Optimal compensation of the Earth's magnetic field while changing the energy at FLASH

Martin Nuss¹

TU Graz, Austria

September 9, 2009

¹Thanks to my supervisor Dr. Pedro Castro

Martin Nuss Compensating the Earth's magnetic field at FLASH

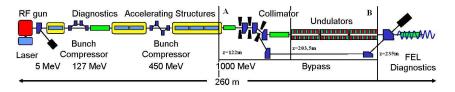
・ロト ・回 ・ ・ ヨト ・

Table of contents

Introduction and Motivation

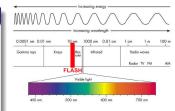
- FLASH
- \bullet Tuning the Wavelength λ
- Changing the beam energy E
- Why does the trajectory change?
- SASE requires stable trajectory

2 Compensating the Earth's magnetic field


- Procedure
- Methods
- 3 Results
 - Result
 - Conclusion

< 🗇 🕨 🖌 🚍 🕨

FLASH


Tuning the Wavelength λ Changing the beam energy E Why does the trajectory change? SASE requires stable trajectory

FLASH

FLASH data

- Free Electron Laser: SASE
- length: $\approx 260m$
- electron beam energy: 0.3*GeV* to 1.0*GeV*
- synchrotron radiation: VUV and soft X-ray

э

・ロン ・四と ・ヨン ・ヨン

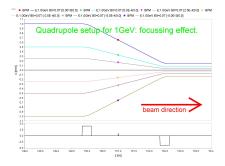
FLASH **Tuning the Wavelength** λ Changing the beam energy E Why does the trajectory change? SASE requires stable trajectory

Experimentalists work with different wavelengths

$$\lambda_{photons} = rac{\lambda_u}{2\gamma^2}(1+rac{\kappa}{2})$$

 γ ... relativistic γ factor K, λ_u ... undulator constants

FLASH has to tune energy of e^- beam to change λ


- $E = 0.3 GeV \Rightarrow \lambda = 70.0 nm$
- $E = 1.0 \text{GeV} \Rightarrow \lambda = 6.3 \text{nm}$

FLASH Tuning the Wavelength λ Changing the beam energy E Why does the trajectory change? SASE requires stable trajectory

Energy scaling procedure

Magnets (quadrupoles and corrector dipoles) are scaled by

$$\vec{I}_{new} = rac{E_{new}}{E_{initial}} \vec{I}_{initial}$$

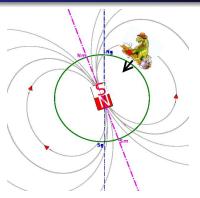
Martin Nuss

< □ → < □ → < ⊇ → < ⊇ → < ⊇ → ⊇</p>
Compensating the Earth's magnetic field at FLASH

FLASH Tuning the Wavelength λ Changing the beam energy E Why does the trajectory change? SASE requires stable trajectory

Why does the trajectory change?

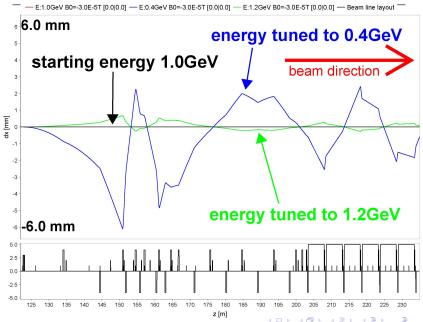
$$\vec{F}_L = q(\vec{E} + \vec{v} \times \vec{B})$$


$$\vec{V} \quad \overrightarrow{\mathbf{B}} \quad \Rightarrow \quad \vec{F} = \vec{0}$$

Location of FLASH

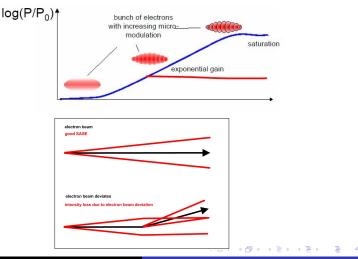
- FLASH is situated almost in south-north direction
- $\vec{B}_{earth} || south north$
- ullet \Rightarrow no influence of Earth's magnetic field
- But what about vertical component of \vec{B}_{earth} ?

FLASH Tuning the Wavelength λ Changing the beam energy E Why does the trajectory change? SASE requires stable trajectory


Effect of Earth's magnetic field

Hamburg (53°37'59"N/9°58'59"E)

- $\vec{B}_{earth,vertical} \approx -30 \mu T$
- $\bullet \Rightarrow \mathsf{vertical} \ \mathsf{component} \ \mathsf{affects} \ \mathsf{horizontal} \ \mathsf{trajectory}$


The trajectory while the beam energy changes

~) Q (*

FLASH Tuning the Wavelength λ Changing the beam energy E Why does the trajectory change? SASE requires stable trajectory

Effect of the electron trajectory on SASE

Martin Nuss Compensating the Earth's magnetic field at FLASH

Procedure Methods

Procedure

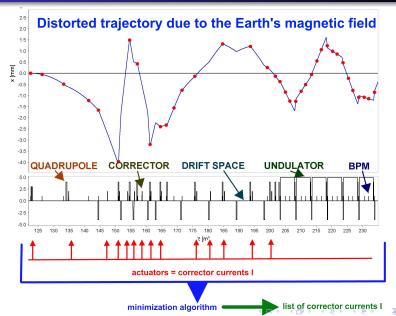
- Simulate the effects of the Earth's magnetic field
- Find a compensation scheme

・ロット (四)・ (田)・ (日)・

æ

Procedure Methods

Methods


Tools

- Computer simulation
- Single particle motion in EM-fields
- Transport Matrix Formalism
- Numerical Optimization

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

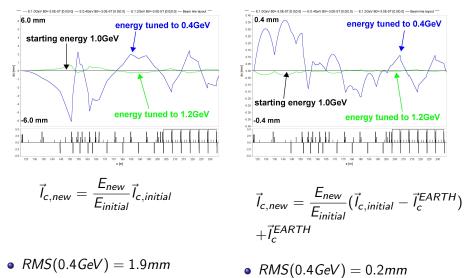
э

Calculation of the compensation for the Earth's magnetic field

JAG.

Procedure Methods

Applied corrector currents to compensate the Earth's magnetic field


Corrector	Current	
H9ACC6	530.9	
H10ACC6	530.9	
H10ACC7	590.9	
H4TCOL	33.7	
H9TCOL	-4.4	
H2ECOL	57.7	
H4ECOL	25.6	
H6ECOL	89.3	
НЗМАТСН	5.5	
H6MATCH	18.7	
H5SUND2	25.7	
H4SUND3	<u>8</u> 1 [∢]	

Martin Nuss

Compensating the Earth's magnetic field at FLASH

э

Result, (Δx) - z is shown in the graph

• *RMS*(1.2*GeV*) = 0.21*mm*

• *RMS*(1.2*GeV*) = 0.01*mm*

< □ > < (四 > < (回 >) < (回 >) < (回 >)) 三 回

200

Result Conclusion

- An optimal compensation of the Earth's magnetic field has been found.
- A new scheme for changing the energy has been developed.
- The compensating currents \vec{l}_c^{EARTH} have been calculated.

Result Conclusion

Thank You!

Thank you for your attention!

If you have any questions feel free to ask them.

Martin Nuss Compensating the Earth's magnetic field at FLASH

・ロト ・四ト ・ヨト ・ヨト

æ