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Single-particle spectral function of the Holstein-Hubbard bipolaron
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The one-electron spectral function of the Holstein-Hubbard bipolaron in one dimension is studied using
cluster perturbation theory together with the Lanczos method. In contrast to other approaches, this allows one
to calculate the spectrum at continuous wave vectors and thereby to investigate the dispersion and the spectral
weight of quasiparticle features. The formation of polarons and bipolarons, and their manifestation in the
spectral properties of the system, is studied for the cases of intermediate and large phonon frequencies, with
and without Coulomb repulsion. A good agreement is found with the most accurate calculations of the bipo-
laron band dispersion available. Pronounced deviations of the bipolaron band structure from a simple tight-
binding band are observed, which can be attributed to next-nearest-neighbor hopping processes.
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[. INTRODUCTION In this work, we study in detail the formation of polarons

In recent years, angle-resolved photoemission spectro&nd bipolarons, and its dependence on phonon frequency and
copy (ARPES has proved to be very helpful in obtaining elejctrlo_n—phonon and electron—ele_ctron interaction. To test the
information about the electronic states of strongly correlatedeliability of our results, and to interpret the quasiparticle
systems. While a lot of data is available from experiments(QP) features in the spectra, comparison is made to ED, as
reliable theoretical calculations of the one-particle spectrawell as to the most accurate approach to the one-dimensional
function—which can often be regarded as being proportionaHH bipolaron currently available, namely, the variational di-
to the ARPES spectrum—for popular models of, e.g., theagonalization methotf. Moreover, we also investigate the
Hubbard ort-J type, are usually very demanding. As a con-form of the bipolaron band dispersion and compare it to that
sequence, many interesting problems of condensed mattef models with nearest-neighbor and next-nearest-neighbor
physics have not been investigated systematically regardingopping.
their spectral properties in a satisfactory way. Among themis  This paper is organized as follows. We begin with a re-
the bipolaron problemof two electrons, which can form a view of the HH bipolaron in Sec. II. In Sec. lil, we discuss
bound state even in the presence of strong Coulomb repukome details of the application of CPT. Results are presented

sion if they are coupled to phonons. Despite the long history, sec. |V and, finally, Sec. V contains our conclusions.
of this problem, bipolaron formation is still the subject of

ongoing discussion due to its potential role, e.g., in high-

temperature superconductbmnd manganite$two classes Il. THE HOLSTEIN-HUBBARD MODEL

of materials studied extensively over the past decade.
Most existing results for the Holstein-HubbaiHH)

model considered here have been obtained using exact di-

agonalization(ED). Apart from a systematic error dt?e tothe - —t (Cin’Ci”+ H.c)+ “’E bl - 92 ni(bf +b)

necessary truncation of the Hilbert space, this method gives ' '

exact results for the one-electron spectrum, but is restricted +uUXn i) (1)

to rather small systems, especially for small phonon frequen- i

cies and/or strong electron-phonon coupling. Consequently, o

it is difficult to st%dy the digpersion of rt)hegspectral qpeaks)ﬁe,re cl, (cip) and b (by) create(annihilat an electron of

throughout the Brillouin zone. To overcome this limitation, SPiN o and a phonon of energy (4=1) at sitei, respec-

we employ here cluster perturbation the¢8PT), extending  tively, and j=2,n;, with ni,=c/ c,. The first two terms

the recent application to the Holstein model with onecorrespond to the kinetic energy of the electrons and the

electron® In contrast to ED, CPT permits one to calculate thekinetic and elastic energy of the phonons, respectively. The

spectral function for continuous wave vectors. Moreoverglectron-phonortel-ph) and electron-electrofel-el) interac-

finite-size effects are strongly reduced compared to directions are described by the third and fourth terms. We have

diagonalization of small clusters, and results are much mor¢hree model parameters, namely, the amplitude for nearest-

realistic than previous work based on, e.g., a two-siteneighbor hoppingt, the phonon frequency, the el-ph cou-

systent=8 CPT becomes exact in the weak- and strong®ling constang, and the el-el interaction strength> 0. For

coupling regimes, and has been successfully applied also 19=0, Eq.(1) is identical to the pure Holstein model, while

other problems-14A review of cluster methods for strongly for g=0 we recover the Hubbard model. We introduce the

correlated systems is by Maiet al1® Here we would merely commonly used dimensionless coupling constant

like to point out the recent application of the dynamical clus-=2g?/(wW), whereW=4tD is the bare bandwidth i di-

ter approximation to the half-filled Holstein model by mensions. We further define the dimensionless parameters

