2003)

Illustration of the Variational Cluster Approach

VCA = Variational CPT: **Optimize the initial state**

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_{ extsf{cluster}}' + \hat{\mathcal{H}}_{ extsf{inter-cluster}}'$$

$$\begin{aligned} \mathbf{G}_{ extsf{CPT}}^{-1}(\omega, \mathbf{k}) &= \\ \mathbf{G}_{ extsf{cluster}}'^{-1}(\omega) &- \mathbf{T}'(\mathbf{k}) \end{aligned}$$

Variational aspect: Add **virtual field** to cluster Hamiltonian $\hat{\mathcal{H}}'_{\text{cluster}} = \hat{\mathcal{H}}_{\text{cluster}} + \hat{h}_{\text{field}}$

field: any single particle terms of original Hamiltonian + bath sites

Illustration of the Variational Cluster Approach

Adding and subtracting single-particle terms

$$\begin{split} \hat{\mathcal{H}} &= \hat{\mathcal{H}}_{\text{cluster}}' + \hat{\mathcal{H}}_{\text{inter-cluster}}' \\ &\qquad \qquad \mathbf{G}_{\text{CPT}}^{-1}(\omega, \mathbf{k}) = \\ &\qquad \qquad \mathbf{G}_{\text{cluster}}'^{-1}(\omega) - \mathsf{T}'(\mathbf{k}) \end{split}$$

Variational aspect: Add virtual field to cluster Hamiltonian

$$\hat{\mathcal{H}}_{\mathsf{cluster}}' = \hat{\mathcal{H}}_{\mathsf{cluster}} + \hat{h}_{\mathsf{field}}$$

subtract field again via CPT

$$\hat{\mathcal{H}}'_{\mathsf{inter-cluster}} = \hat{\mathcal{H}}_{\mathsf{inter-cluster}} - \hat{h}_{\mathsf{field}}$$

field: any single particle terms of original Hamiltonian + bath sites

Luttinger-Ward functional $\Phi[\mathsf{G}]$

• $\Phi[G] = \text{sum of all two-particle irreducible diagrams}$

$$\Phi = \bigcirc + \bigcirc + \bigcirc + \bigcirc + \cdots$$

• The functional derivative of $\Phi[G]$ is the self-energy:

$$\beta\,\frac{\delta\Phi[\mathsf{G}]}{\delta\mathsf{G}} = \Sigma$$

It is a universal functional of G.

Legendre Transform of $\Phi[\mathsf{G}]$

It can be shown that

$$eta \, rac{\delta \Phi[\mathsf{G}]}{\delta \mathsf{G}} = \Sigma$$
 ,

is locally invertible.

Legendre Transform of the Luttinger-Ward functional:

$$F[\Sigma] = \Phi[\Sigma] - \mathsf{Tr} \{ \Sigma \mathsf{G} \} \ .$$

It can be shown that the generalized **grand potential functional** is given by:

$$\Omega[\Sigma, \mathsf{G}_0] = F[\Sigma] - \mathsf{Tr} \ln \left(-\mathsf{G}_0^{-1} + \Sigma \right).$$

Grand Potential Functional $\Omega[\Sigma]$

Dyson's equation is recovered at the stationary point of the grand potential functional $\Omega[\Sigma]$

$$\begin{split} \beta \, \frac{\delta F[\Sigma]}{\delta \Sigma} &= -\mathsf{G} \\ \beta \, \frac{\delta \Omega[\Sigma,\mathsf{G}_0]}{\delta \Sigma} &= -\mathsf{G} + \left(\mathsf{G}_0^{-1} - \Sigma\right)^{-1} \stackrel{!}{=} 0 \,. \end{split}$$

4 □ ト 4 □ ト 4 亘 ト 4 亘 ト 9 0 ○

30 / 50

Martin Nuss (ITP) Magnetic vacancies May 21, 2012

VCA Reference System (I)

Since systems which share the same interaction part $\hat{\mathcal{H}}_{II}(U)$ have the same $\Phi[\mathsf{G}]$ (or $F[\Sigma]$) we construct a **reference system**:

$$\hat{\mathcal{H}}' = \hat{\mathcal{H}}_I(t') + \hat{\mathcal{H}}_{II}(U)$$

- defined on the same lattice.
- having the same interaction as the original system,
- but may have entirely different single-particle operators / parameters.

