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Graphene, Disorder & Correlations

Outline

@ Graphene, Disorder & Correlations

Martin Nuss (ITP) Magnetic vacancies May 21, 2012 4 /50



Graphite (natural allotrope of Carbon)
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Graphene - basic properties

o very high electrical + thermal conductivity (transparent
conductor)

mechanically very strong + stretchable
Dirac-like Fermions (QED)

anomalous integer quantum hall effect
Klein tunneling

spin-injection, valleytronics, nano electronics

@ = 5(3,v8),& =(3,~V3)
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Magnetism

lattice defects: vacancies

Lehtinen PUO)., Foster A5, Ma Y., Krasheninnikoy AV, and Nicminen R.MW..,
Phys. Rev. Lett. 93, 18 , 1-4 (2004).
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V. M. Pereira, J. M. B. Lopes dos Santos and A. H. Castro Neto, Modeling

disorder in graphene, Phys. Rev. B 77, 115109 (2008)



Resistivity in metals (1)

p = p phonons + p impurities
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Resistivity in metals (I1)
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What about susceptibility?

local moment
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Graphene, Disorder & Correlations

ndo effect in Graphene

@ Proton irradiation -> (single) vacancies

4] .
Ugeda MM, Brihuega | and Go JM, Missing Atom as a Source of Carbon Magnetism, 096804, 1-4 (2010).

o DFT:

Lehtinen PO, Foster AS, Ma Y, Krasheninnikov AV and Niemi RM, Irradiation-Induced M ism in
Graphite: A Density Functional Study. Phy: Rev. Lett. 93, 18, 14(2004)
Yazyev OV and Helm L, Defect-ind ism in grapl Phys. Rev. B 75, 125408 1-5 (2007).
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Chen J-H, Li L, Cullen WG, Williams ED and Fuhrer
MS, Tunable Kondo effect in graphene with defects, Kanao T, Matsuura H and Ogata M, Theory of

Nat.Phys. 7, 7, 535-538 (2011). Defect-Induced Kondo Effect in Graphene:
Numerical Renormalization Group Study. J. Phys.
Soc. Jpn. (2012)

Dilute problem so single impurity picture valid.

021
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Graphene, Disorder & Correlations

o Disorder is a complicated problem

o Correlations are a complicated problem

o What about disorder 4+ correlations?
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Manybody Cluster Methods

Outline

© Manybody Cluster Methods
@ Model Hamiltonians for strongly correlated systems
@ Cluster Perturbation Theory
@ Variational Cluster Approach
@ Disorder extension
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Manybody Cluster Methods Model Hamiltonians for strongly correlated systems

Generic lattice model

H = Z tij ¢ C]+Z kalc ckcl

ijkl
= H[(t) + H[](U)

To apply a perturbative method one has to expand in some parameter.
Usually the hopping (strong coupling) or the interaction (weak coupling)
are considered.
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Manybody Cluster Methods Model Hamiltonians for strongly correlated systems

Atomic limit

~

G(z;t,U) m

Il
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@ strong coupling perturbation theory (in hopping t)
@ consider G(¢t = 0) as starting point
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Manybody Cluster Methods

ofle olle ofle olle

Extrapolate cluster to thermodynamic limit:

@ Cluster Perturbation Theory (CPT)

@ Variational Cluster Approach (VCA)

o Cluster/Cellular Dynamical Mean-Field Theory (CDMFT)
@ Dynamical Cluster Approximation (DCA)



lllustration of Cluster Perturbation Theory

Correlated lattice model

given: Hamiltonian e.g.
Hubbard model
H

ask for: Green's function
U G=7

t

in general intractable ... :(



lllustration of Cluster Perturbation Theory

Cluster Tiling

m I:I i:i ﬂ:ﬂcluster
OO0, et
t

(numerically) exactly solvable ... :)

... but isn’t this quite different from original system ... :(



lllustration of Cluster Perturbation Theory

Cluster Perturbation Theory? 3

m I:I i:i 7:( = ’Hcluster + ﬂinter—cluster
B uHE AT
- .- : U G;uster(w) - T(k)

First order result for the lattice Green function G

@ Gguster = exact Green's function of the cluster

e T = inter-cluster off diagonal one particle terms (i.e. hopping)

2C. Gros and R. Valenti, Phys. Rev. B 48, 418 (1993)
3D. Sénéchal, D. Perez, and M. Pioro-Ladriére, Phys,_ Rev.-Lett. 84, 522 (20@Q0)



Manybody Cluster Methods Cluster Perturbation Theory

Cluster Perturbation Theory - Motivation

Heuristic derivation using Dyson’s equation:

Gl=Gy'-%
1 1 B
Gcluster - Gcluster,O Ycluster

@ ( = non-interacting Green's functions

Galzw—ku—V

e V = hopping matrix
@ X = self-energy
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Cluster Perturbation Theory - Motivation

Gl=G'-%
~ Gal — Ycluster
= G61 - (G;&ster,o - G;&ster>
= G;&ster - (G;l}ster,o - GEI)
=G per — T

cluster

@ Approximation: take self-energy of the cluster

e T = inter-cluster hopping:

(Ga&ster,o - Gal) = (w +p— chluster) - (w + - V)
=V - ‘/cluster =T



Manybody Cluster Methods Cluster Perturbation Theory

Cluster Perturbation Theory - Limits

CPT is exact for
et—0,
o U —0,

o L — oo.