Haguet® w=w/t andU=U/t, and express all energies in units tof

The HH model is defined by the Hamiltonian

(iho
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Consequently, the independent parameters of the model asite deepens in the presence of a second electron. This may
o, U, and\. In the following, we shall also use the polaron easily be seen in the atomic lintit 0, using the Lang-Firsov
binding energyEp=AW/2, which emerges as a natural pa- transformatiot® On different lattice sites, each electron
rameter from the Lang-Firsov transformatitnEinally, the  gains an energy E by distorting the lattice, whereas the
lattice constant is taken to be unity. energy shift becomes &4 if both particles occupy the same
Owing to the complexity of even the two-electron prob- site (small or on-site bipolarop For t+ 0, the competition
lem, we will not discuss effects of bipolaron-bipolaron inter- between the kinetic energy of the electrons on the one hand
action here. An investigation of the latter, which will defi- and the displacement or lattice energy on the other hand
nitely play an important role in real materials, requires adetermines the cross over from a state with two weakly
study of the HH model with many electroiisee, e.g., Ref. bound polarons, sometimes also referred to &&ge bipo-
19 and references thergirwhich is beyond the scope of our laron, for A<\, to a small bipolaron foix >\, where,
method in its present form. denotes the critical value of the el-ph coupling. In Secall,
There exists a considerable amount of work on the HHhas been defined as=2Ep/W, i.e., as the ratio of the energy
bipolaron, although it is by far not as well understood as thegain due to polaron formation to the kinetic energy of a free
simpler one-electron case. In the following, we restrict ourelectron. Whilex.=1 in the adiabatic regime for the small-
discussion to recent developments in the field. A very compolaron crossover in the model with one elect(sre, e.g.,
plete review of earlier work has been given by Alexandrovdiscussion in Ref. 39 here we expech.=0.5 (for w<1)
and Mott2° due to the energy gain of E2 per electron compared tdsp
While the pairing of electrons in momentum space can ben the single-polaron problem. This is well confirmed by the
accurately described by Migdal-Eliashberg thébfgr weak  calculations of Welleiret al.2° who find a strong decrease of
enough coupling, no reliable theory is available for the for-the kinetic energy neax=0.5 for ®=0.4.
mation of bipolarons—corresponding to pairing of electrons For w> 1, the lattice energy becomes important since the
in real space—at intermediate to strong el-ph interactiontrapping of the carriers requires a sizable lattice distortion.
In recent years, progress was made using eitheThis gives rise to the additional conditionBs/ w>1 for a
variational approaché&s?® or, more importantly, unbiased small bipolarorf® Similar to the one-electron problem, the
numerical studies based on BEF?%30 variational crossover is very gradual in the nonadiabatic regifriehe
diagonalizatiort,-31-33density matrix renormalization group correlation or binding of the two electrons depends crucially
(DMRG),3* and quantum Monte Carl@MC) methods’®®>3"  on the phonon frequency, since the latter determines the
The ED and DMRG calculations were restricted to rathemaximum distance across which the two particles feel an
small systems consisting of twio®four,2° six,2* eight3%3Lor  attractive interaction due to the phonons. Up to second order
twelve sites’? while the methods of Refs. 17, 35, and 36 arein g, this coupling is given by
almost free of finite-size effects. The larger number of pho- )
non states required to obtain converged results makes nu- Ue(€) = g?Do (0, €) = — 20°w ?)
merical studies with ED methods even more challenging eff phiHl w’-é’
than for a single electron, especially for small phonon fre- )
quencies. whereD,(q, €) denotes the phonon propagator. Equat@n

Since the HH model represents a simplified description of€veals that the energy-dependent interaction is attractive for
the situation in real materials, it is highly desirable to study€<®, and becomes instantaneous in the antiadiabatic limit
more complex models. To this end, it is interesting to notew—* WhereUes=-29/ . Hence, the binding always de-
that the QMC methods of de Raedt and Lagerfdlijatnd ~ creases with increasing phonon frequefity.

