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Introduction

In recent years an increasing number of theoretical and experimental
studies in condensed matter physics have focused on the descrip-
tion and understanding of quasi one and two dimensional strongly
correlated electronic systems. Several fascinating properties of these
materials are due to the competition between different phases with
long-range order. For many theoretical investigations of strongly cor-
related materials the Hubbard model is used, which consist of nearest
neighbor hopping and Coulomb interaction U locally on each site. Alt-
hough this model was used with great success for the description of a
wide class of materials, there are interesting physical questions which
require an extension. The inclusion of the nearest-neighbor Coulomb
interaction, for example, is necessary for the study of inhomogeneous
phases, such as the charge-density wave (CDW). This leads to the so
called extended Hubbard model (EHM).
Here we present a generalization of the recently proposed variational
cluster perturbation theory to extended Hubbard models at half fil-
ling with repulsive nearest neighbor interaction.1 The method takes
into account short-range correlations correctly by the exact diagona-
lisation of clusters of finite size, whereas long-range order beyond the
size of the clusters is treated on a mean-field level.

Cluster Perturbation Theory (CPT)

First the original lattice is decoupled into clusters of finite size yielding
the Hamiltonian

H =
∑

R

[

H
(c)
0 (R) + H1(R)

]

+
∑

R,R′

H
(i)
0 (R,R′), (1)

where R labels the individual clusters, H1(R) is the interacting part,

H
(c)
0 (R) the intra-cluster single-particle part, and H

(i)
0 (R,R′) the

single-particle inter-cluster coupling, given by

H
(i)
0 (R,R′) =

∑

a,b

T
R,R′

a,b
c
†
R,a

c
R′,b

. (2)

The indices a and b are general quantum numbers within a cluster.
The CPT approximation2 for the Green’s function is expressed in
terms of the cluster Green’s function G′(ω) = G′

a,b(ω)

GQ(ω) =
[

G′(ω)−1 − TQ

]−1
, (3)

with TQ,a,b the super-cluster Fourier transformed hopping matrix.
The approximation Eq. (3) is exact in the limits t → 0 and U → 0.

Variational Cluster Perturbation Theory

(V-CPT)

Observation underlying V-CPT:3 Perturbation term H
(i)
0 (R,R′)

need not be fixed to inter-cluster hopping. It is easy to see that the
Hamiltonian is invariant under the transformation

H
(c)
0 (R) → H

(c)
0 (R) + O(R)

H
(i)
0 (R,R′) → H

(i)
0 (R,R′) − δR,R′O(R),

(4)

with an arbitrary intra-cluster single-particle operator

O(R) =
∑

a,b

∆a,b c
†
R,a

c
R,b

, (5)

O(R) can consist of any single-particle operator of the original Ha-
miltonian, and of additional single-particle operators like a staggered
chemical potential or staggered magnetic field.
For free fermions the result is independent of the transformation
Eq. (4), since in this case Eq. (3) is exact. In the interacting case
the result depends on the particular choice of O(R). The optimal
choice for ∆ = ∆a,b can be answered by the Self-Energy-Functional

Approach (SFA):4 The best choice for the variational parameters ∆

is given by the stationary point of the grand potential

Ω(∆) = Ω′(∆)

+ T
∑

ωn,Q

tr ln
−1

G
(0)
Q

(iωn)−1 − Σ(∆, iωn)

− LT
∑

ωn

tr ln(−G′(∆, iωn)). (6)

Ω′(∆), Σ(∆, iωn), and G′(∆, iωn) are the grand potential, self ener-
gy, and Green’s function on the cluster obtained by the Lanczos pro-
cedure, and L is the number of clusters (Q points). In the following
the grand potential is evaluated by analytic continuation to the real
frequency axis and frequency integration.

V-CPT for Extended Hubbard models

The perturbation term, which couples the individual clusters, must
be of single-particle type. Thus we perform a Mean-Field decoupling
of the Coulomb interaction on inter-cluster bonds, yielding external
mean-field parameters λi. We propose two procedures to determine
the λi:

1. Self-consistent determination on an isolated cluster. Only suitable
for first-order transitions.

2. From the SFA grand potential: Here we have Ω = Ω(∆, λi), which
reduces after SFA-optimization to a function Ω = Ω(λi). The pro-
per values for the λi are given by the minimum of this function.

1D – Phase transition

We study the 1D EHM at half-filling, which means that we have only
one mean-field parameter δ and the average densities on sublattices
A and B are nA = 1 − δ and nB = 1 + δ.
Variational parameter: staggered field ∆a,b = εδa,be
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Fig. 1: Charge order parameter m2
CDW, kinetic energy Ekin, and

ground state energy E0 for U = 8 (left) and U = 3 (right).

Fig. 1 shows, that at U = 8 the transition is of first order, whereas
at U = 3 it is continuous. The transition points predicted by our
method are Vc = 4.14 at U = 8, and Vc = 1.66 at U = 8, in good
agreement with other methods.5

1D – Spectral functions
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Fig. 2: Spectral function of the 1D EHM at U = 8 at selected
values of V . A and B denote the spinon and holon bands,
respectively.

In Fig. 2 it is clearly visible, that there is evidence for spin-charge
separation in the SDW phase, but not in the CDW phase. The white
lines are fits to a Hartree-Fock dispersion.

2D – Possible cluster tilings

In two dimensions one has to be careful
when dividing the lattice into clusters of
finite size. Whereas for small and interme-
diate cluster sizes (Nc = 8 and Nc = 10,
not shown) the order pattern fits into clu-
ster, some other tilings are not commen-
surate with the charge ordering. In such
cases a super cluster has to be construc-
ted, as shown on the right side. In this
study we used this Nc = 4 × 12 super
cluster, which is in fact the largest treatable cluster size, because for
smaller cluster sizes the ratio between decoupled bonds and bonds
treated exactly is larger, which increases the mean-field and finite-
size effects.

2D – Phase transition

Similar calculation to 1D, but different variational parameters:

SDW: staggered magnetic field + hopping inside the cluster

CDW: staggered chemical potential (like in 1D)

Mean-field parameters are calculated self-consistently on an isolated
cluster (first order transition, see figure below).
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Fig. 3: Charge order parameter m2
CDW, kinetic energy Ekin, and

ground state energy E0 for U = 8 (left) and U = 3 (right).

Different to 1D, we found at both U = 8 and U = 3 first order
phase transitions with transition points Vc = 2.023(1) at U = 8 and
Vc = 0.770(3) at U = 3 at the Nc = 4 × 12 cluster.

2D – Spectral functions
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Fig. 4: Spectral function of the 2D EHM at U = 8 (left) and
U = 3 (right). White lines: Hartree-Fock fit. Black lines:
fit to magnetic dispersion, bandwidth J .

The low energy excitations have magnetic origin only in the SDW
phase, not in the charge ordered CDW phase. The Hartree-Fock di-
spersion in the SDW phase (white lines) do not account for the split-
ting into low energy quasi-particle bands and high energy Hubbard
bands. In the CDW phase the agreement between fitted and numeri-
cally calculated dispersions is much better.

Conclusion

• Mean-field decoupling provides consistent cluster approach to ex-
tended Hubbard models.

• Results in 1D in good agreement with other methods. Spectral
functions show spin-charge separation only in the SDW phase.

• In 2D no continuous transitions for onsite interactions U ≥ 3.
Magnetic excitations only in the SDW phase
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