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Graphene - basic properties
very high electrical + thermal conductivity (transparent
conductor)
mechanically very strong + stretchable
Dirac-like Fermions (QED)
anomalous integer quantum hall effect
Klein tunneling
spin injection, valleytronics, nano electronics
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Disorder

V. M. Pereira, J. M. B. Lopes dos Santos and A. H. Castro Neto, Modeling
disorder in graphene, Phys. Rev. B 77, 115109 (2008)



Resistivity in metals (I)



Resistivity in metals (II)



What about susceptibility?



Graphene, Disorder & Correlations

Kondo effect in Graphene

Proton irradiation -> (single) vacancies
STM:
Ugeda MM, Brihuega I and Go JM, Missing Atom as a Source of Carbon Magnetism, 096804, 1-4 (2010).

DFT:
Lehtinen PO, Foster AS, Ma Y, Krasheninnikov AV and Nieminen RM, Irradiation-Induced Magnetism in
Graphite: A Density Functional Study. Phys. Rev. Lett. 93, 18, 1-4 (2004).
Yazyev OV and Helm L, Defect-induced magnetism in graphene, Phys. Rev. B 75, 125408 1-5 (2007).

Chen J-H, Li L, Cullen WG, Williams ED and Fuhrer
MS, Tunable Kondo effect in graphene with defects,

Nat.Phys. 7, 7, 535-538 (2011).
Kanao T, Matsuura H and Ogata M, Theory of

Defect-Induced Kondo Effect in Graphene:
Numerical Renormalization Group Study. J. Phys.

Soc. Jpn. (2012)

Dilute problem so single impurity picture valid.
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Graphene, Disorder & Correlations

Disorder is a complicated problem

Correlations are a complicated problem

What about disorder + correlations?
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Manybody Cluster Methods Model Hamiltonians for strongly correlated systems

Generic lattice model

Ĥ =
∑
ij

tij c
†
i cj +

∑
ijkl

Uijkl c
†
i c
†
j ck cl

= ĤI(t) + ĤII(U)

To apply a perturbative method one has to expand in some parameter.
Usually the hopping (strong coupling) or the interaction (weak coupling)
are considered.
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Manybody Cluster Methods Model Hamiltonians for strongly correlated systems

Atomic limit

G(z; t, U) =

〈
1

z − Ĥ(t, U)

〉

strong coupling perturbation theory (in hopping t)
consider G(t = 0) as starting point
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Manybody Cluster Methods

Extrapolate cluster to thermodynamic limit:

Cluster Perturbation Theory (CPT)
Variational Cluster Approach (VCA)
Cluster/Cellular Dynamical Mean-Field Theory (CDMFT)
Dynamical Cluster Approximation (DCA)



Illustration of Cluster Perturbation Theory

Correlated lattice model

given: Hamiltonian e.g.
Hubbard model

Ĥ

ask for: Green’s function
G = ?

in general intractable ... :(



Illustration of Cluster Perturbation Theory

Cluster Tiling

Ĥ = Ĥcluster

G−1 = G−1
cluster

(numerically) exactly solvable ... :)

... but isn’t this quite different from original system ... :(



Illustration of Cluster Perturbation Theory

Cluster Perturbation Theory2 3

Ĥ = Ĥcluster + Ĥinter-cluster

G−1
CPT(ω,k) =

G−1
cluster(ω)−T(k)

First order result for the lattice Green function G

Gcluster = exact Green’s function of the cluster
T = inter-cluster off diagonal one particle terms (i.e. hopping)

2C. Gros and R. Valenti, Phys. Rev. B 48, 418 (1993)
3D. Sénéchal, D. Perez, and M. Pioro-Ladriére, Phys. Rev. Lett. 84, 522 (2000)



Manybody Cluster Methods Cluster Perturbation Theory

Cluster Perturbation Theory - Motivation

Heuristic derivation using Dyson’s equation:

G−1 = G−1
0 − Σ

G−1
cluster = G−1

cluster,0 − Σcluster

0 = non-interacting Green’s functions

G−1
0 = ω + µ− V

V = hopping matrix

Σ = self-energy
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Cluster Perturbation Theory - Motivation

G−1 = G−1
0 − Σ

≈ G−1
0 − Σcluster

= G−1
0 −

(
G−1
cluster,0 − G−1

cluster

)
= G−1

cluster −
(
G−1
cluster,0 − G−1

0

)
= G−1

cluster − T

Approximation: take self-energy of the cluster
T = inter-cluster hopping:(

G−1
cluster,0 − G−1

0

)
= (ω + µ− Vcluster)− (ω + µ− V )

= V − Vcluster = T



Manybody Cluster Methods Cluster Perturbation Theory

Cluster Perturbation Theory - Limits

CPT is exact for
t→ 0,
U → 0,
L→∞.