Macridin et al®® may be generalized to include dispersive For U>0, there is a competition between the retarded,

phonons. Furthermore, both approaches can be applied @tractive interaction mediated by the phonons and the in-

models with long-range Coulomb interacti®ié similar to ~ Stantaneous, repulsive Hubbard interaction. Consequently, a
the work of Borta and Trugmar@ Finally, bipolaron forma- ~ State with two unbound polarons—stabilized by the onsite

tion in a model with Jahn-Teller modes—as present, e.g., ifiéPulsion—can exist for sufficiently weak el-ph coupliffg.

perovskite manganites—has recently been investigated byhis is in contrast to the extended HH model with long-range
Shawishet al33 interaction, in which a bipolaron state is formed irrespective

to distinguish between two cases. The two electrons can haygodel determining the nature of the bipolaron state is
either the same or opposite spin, which leads to a singlet or Ue=U - 2E 3)
triplet state, respectively. We consider these possibilities eff ~ P

separately. From this result, which can be obtained either from the gen-
eralization of Eq.(2) to U#0 in the limit w—o°, or in the
antiadiabatic strong-coupling limif,one may be tempted to
expect a bipolaron state to exist only 10g;<<0, i.e., if there

For two electrons in a singlet state, the formation of ais a net attractive interaction between the particles. While
bound bipolaron state in the absence of Coulomb interactiothis is true for the effective Hubbard model onto which the
originates from the fact that the potential well—arising from HH model maps in the antiadiabatic strong-coupling limit, a
a displacement of the oscillators—around an occupied latticeonsideration of virtual hopping processes leads to the less

A. Singlet state
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stringent conditiord < 4Ep.Y” The energy gain due to virtual is only one dressed particl@olaron in the case of the Hol-
exchange processes of two electrons on neighboring latticgtein polaron considered in |. However, in addition to the
sites—not suppressed by strong el-ph coupling—permits theimple doubling of the number of particles, it has been
formation of a weakly bounihtersite bipolaronwith the two ~ shown by previous authct&®%:34 that multiphonon states
electrons most likely to reside on neighboring lattice Play a more important role for the bipolaron as a result of the
sites1736A phase diagram for bipolaron formation as a func-Phonon-mediated binding. .

tion of X and @ in one dimension has been presented by ED (and also CPTfor el-ph systems is affected both by

WeiReet al3? Eventually, for sufficiently strong el-ph cou- finite-size effects and the truncation error due to the re-
pling 2E,=U, the effect’ive on-site potentidl.; becomes stricted number of phonon states kept in calculations. Obvi-
attractivg ana a small bipolaron is formed eff ously, if one used very small clusters, good convergence with

Starting from a small bipolaron, a crossover to an intersitd SSPeCt o the phonons could be achieved even for strong

bipolaron takes place when the Coulomb interaction be-el'ph coupling. On the other hand, for small numbers of

. : ) ther large clusters can be studied. The ap-
comes large enough:34! The intersite bipolaron has a phonon states, ra g b

. . roach which has been widely used in the past is to require
much smaller effective mass than the small bipolaron an‘Ehe truncation error, e.g., of the ground-state energy, to be
may therefore also exist as a mobile carrier in real

! i oo« o ) smaller than a certain limit, and to use the maximal cluster
materialst’ In the adiabatic limitw=0, the on-site-intersite size which can be handled for this number of phonons. Here,
bipolaron transition has been shown to be of first of8i?, 4 additional challenge arises form the fact that the diago-
but for finite phonon frequencies it is expected to happen ithalization of the cluster has to be performed for open bound-
a more gradual way because of retardation effects, in agregry conditions> Consequently, one cannot exploit transla-
ment with recent calculatior$.Estimates for the region of tional symmetry to reduce the dimensionality of the Hilbert
existence of the intersite bipolaron state fo=1 areU  space. However, this drawback is clearly outweighed by the
<2Ep for weak coupling, andU <4Ep for strong el-ph advantages of CPT outlined below.
coupling;” and phase diagrams in the,A) plane have been  we would like to briefly discuss some interesting features
reported in on& and two dimension¥? While the above of CPT. The method is based on a breakup of the infinite
conditions are quite accurate in the nonadiabatic regime |attice into clusters oN sites, say. The one-electron cluster
=1, the casen<1 remains an open problem. Green function, denoted here &g, [see Eq.(4) in 1], of