◄□▶ ◀圖▶ ◀불▶ ◀불▶ 불 ∽QQQ

Illustration of the Variational Cluster Approach

How is \hat{h}_{field} determined?

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_{ extsf{cluster}}' + \hat{\mathcal{H}}_{ ext{inter-cluster}}'$$

$$\begin{aligned} \mathbf{G}_{ extsf{CPT}}^{-1}(\omega, \mathbf{k}) &= \\ \mathbf{G}_{ ext{cluster}}'^{-1}(\omega) &- \mathbf{T}'(\mathbf{k}) \end{aligned}$$

The self energy functional approach (SFA) provides a variational principle:

Stationary point of the grand potential:

$$\frac{\delta\Omega}{\delta h_{\text{field}}} \stackrel{!}{=} 0$$

VCA = CPT + variational principle

VCA Reference System (II)

The reference system $\hat{\mathcal{H}}'$ may be used to eliminate the Luttinger-Ward functional: (This is still exact!)

$$\begin{split} \Omega[\Sigma] &= F[\Sigma] - \mathsf{Tr} \left\{ \ln \left(-\mathsf{G}_0^{-1} + \Sigma \right) \right\} \\ \Omega'[\Sigma] &= F[\Sigma] - \mathsf{Tr} \left\{ \ln \left(-\mathsf{G}_0'^{-1} + \Sigma \right) \right\} \\ &- \sum \\ \Omega[\Sigma] &= \Omega'[\Sigma] + \mathsf{Tr} \left\{ \ln \left(-\mathsf{G}_0'^{-1} + \Sigma \right) \right\} - \mathsf{Tr} \left\{ \ln \left(-\mathsf{G}_0^{-1} + \Sigma \right) \right\} \\ &= \Omega'[\Sigma] + \mathsf{Tr} \left\{ \ln \left(-\mathsf{G}'[\Sigma] \right) \right\} - \mathsf{Tr} \left\{ \ln \left(-\mathsf{G}[\Sigma] \right) \right\} \end{split}$$

◆ロト ◆個ト ◆重ト ◆重ト 重 りへで

Martin Nuss (ITP)

Restriction of self-energies

Self-energy $\Sigma(x)=$ self-energy of the reference system $\Sigma(x')$ x= single particle parameters, restricting the space of available self-energies.

34 / 50

Martin Nuss (ITP) Magnetic vacancies May 21, 2012

VCA Basic quantity: single-particle Green's function

Cluster decompositions of Graphene

Introduce disorder configurations η

• η might be on-site energies $\epsilon_i \in \mathcal{U}$, with some distribution \mathcal{U}

We need to average over these disorder configurations!

4 □ ▶ 4 Ē ▶ 4 Ē ▶ 4 Ē ▶ 4 Ē ▶ 4 Ē

Martin Nuss (ITP) Magnetic vacancies May 21, 2012 35 / 50

Averaging the final single particle Green's function

Consider CPT-equation for each disorder configuration

$$G_{\eta}^{-1} = G_{\mathsf{cluster},\eta}^{-1} - T_{\eta}$$

 $G_{\mathbf{cluster},\eta}$ may be calculated within CPT or VCA

Average the **final** Green's function G_{η}

$$\bar{G}_{II} = \frac{1}{w} \sum G_{\eta}$$

Why is this not the way to go?

Averaging the cluster single particle Green's function

Calculate a cluster Green's function $G_{\rm cluster}$ with excitations from all disorder configurations

$$\bar{G}_{\mathrm{cluster}} = \frac{1}{w} \sum \mathrm{excitations} \ \mathrm{of} \ \mathrm{configuration} \ \eta$$

Average on cluster level

$$\bar{G}_I = \left(1 - \bar{G}_{\text{cluster}} T\right)^{-1} \bar{G}_{\text{cluster}}$$

Why is this the way to go?