CPT captures short-range correlations exactly, long-range correlations
are neglected.

CPT is usually improved not by considering higher order expansions in the
inter-cluster hopping but by increasing the cluster size.
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Manybody Cluster Methods Variational Cluster Approach

Variational Cluster Approach*

@ VCA = variational extension to CPT - rigorously developed within
the Self-Energy Functional Approach (SFA)??,

@ does not implement a variational principle in the sense of a
Rayleigh-Ritz variational principle,

@ is applicable to broken-symmetry/ordered phases.

M. Potthoff, Eur. Phys. J. B 32, 429 (2003)
bM. Potthoff, Eur. Phys. J. B 36, 335 (2003)

“M. Potthoff, M. Aichhorn, and C. Dahnken, Phys. Rev.. Lett.- 91,-2064602 (2603)
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lllustration of the Variational Cluster Approach

VCA = Variational CPT: Optimize the initial state

g % % 7:[ = ﬂ::luster + 7:(;nter—cluster
flEllaT(wak) =~
--- --- U Gcluster((’u) - T'(k)

Variational aspect: Add virtual field to cluster Hamiltonian
! = Hcluster + hﬁeld

cluster

field: any single particle terms of original Hamiltonian + bath sites



lllustration of the Variational Cluster Approach

Adding and subtracting single-particle terms

% % % H Hcluster + 7_(mter cluster
,Gl_.laT(w,k) =~
. gEE U Gcluster( w) =T (k)
t

Variational aspect: Add virtual field to cluster Hamiltonian
1! = Hcluster + hﬁeld

cluster

subtract field again via CPT

/ —
inter-cluster — 7_{mter cluster — hfleld

field: any single particle terms of original Hamiltonian + bath sites



Manybody Cluster Methods Variational Cluster Approach

Luttinger-Ward functional ®[G]

e ®[G] = sum of all two-particle irreducible diagrams
Q. .=,
03 O+

@ The functional derivative of ®[G] is the self-energy:

92[G]

56 -

g

o It is a universal functional of G.
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Manybody Cluster Methods Variational Cluster Approach

Legendre Transform of ®[G]

It can be shown that

50[G]
b= =%

is locally invertible.
Legendre Transform of the Luttinger-Ward functional:

F[¥] = 3[] - Tr {XG} .

It can be shown that the generalized grand potential functional is given
by:

Q[%, Gl = F[¥] — Trin (-Gy' + %) .
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Manybody Cluster Methods Variational Cluster Approach

Grand Potential Functional Q[X]

Dyson's equation is recovered at the stationary point of the grand
potential functional 2[X]
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Manybody Cluster Methods Variational Cluster Approach

VCA Reference System (1)

Since systems which share the same interaction part H;;(U) have the
same ®[G]| (or F[X]) we construct a reference system:

H = 7:[[(15/) + 7:[[]([])

o defined on the same lattice,
@ having the same interaction as the original system,

@ but may have entirely different single-particle operators /
parameters.
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lllustration of the Variational Cluster Approach

How is iLﬁem determined?

% % % 7:( = chluster + ﬂénter-cluster
flEéT(wyk) »
i gu- U Gcluster("‘)) - T'(k)
t

The self energy functional approach (SFA) provides a variational
principle:
Stationary point of the grand potential:

00 L
Ohfield

VCA = CPT + variational principle



Manybody Cluster Methods Variational Cluster Approach

VCA Reference System (II)

The reference system H’ may be used to eliminate the Luttinger-Ward
functional: (This is still exact!)

Q] = F[Z] - Tr{ln (-G + %)}

V[¥] = F[Z] - Tr{ln (-G, ' + %)}

Q] =2+ Tr{ln (-G; '+ %)} = Tr{ln (-G,' + %)}
= Y]+ Tr{ln (-G'[Z]) } — Tr{ln (-G[Z])}
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Manybody Cluster Methods Variational Cluster Approach

Restriction of self-energies

Self-energy (x) = self-energy of the reference system X (x')
x = single particle parameters, restricting the space of available
self-energies.
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Manybody Cluster Methods Disorder extension

VCA Basic quantity: single-particle Green's function

Cluster decompositions of Graphene
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Introduce disorder configurations 7
@ 1) might be on-site energies ¢; € U, with some distribution U/

We need to average over these disorder configurations!
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Manybody Cluster Methods Disorder extension

Averaging the final single particle Green's function

Consider CPT-equation for each disorder configuration
-1 _ -1
Gn — Ycluster,;y T”Z

G may be calculated within CPT or VCA

cluster,n

Average the final Green's function G,

GH:%ZG,?