Finally, the physically most interesting regime, which is the model under consideration is calculated for one of these
unfortunately also the most difficult case to treat theoreti{identica) clusters using open boundary conditions. This can
cally, is defined byw<1, and a Coulomb repulsion at least e done, e.g., using ED or analytical approach€ke hop-
as large as the attractive interaction due to the el-ph cowing between adjacent clusters is then treated as a perturba-
pling. tion to obtain the Green function of the original system,

G,(k,€).8 A basic limitation of the theory is that the Hamil-
B. Triplet state tonian must not contain any nonlocal i.nt(.aractions, except for
) . . one-electron terms. Additionally, CPT in its present form can

For two electrons of the same spin, the Pauli principlegny pe used to calculate one-particle Green functfons.
forbids double occupation of a site. In principle, a boundrherefore, interesting observables such as, e.g., el-el corre-
state may be formed with the two particles being located Olation functions or transport properties are not yet available.
different lattice sites. While two electrons can lower their  £rom the nature of the approximation made, it is clear that
energy by sharing a lattice distortion in the large-bipolaroncpr il work particularly well if the local interactions
regime, especially for small phonon frequencies, the exyominate the physics of the system, i.e., for the case of the
change process stabilizing the singlet intersite bipolaron statgy model (1), if g, U>t. This point will be illustrated in
at intermediate-to-strong el-ph coupling akti>0 is not  gec. |v. The method becomes exact in the atomic Itmid,
strong enough to bind two polarons in a triplet intersitesq, noninteracting electron, U=0), as well as folN=c.8
state!’ Furthermore, fotJ <, the ground-state energy of The guality of the results obtained with CPT has been tested
the triplet state is always larger than for a singlet state bey, several model&;*4and a very good agreement with other
cause two particles with parallel spin cannot occupy thgyork has been found. In I, we pointed out the occurrence of
samek=0 energy level. Finally, the singlet and triplet states fijte-size effects which show up as additional peaks in the
become degenerate in the lintit— o. corresponding one-electron spectral function. The weight of

the latter reduces quickly d8— o, so that the spectrum is
Ill. METHOD not affected significa_ntly. . .
One of the most important advantages of CPT is that it

As mentioned above, here we use CPT in combinatiomives, in principle, results for an infinite system, although the
with the Lanczos recursion methé#iDetails about the ap- approximate treatment of the intercluster hopping introduces
plication to el-ph problems have been given in Ref. 3, hencesome finite-size effects, which can be systematically reduced
forth also referred to as I. The major difficulty we are facing by increasing the cluster size. As a consequence, the one-
in the present case is the larger number of phonon statedectron Green function can be calculated for any wave vec-
needed to obtain converged results. From a physical point abr in the Brillouin zone, even foN=1. This allows one to
view, this is not surprising since each of the two electronsstudy the dispersion of the QP peaks, in strong contrast to
will create a lattice distortion or phonon cloud, whereas therestandard ED methods on finite clusters, for which only a few
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points in momentum space are accessible, owing to théhe spectral function, which is the most fundamental quantity

rather small values dfl =2-20 usually used. that can be obtained from CPT.
Since we consider only the one-dimensional HH model in
the following, we shall adopt the notation accordingly. We

. . . IV. RESULTS
are interested in the one-electron Green function
1 The one-electron spectral function of the problem consid-
Golk,€) = (| |lce—cl 1), (4)  ered here has been calculated before using(E&fs. 4—6