CPT captures short-range correlations exactly, long-range correlations
are neglected.

CPT is usually improved not by considering higher order expansions in the
inter-cluster hopping but by increasing the cluster size.
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Manybody Cluster Methods Variational Cluster Approach

Variational Cluster Approach4

VCA = variational extension to CPT - rigorously developed within
the Self-Energy Functional Approach (SFA)ab,
does not implement a variational principle in the sense of a
Rayleigh-Ritz variational principle,
is applicable to broken-symmetry/ordered phases.

aM. Potthoff, Eur. Phys. J. B 32, 429 (2003)
bM. Potthoff, Eur. Phys. J. B 36, 335 (2003)

4M. Potthoff, M. Aichhorn, and C. Dahnken, Phys. Rev. Lett. 91, 206402 (2003)
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Illustration of the Variational Cluster Approach

VCA = Variational CPT: Optimize the initial state

Ĥ = Ĥ′cluster + Ĥ′inter-cluster

G−1
CPT(ω,k) =

G′−1
cluster(ω)−T′(k)

Variational aspect: Add virtual field to cluster Hamiltonian
Ĥ′cluster = Ĥcluster + ĥfield

field: any single particle terms of original Hamiltonian + bath sites



Illustration of the Variational Cluster Approach

Adding and subtracting single-particle terms

Ĥ = Ĥ′cluster + Ĥ′inter-cluster

G−1
CPT(ω,k) =

G′−1
cluster(ω)−T′(k)

Variational aspect: Add virtual field to cluster Hamiltonian
Ĥ′cluster = Ĥcluster + ĥfield

subtract field again via CPT
Ĥ′inter-cluster = Ĥinter-cluster − ĥfield

field: any single particle terms of original Hamiltonian + bath sites



Manybody Cluster Methods Variational Cluster Approach

Luttinger-Ward functional Φ[G]

Φ[G] = sum of all two-particle irreducible diagrams

The functional derivative of Φ[G] is the self-energy:

β
δΦ[G]
δG

= Σ

It is a universal functional of G.
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Manybody Cluster Methods Variational Cluster Approach

Legendre Transform of Φ[G]

It can be shown that

β
δΦ[G]
δG

= Σ ,

is locally invertible.
Legendre Transform of the Luttinger-Ward functional:

F [Σ] = Φ[Σ]− Tr {ΣG} .

It can be shown that the generalized grand potential functional is given
by:

Ω[Σ,G0] = F [Σ]− Tr ln
(
−G−1

0 + Σ
)
.
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Manybody Cluster Methods Variational Cluster Approach

Grand Potential Functional Ω[Σ]

Dyson’s equation is recovered at the stationary point of the grand
potential functional Ω[Σ]

β
δF [Σ]
δΣ

= −G

β
δΩ[Σ,G0]

δΣ
= −G +

(
G−1

0 − Σ
)−1 != 0 .
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Manybody Cluster Methods Variational Cluster Approach

VCA Reference System (I)

Since systems which share the same interaction part ĤII(U) have the
same Φ[G] (or F [Σ]) we construct a reference system:

Ĥ′ = ĤI(t′) + ĤII(U)

defined on the same lattice,
having the same interaction as the original system,
but may have entirely different single-particle operators /
parameters.
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Illustration of the Variational Cluster Approach

How is ĥfield determined?

Ĥ = Ĥ′cluster + Ĥ′inter-cluster

G−1
CPT(ω,k) =

G′−1
cluster(ω)−T′(k)

The self energy functional approach (SFA) provides a variational
principle:

Stationary point of the grand potential:
δΩ

δhfield

!= 0

VCA = CPT + variational principle



Manybody Cluster Methods Variational Cluster Approach

VCA Reference System (II)

The reference system Ĥ′ may be used to eliminate the Luttinger-Ward
functional: (This is still exact!)

Ω[Σ] = F [Σ]− Tr
{

ln
(
−G−1

0 + Σ
)}

Ω′[Σ] = F [Σ]− Tr
{

ln
(
−G′−1

0 + Σ
)}

−
∑

Ω[Σ] = Ω′[Σ] + Tr
{

ln
(
−G′−1

0 + Σ
)}
− Tr

{
ln
(
−G−1

0 + Σ
)}

= Ω′[Σ] + Tr
{

ln
(
−G′[Σ]

)}
− Tr {ln (−G[Σ])}
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Manybody Cluster Methods Variational Cluster Approach

Restriction of self-energies

Self-energy Σ(x) = self-energy of the reference system Σ(x′)
x = single particle parameters, restricting the space of available
self-energies.
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Manybody Cluster Methods Disorder extension

VCA Basic quantity: single-particle Green’s function

Cluster decompositions of Graphene

Introduce disorder configurations η

η might be on-site energies εi ∈ U , with some distribution U

We need to average over these disorder configurations!
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Manybody Cluster Methods Disorder extension

Averaging the final single particle Green’s function

Consider CPT-equation for each disorder configuration

G−1
η = G−1

cluster,η − Tη

Gcluster,η may be calculated within CPT or VCA

Average the final Green’s function Gη

ḠII =
1
w

∑
Gη

Why is this not the way to go?