Potthoff M and Balzer M, Self-energy-functional theory for systems of interacting electrons with disorder, Phys. Rev. B. 75, 12 1-22 (2007).

◄ □ ▶ ◀ 률 ▶ ◀ 률 ▶ ○ 를 □ ♡ Q ○

Excitations in disordered bosonic optical lattices

Knap M, Arrigoni E and von der Linden W, Excitations in disordered bosonic optical lattices, Phys. Rev. A. 81 1-16 (2009).

Outline

- $lue{1}$ Graphene, Disorder & Correlations
- 2 Manybody Cluster Methods
 - Model Hamiltonians for strongly correlated systems
 - Cluster Perturbation Theory
 - Variational Cluster Approach
 - Disorder extension
- 3 Disorder in Graphene with correlations
 - Graphene + homogeneous interactions
 - Graphene + non-magnetic vacancies: disorder
 - Graphene + magnetic vacancies: disorder + correlations

Graphene + on-site interaction

40 / 50

Martin Nuss (ITP) Magnetic vacancies May 21, 2012

Disordered vacancy model

• vacancy model, by high on-site energy:

$$\epsilon_v >> t, U, \epsilon, \dots$$

• generate disorder configurations η , vacancies in any possible arrangement (symmetry!)

Martin Nuss (ITP) Magnetic vacancies May 21, 2012 41 / 50

Disordered vacancy model

 weigh (number of vacancies) according to binomial distribution to reach desired vacancy concentration:

Haverkort MW, Elfimov IS and Sawatzky GA, Electronic structure and self energies of randomly substituted solids using density functional theory and model calculations, arXiv:1109.4036 (2011).

⇒ (non-magnetic) vacancies = diagonal single-particle disorder

Martin Nuss (ITP) Magnetic vacancies May 21, 2012 42 / 50

(Non-magnetic) vacancies in Graphene, non-interacting

Martin Nuss (ITP)

Magnetic vacancies

May 21, 2012

(Non-magnetic) vacancies in Graphene, U=3eV

Martin Nuss (ITP)

Magnetic vacancies

May 21, 2012

Magnetic vacancies - Model

vacancy magnetism by on-site interaction:

$$\epsilon_v + U_v + t_v$$

• generate disorder configurations η , vacancies in any possible arrangement (symmetry!)

Magnetic vacancies May 21, 2012 45 / 50

Magnetic vacancies - Model

- ⇒ magnetic vacancies = diagonal single-particle disorder
 - + two-particle disorder
 - + off-diagonal single-particle disorder
- substantially more difficult:
 - **1** two-particle disorder (U_v) : self-energy for each η different \Rightarrow additional approximation needed!
 - ② off-diagonal single-particle disorder (t_v) : T for each η different \Rightarrow additional averaging needed!

$$\begin{split} \bar{G}_I &= \left(1 - \bar{G}_{\mathsf{cluster}} \, \bar{\overline{I}} \right)^{-1} \, \bar{G}_{\mathsf{cluster}} \\ {G_{\mathsf{cluster}}}^{-1}(\eta) &= G_{0,\mathsf{cluster}}^{-1}(\eta) - \Sigma(\eta) \end{split}$$

- 4ロト 4回ト 4 差ト 4 差ト - 差 - 夕Qで

Magnetic vacancies in Graphene

From left to right $t_v = [0.1, 6.4]eV$, vacancy concentration D = 5%

Martin Nuss (ITP) Magnetic vacancies May 21, 2012 47 / 50

Conclusion

- ullet (disordered) CPT/VCA o disorder + correlations
- further approximations → disorder in interaction

- vacancies induce localized low energy states
- which seem to be destroyed by correlations

Martin Nuss (ITP)

Outlook

- finding more sophisticated ways to treat complex forms of disorder
- combine with ab-initio calculations
- study out of equilibrium phenomena

Thank You!

Thank you for your attention!

contact: martin.nuss@student.tugraz.at

I acknowledge financial support from the Förderungsstipendium of the TU Graz and the Austrian Science Fund (FWF) P24081-N16 and P18551-N16.