e-H and DMRG? both in one dimension. However, results were

where| | ) denotes the ground state with one electron of spirfiven only fork=0, and for very small systems with=2
down, ando=1, |. Equation(4) contains only the inverse and 6, respectlygly. With the above methods, and for periodic
photoemission part of the total one-electron Green functionPoundary conditions, the spectral functits) can be evalu-
In the case ofgG,, the second part—corresponding to ated forN different wave vectors, of which onljd/2+1 are
photoemission—vanishes, since there isinelectron in the phys!cally noneqU|vaIent. Th|s_ makes it difficult or even im-
ground state. The situation would be different if we startedP0ssible to study the dispersion of QP features. Recently, a
with a two-electror(singlet or triple} ground state. Then, the Parallelized DMRG code has been develofgayhich al-
photoemission part of the one-electron spectral function alséWs studies of one-dimensional Holstein models on very
contains valuable information. However, due to limited com-large clusters even at half fillint. However, the calculation
puter memory, such computations involving three-electrorPf spectral functions within DMRG is very time consuming,
states are not possible with the code used here. since it has to be done separately for each point on the en-
In Eq. (4), we have omitted the enerds}, of the ground ~ €rdy axis. Several authors have also calculated dressed spec-
state| | ), which usually enters in the fortd—E}, to permit tral functlons?'ﬁ’?“wnh the fermion operators in Eq4) re-
direct comparison with the singlet bipolaron band dispersiorPlaced by their Lang-Firsov transformed.e., dressex

E'l(k) in Sec. IV. The one-electron spectral function is re-counterparts, as well as pair spectral functighshe corre-
lated to the Green functiof#) via sponding spectra show a simplified structure in certain re-

gimes, indicating that polarons and bipolarons are “good”
Ak e)=-m" lim Im G, (k,e+i). (5  QP's for these parameters.
70 De Mello and Ranningérhave pointed out that to study
To calculate the cluster Green function by ED, a truncatiorihe crossover between polarons and bipolarons it is, in gen-
of the phonon Hilbert space is necessary, and we use tHefal, necessary to investigate both photoemission and inverse
same truncation scheme as in I. The number of phonon stat@sotoemission. This can easily be understood by considering
N, will be chosen so as to push the truncation erfor €lectron emission from the two-electron singlet ground state,
=|E} (Ngn+ 1) ~EJ{(Nop)|/|ESH(Nop) | of the energyE)! of the  i.e., the Green functiokil | cf;(e~H)"c,|1 |). Depending
two-electron ground staté | ) below 10% The use o)/ to ~ on the parameterg, |) may consist of either two weakly
monitor convergence with respect i, comes from the bound polarons or a bipolaron. Consequently, photoemission
observation that—for the same number of phonons—th&pectra will show only a single QP band. In contrast, the
truncation error of the latter is always smaller than for theGreen function(4) with o=1 corresponds to adding ah
triplet state| | | ). This may be ascribed to the fact that for electron to the one-electron ground staté. For example,
two electrons of the same spin, no bound on-site or intersitéhe additional particle can either go into the ground state to
state exists. In particular, there will be no large local latticeform a bipolaron, or go into an excited polaron state. In
distortion surrounding an onsite bipolaron, the description oggeneral, we therefore expect two QP bands in the spectral
which requires a significant number of phonons. In previougunction, whose weights, positions, and widths vary with
work on the HH bipolaron, using ED with periodic boundary U, and\.
conditions?-6:2230the truncation error was usually smaller ~ As we will compare our findings with the variational di-
than 106. However, these methods were restricted to only sagonalization methoVDM) of Borca et al,*"*3we would
few k vectors. Furthermore, our calculations show that everike to comment on the accuracy of the latter. The problem is
a relative errorA=10" ensures satisfactory convergence ofdefined on an infinite system, so that the approach is free of
the one-electron spectrum. The smaller number of phonohoundary finite-size effects. However, the method involves a
states enables us to use larger clusters and thereby signifiariationally determined Hilbert space with two variational
cantly diminish finite-size effects since, within the CPT, evenparameters, namely, the maximal allowed distance between
an increaséN— N+ 1 noticeably improves the results. Once €lectrons and phonons, and between the two electrons, re-
the cluster size has been fixed, we use the maximal possibipectively. For the bipolaron problem under consideration,
number of phonons. The accuragyvaries for the different the limiting parameter in the regim@=1 is the maximum
calculations and will be reported in each figure. distancel,, between the two electrons. The results presented
In its present form, our method is restricted to the nonahere have been obtained usihg= 18. While the method
diabatic regimen=1, except for weak el-ph coupling. To gives very accurate results—with errors smaller than the
study smaller phonon frequencies—relevant to, e.g., transknewidth in the figures—for the case of a small bipolaron
tion metal oxides—a combination with variational diagonal- (U <2Ep), it is less reliablgrelative errors<1%) for strong
ization techniques or the use of shared-memory systemgn-site repulsiond> 2Ep favoring two weakly bound po-
would be necessary. As in |, we restrict our calculations tdarons, similar to ED and CPT. Due to additional towers of
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FIG. 1. (Color onling Spectral functiong\,(k, €) (solid lineg andA(k, €) (dashed linescalculated with CPT for different values of the
el-ph couplingX, using »=0.0% [see Eq.(5)]. All other parameters as indicated in the figures. The truncation errord<réa) 5.3
X 1075 (b) 1.0X 1073, (c) 2.4x 1077, (d) 6.7X 107° (see text The vertical lines correspond to VDM results for the polaron and bipolaron
band dispersiong'(0)+E'(k) (dashedl and E'!(k) (solid), respectively(Ref. 44.

