Effects of electronic correlations and magnetic field on a molecular ring out of equilibrium

Martin Nuss, Wolfgang von der Linden and Enrico Arrigoni

Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria

Counter supports

Experiment

- ➤ fabrication: **Mechanically** Controlled Break Junction (MCBJ) [2]
- > anchor groups [3]
- > statistical measurement [4]

Theory

- ➤ Density Functional Theory + Non-Equilibrium Green's Functions (DFT + NEGF)
- > model calculations for strong correlations
- > marriage of the above

agreement between experiment and theory often poor - improve on electronic correlations - suitable methods?

I. Setup

metal - "Benzene" - metal junction

- \triangleright 6 orbital ring + density interaction U_{loc} , U_{n-n}
- ➤ 2 metallic leads (semi.circ. DOS) + bias voltage V_B
- > perp. magnetic field B (Peierls + Zeeman)
- > 3 setups for connecting: (para, meta, ortho)

II. Keldysh formalism

- $\widetilde{G} = \begin{pmatrix} G^{R} & G^{R} \\ 0 & G^{A} \end{pmatrix}$ > nonequilibrium single-particle Green's functions (see [5])
- > steady-state density matrix
- > current

[1]

 $j_{ij}^{\sigma} = \frac{ie}{\hbar} \left(h_{ij}^{\sigma} D_{ij}^{\sigma} - h_{ji}^{\sigma} D_{ji}^{\sigma} \right)$

III. Steady-state Cluster Perturbation Theory (stsCPT)

ortho-

1) $au < au_0$: solve disconnected parts exactly C correlated molecule + part of leads

L rest of left lead R remainder of right lead

2) couple systems using T

3) $\tau \rightarrow \infty$: stsCPT equation ",directly obtain steady-state"

"systematically improvable: increase size of C" "here: rapid convergence in size of C, otherwise variational feedback" [9]

- > approximation: take self-energy of the initially decoupled system
- > stsCPT single-particle Green's function

$$\widetilde{G}(\omega)^{-1} = \widetilde{g}(\omega)^{-1} - \widetilde{1} \otimes T$$

"exact in noninteracting system" [8, 9]

IV. Steady-state results

a) Lead induced broadening

t'=-0.05eV t'=-0.6eV para ₈₀ meta U=0eV 20 bias voltage V_p /V bias voltage V_D /V para 2.6 2.8 3 3.2 3.4 3.6 3.8 blas voltage V_B /V 2.6 2.8

- \triangleright nA currents in transmission, μ A circular currents
- **broadening** effects described accurately
- > e-e interactions beyond mean-field
 - reduce current plateau magnitues
 - modify threshold voltages
- \triangleright j_c strongly **setup** dependent

b) Current

c) Threshold voltage

- > basic structure understandable by noninteracting electronic levels of molecule
- > thresholds renormalized by e-e interactions beyond mean-field

V. Literature

- Nuss, von der Linden and Arrigoni, arXiv 1307.**7530** (2013)
- © Dep. Physics, Nanoelectronics, Univ. Basel, 2008-2013
- Reed etal. Science **278**, 5336 252-254 (1997)
- Lörtscher *etal*. PRL **98**, 176807 (2007)
- Rammer etal. RMP 58, 323 (1986) © xl8r, http://xl8r.deviantart.com/ (2013)
- Shen, NGSCES (2013)
- - Gros etal. PRB 48, 418 (1993), Senechal etal. PRL 84, 522 (2000) Knap etal. PRB **84**, 115145 (2011), Nuss etal. PRB **86**, 245119 (2012)

d) Charge distribution

> charge density strongly renormalized by e-e interactions beyond mean-field

e) Magnetization

> Zeemann term leads to magnetic response at voltage thresholds

VI. Conclusions

- > stsCPT = systematically improvable method to study steady-state including ab-initio and finite T
- > lead induced broadening
- > e-e interactions beyond mean-field:
 - renormalize current thresholds + plateau magnitudes
 - considerably renormalize charge distribution
- \triangleright j_c shows strong response on lead DOS

We acknowledge support of the Austrian Science Fund (FWF) P24081.