Why is this not the way to go?
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Manybody Cluster Methods Disorder extension

Averaging the cluster single particle Green's function

Calculate a cluster Green's function Gguster With excitations from all
disorder configurations

A 1 o : _
Geluster = — E excitations of configuration 7
w

Average on cluster level

= = -1
GI = (1 - Gcluster T) Gcluster
Why is this the way to go?

Potthoff M and Balzer M, Self-energy-functional theory for systems of interacting electrons with disorder, Phys. Rev. B. 75,

12 1-22 (2007).

Martin Nuss (ITP) Magnetic vacancies May 21, 2012 37 / 50



Excitations in disordered bosonic optical lattices
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Knap M, Arrigoni E and von der Linden W, Excitations in disordered bosonic optical lattices, Phys. Rev. A. 81 1-16 (2009).



Disorder in Graphene with correlations

Outline

© Disorder in Graphene with correlations
@ Graphene + homogeneous interactions
@ Graphene + non-magnetic vacancies: disorder
o Graphene + magnetic vacancies: disorder + correlations
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Disorder in Graphene with correlations Graphene + homogeneous interactions

Graphene + on-site interaction
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Disorder in Graphene with correlations Graphene + non-magnetic vacancies: disorder

Disordered vacancy model

@ vacancy model, by high on-site energy:
€ >>tUe, ...
@ generate disorder configurations 7, vacancies in any possible
arrangement (symmetry!)
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Disorder in Graphene with correlations

Disordered vacancy model

Graphene + non-magnetic vacancies: disorder

@ weigh (number of vacancies) according to binomial distribution to
reach desired vacancy concentration:

we (L, Py) = P¥(1 —
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Haverkort MW, Elfimov IS and Sawatzky GA, Electronic structure and self gies of

using density functional theory and model calculations, arXiv:1109.4036 (2011).

@ = (non-magnetic) vacancies = diagonal single-particle disorder

Martin Nuss (ITP)

Magnetic vacancies

May 21, 2012

solids

42 / 50



Disorder in Graphene with correlations Graphene + non-magnetic vacancies: disorder

(Non-magnetic) vacancies in Graphene, non-interacting

vacancy concentration D = [0.0,0.01,0.05, 0.1]
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Disorder in Graphene with correlations

Graphene + non-magnetic vacancies: disorder

(Non-magnetic) vacancies in Graphene, U = 3eV

®ro

vacancy concentration D = [0.0,0.01,0.05, 0.1]
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Disorder in Graphene with correlations Graphene + magnetic vacancies: disorder + correlations

Magnetic vacancies - Model

@ vacancy magnetism by on-site interaction:
€+ Uy + 1ty

@ generate disorder configurations 7, vacancies in any possible
arrangement (symmetry!)

Martin Nuss (ITP) Magnetic vacancies May 21, 2012



Disorder in Graphene with correlations Graphene + magnetic vacancies: disorder + correlations

Magnetic vacancies - Model

@ = magnetic vacancies =

diagonal single-particle disorder

+ two-particle disorder

+ off-diagonal single-particle disorder
@ substantially more difficult:

@ two-particle disorder (U,): self-energy for each 7 different =
additional approximation needed!

@ off-diagonal single-particle disorder (t,): T for each n different =
additional averaging needed!

—\ —1 —
I cluster T) Gluster

(1-
cluster ( ) G Iuster(n) - E(Tl)
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Disorder in Graphene with correlations

Magnetic vacancies in Graphene

From left to right ¢, = [0.1,6.4]eV/, vacancy concentration D = 5%
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Graphene + magnetic vacancies: disorder + correlations
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Disorder in Graphene with correlations Graphene + magnetic vacancies: disorder + correlations

Conclusion

o (disordered) CPT/VCA — disorder + correlations

o further approximations — disorder in interaction

@ vacancies induce localized low energy states

@ which seem to be destroyed by correlations
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Disorder in Graphene with correlations Graphene + magnetic vacancies: disorder + correlations

Outlook

o finding more sophisticated ways to treat complex forms of disorder
@ combine with ab-initio calculations

@ study out of equilibrium phenomena
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Disorder in Graphene with correlations Graphene + magnetic vacancies: disorder + correlations

Thank You!

Thank you for your attention!

contact: martin.nuss@student.tugraz.at

| acknowledge financial support from the Forderungsstipendium of the TU
Graz and the Austrian Science Fund (FWF) P24081-N16 and
P18551-N16.
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