phonon excitations that are located in the neighborhood ofigure 1 shows the evolution of the one-particle spectrum
the electron sites, the method achieves good convergence with increasing el-ph coupling. Here and in subsequent fig-
the small-bipolaron regime even for strong coupling. Never-ures, solid lines represent results faf and dashed lines
theless, the adiabatic regime<1 represents a difficult correspond td,.
problem, as is the case for other approaches. Finally, as in For U=0, two electrons of opposite spin always form a
CPT, results may be obtained at any wave vector. bipolaron state for ank > 0. At weak coupling\=0.5[Fig.

We shall see below that there is a close correspondence &fa)], A; exhibits two well visible bands, as well as an inco-
the QP bands in the spectra to the polaron and bipolaroR€rent part centered at=0. To understand the nature of the

dispersion relations denoted hereBigk) andE'!(k), respec- ~coherent excitations, we have also included in Fig. 1 the
tively. The notationE! (k) is convenient, but there is no spin bipolaron band dispersiof'!(k) (solid vertical ling, calcu-
dependence in the case of a single electron, Ea(k)  'ated by the VDM The latter fits well the low-energy band,
—E!(K). Results forE! (k) have been reported by Welleat with the minor deviations at intermediake—i.e., the split-

' ting of the low-energy peak into several small satellites—

al.* and WeiReet al*2*! However, in contrast ta\,(k, e), being finite-size effects, as has been verified by calculations
E'(k) and E''(k) do not reveal the spectral weight of the on smaller and larger clusters for a smaller number of pho-
corresponding QP’s. Nevertheless, the comparison with thaon stategnot shown. A more detailed discussion of finite-
spectra will yield valuable insight and serve as a test of th&ize effects will be given below fab=1.
CPT results. Moreover, a direct calculation of energy bands Even at weak coupling=0.5, the bipolaron band already
does not suffer from the restricted energy resolution of CPThas a relatively small width oV’ /W=0.37 compared to the
due to the use of a smearing paraméteng. (5)]. free-electron valu&V. Moreover, the spectral weight of the
Owing to the limitations regarding the number of phononlowest-energy peak, obtained by integration over the CPT
states, we shall show only results far=1. To be more spectrum, decreases significantly from about 0.68=4 to
specific, we consider two values of the adiabatic ratioabout 0.08 ak=1. At the same time, the weight contained in
namely,w=4 and 1. Foiw=4, the spectra will turn out to be the incoherent part of the spectrum increases with increasing
relatively simple, and we are able to study even strong el-ptk. This behavior is very similar to the single-electron case.
coupling. Consequently, we start with a discussion of the We now turn our attention to the second, higher-lying
antiadiabatic regime, and then move on to the more difficulband appearing in Fig.(&). From the general discussion in
casew=1. Sec. I, we expect that it corresponds to an excited state with
S _ two polarons. We therefore compare it to the energy of two
A. Antiadiabatic regime B independent polarons in an infinite system. Sinfge de-
In this section, we restrict the discussionle=0, while  scribes the process of adding an electron with momerikum
the influence of Coulomb repulsion will be studied below.to the one-polaron ground state with enefgy0) [cf. Eq.
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4 =1.5[Fig. 1(c)]. Here, the two conditions for a small bipo-
i laron (Sec. 1) are identical ton >0.5. Consequently, finite-
size effects are very small in Figsihl—1(d), as confirmed by
N the excellent agreement of the CPT data with the results for
— E'(k). The reduction in bandwidth with increasingis ac-
———em— companied by a loss of spectral weight. ka0, the latter
| decreases from the value 0.6&8at0.5 given above to about
| 0.10 atA=2.0. Both the narrowing and the loss of weight
indicate a significant increase of the effective bipolaron
mass.