Martin Nuss (ITP) Magnetic vacancies May 21, 2012 36 / 50



Manybody Cluster Methods Disorder extension

Averaging the cluster single particle Green’s function

Calculate a cluster Green’s function Gcluster with excitations from all
disorder configurations

Ḡcluster =
1
w

∑
excitations of configuration η

Average on cluster level

ḠI =
(
1− Ḡcluster T

)−1
Ḡcluster

Why is this the way to go?
Potthoff M and Balzer M, Self-energy-functional theory for systems of interacting electrons with disorder, Phys. Rev. B. 75,

12 1-22 (2007).
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Excitations in disordered bosonic optical lattices
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Knap M, Arrigoni E and von der Linden W, Excitations in disordered bosonic optical lattices, Phys. Rev. A. 81 1-16 (2009).
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Disorder in Graphene with correlations Graphene + homogeneous interactions

Graphene + on-site interaction

U = 4t
CPT (top), VCA (bottom)
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Disorder in Graphene with correlations Graphene + non-magnetic vacancies: disorder

Disordered vacancy model

vacancy model, by high on-site energy:
εv >> t, U, ε, . . .

generate disorder configurations η, vacancies in any possible
arrangement (symmetry!)

Martin Nuss (ITP) Magnetic vacancies May 21, 2012 41 / 50



Disorder in Graphene with correlations Graphene + non-magnetic vacancies: disorder

Disordered vacancy model

weigh (number of vacancies) according to binomial distribution to
reach desired vacancy concentration:

wα(L,Pv) = Pαv (1− Pv)(L−α)
(
L
α

)

Haverkort MW, Elfimov IS and Sawatzky GA, Electronic structure and self energies of randomly substituted solids

using density functional theory and model calculations, arXiv:1109.4036 (2011).

⇒ (non-magnetic) vacancies = diagonal single-particle disorder
Martin Nuss (ITP) Magnetic vacancies May 21, 2012 42 / 50



Disorder in Graphene with correlations Graphene + non-magnetic vacancies: disorder

(Non-magnetic) vacancies in Graphene, non-interacting

vacancy concentration D = [0.0, 0.01, 0.05, 0.1]
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Disorder in Graphene with correlations Graphene + non-magnetic vacancies: disorder

(Non-magnetic) vacancies in Graphene, U = 3eV

vacancy concentration D = [0.0, 0.01, 0.05, 0.1]
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Disorder in Graphene with correlations Graphene + magnetic vacancies: disorder + correlations

Magnetic vacancies - Model

vacancy magnetism by on-site interaction:
εv + Uv + tv

generate disorder configurations η, vacancies in any possible
arrangement (symmetry!)
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Disorder in Graphene with correlations Graphene + magnetic vacancies: disorder + correlations

Magnetic vacancies - Model

⇒ magnetic vacancies =
diagonal single-particle disorder
+ two-particle disorder
+ off-diagonal single-particle disorder
substantially more difficult:

1 two-particle disorder (Uv): self-energy for each η different ⇒
additional approximation needed!

2 off-diagonal single-particle disorder (tv): T for each η different ⇒
additional averaging needed!

ḠI =
(
1− Ḡcluster T̄

)−1
Ḡcluster

Gcluster
−1(η) = G−1

0,cluster(η)− Σ(η)
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Disorder in Graphene with correlations Graphene + magnetic vacancies: disorder + correlations

Magnetic vacancies in Graphene

From left to right tv = [0.1, 6.4]eV , vacancy concentration D = 5%
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Disorder in Graphene with correlations Graphene + magnetic vacancies: disorder + correlations

Conclusion

(disordered) CPT/VCA → disorder + correlations

further approximations → disorder in interaction

vacancies induce localized low energy states

which seem to be destroyed by correlations
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Disorder in Graphene with correlations Graphene + magnetic vacancies: disorder + correlations

Outlook

finding more sophisticated ways to treat complex forms of disorder

combine with ab-initio calculations

study out of equilibrium phenomena
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Disorder in Graphene with correlations Graphene + magnetic vacancies: disorder + correlations

Thank You!

Thank you for your attention!

contact: martin.nuss@student.tugraz.at

I acknowledge financial support from the Förderungsstipendium of the TU
Graz and the Austrian Science Fund (FWF) P24081-N16 and

P18551-N16.
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