While the polaron band lies relatively close to the bipo-
laron band ah =0.5[Fig. 1(a)], the increase of the coupling
leads to a clear separation, and to a downward shift of both
bands proportional to the polaron binding eneEyy In the
antiadiabatic strong-coupling regime of Figd}, the energy
gap between the two bands is well described by the atomic-
. limit value 2Ep=8t. Similar tox=0.5, the two-polaron band
dispersionE'(0) +E'(k) agrees well with the polaron band in

0 /4 /2 3/ n the spectra, with some differences being visible riea0.
k Interestingly, in Fig. {c), there is a mixing of the bipolaron
state with one phonon excited, which lies an eneggy4t
FIG. 2. (Color onling Density plot of the spectral function above the lowest band, and the two-polaron excitation.

e/t

Ai(k, e for ©=4.0,U=0, and\=0.5, as shown in Fig.(&). The The polaron band also narrows with increasing el-ph cou-
symbols correspond to VDM results f&f (0)+E'(k) (squaresand  pling (see also)l. However, the effect is much smaller than
ETN(K) (crossey respectively(Ref. 44. for the bipolaron band. Additionally, the spectral weight of

the k=0 polaron peak im; increases from about 0.20 at

(4)], we show in Fig. 1a) the band dispersio&'(0) +E'(k) =0.5 to about 0.32 at=2.0. This may be explained by the

(dashed vertical line The comparison with the spectral P :
function yields a very good agreement at intermediate an]c ct that for weak couplingFig. 1(a)], some of the weight of

. : . e polaron state is contained in the large low-energy feature.
large k, while there are some discrepancies at small mo-

menta. A density plot oA, (Fig. 2) reveals more clearly that Calculz;l]tlons for a smlgle _eLect:corr; andl therksamde parameters

the two coherent bands hybridize and repel each other ne pow that the spectral weight of the polarorkaD ecreases

the point where they would be degenerate, giving rise to afiom about 0.86(A=0.9 to about 0.52x=2.0. Since the

upper band with inversed dispersion at snkalThe situation ~ SPectral weight is, to a very good approximation, equal to the

is similar to the hybridization of the coherent and incohereninverse of the effective mass of the Holstein polafothese

parts in the one-electron case occurring f&f(k)—E'(0)| results indicate that the polaron mass does not increase at the

~ (see ). Of course, such effects are absent in the bangame rate as the bipolaron mass with increasing coupling, as

dispersion of a system with two independent polarons. Sincéeflected by the corresponding changes in bandwidth in Fig.

the residual interaction between two polarons vanishes in thé. Finally, we also find a comparable reduction of spectral

limit N— <o, the hybridization visible in the CPT spectrum weight for the two-polaron band iA from about 0.08(\

may be attributed to finite-size effects. The latter originate=0.5) to about 0.04\=2.0) atk=0.

from the fact that within CPT, translational symmetry is bro- To conclude the discussion of the case4, we would

ken by treating inter- and intracluster hopping differently, like to underline the enormous advantage of CPT in the

and only approximately restored afterward. strong-coupling regime. It permits us to perform calculations
The spectral functioi, also shown in Fig. (), contains  on a very small clustefN=4)—sufficient to obtain well-

a coherent band at low energies, and an incoherent pagbnverged results—but still yields the spectral function at

which is very similar to that oA,. Well away fromk=0, the  any desireck.

coherent peaks iA follow closely the polaron band iA,.

Thus the excited two-polaron state of the system with two

electrons of opposite spin is very similar to the ground state

of the system with two electrons of the same spin. Near In the preceding section, we have investigated in detail

=0, the spectral weight of the low-energy peakinis small  the signatures of polaron and bipolaron states in the one-

(=0.08 compared to the polaron peakAn(=0.2). Thisisa particle spectrum folw=4. Owing to the large energy of

result of the fact that two polarons with the same spin cannophonon excitations, most of the spectral weight resides in the

occupy the samé=0 state. The picture changes at largercorresponding bands, allowing a fairly easy identification.

momenta, where both bands have similar weight, althoughVle now consider the cage=1, which turns out to be more

the sharp peaks iA, are higher than the broadened featuresdifficult to study numerically and to interpret. Nevertheless,

in Al work in the regimew<1 is highly desirable to understand
With increasing el-ph coupling, the low-energy bipolaron many interesting strongly correlated systems such as, e.g.,

band becomes even narrower until it is virtually flat\at the manganites. Although the latter are usually characterized

B. Intermediate phonon frequency
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FIG. 3. (Color onling Spectral functiong\; (k,¢) (solid lineg andA, (k,s) (dashed linescalculated with CPT for different values of the
el-ph coupling, using 7=0.05. All other parameters as indicated in the figures. The truncation errord<r¢a) 9.1x 1075, (b) 9.0
X 1075, (¢) 1.2x 1077, (d) 2.4x 10°8. The vertical lines correspond to variational diagonalization results for the polaron and bipolaron band
dispersionsE!(0)+E'(k) (dashedlandE'!(k) (solid), respectively(Ref. 44.

by w<t, quantum effects are already visible for=t. As a In principle, the spectrum also contains coherent excited
consequence, previous autHors34-36:3%have often focused states which are separated from the lowest-energy band by
on this case, which is numerically much easier to tackle thatess than the phonon energy However, owing to the rather
the regionw<1. The cas@<1 has been considered, e.g., complex structure of the spectrum in the two-electron case,
by Welleinet al3° and WeiReet al3241While the discussion they are difficult to distinguish from the other contributions.
for @=4 was restricted t&) =0, here we shall also take into A direct calculation of excited states in the Holstein model

account a finite Coulomb repulsion. with one electron has recently been presented by BdfSi
_ Finally, the relation betweeA andA, is very similar tow
1.U=0 =4,

Since converged results fas=1 require more phonon As we increase the el-ph coupling, the bipolaron disper-
states than foiw=4, we have slightly reduced the cluster sion collapses to an extremely narrow badfeyy. 3(b)]. This
sizes in our calculations. Consequently, finite-size effects areross over is again associated with a significant loss of spec-
larger, as discussed below. Moreover, we are not able ttral weight. Atk=0, for example, we find a reduction from
reach the strong-coupling regime but instead restrict th@bout 0.50 ak=0.5 to about 0.14 ax=0.75. Increasing.
range of\ to 0.5-1.25. o further to 1.25, we finally arrive at a bipolaron band with

Figure 3 contains the one-particle spectra &+0. In W' /W=10"* and a spectral weight of less than 0.03kat
principle, for A\=0.5, the results look quite similar to Fig. =0. Similar to Fig. 1d), the spectrum displays several bands
3(a). However, the spectral weight of the two coherent bandqually spaced byw, which belong to states with one or
is much smaller, as a consequence of the increased impamore phonons excited. Moreover, the polaron and bipolaron
tance of incoherent excitations fas=1. In particular, the bands are well separated, and the incoherent contributions
weight of the latter is strongly enhanced at lakgeo that the ~dominate at largé.
bands are no longer easy to identify. Therefore, and because The agreement between the bipolaron band dispersion and
of the strong mixing of the bands with coherent and incoherE''(k) in Fig. 3 is again very good. Similar t@=4, the
ent excitations, it becomes difficult to accurately determinecondition for a small bipolaron is given by>0.5, so that
the spectral weight by integration over the CPT spectra.  CPT yields very accurate results. In contrast, the two-polaron

We see from Fig. 3 that the bipolaron bandwidth is muchenergyE'(0)+E'(K) fits less well to the corresponding bands
smaller foro=1(W'/W=0.1) than forw=4 [Fig. 1(a)], de- in the spectral function. We attribute this difference to the
spite the fact that the value of is the same in both cases. antiadiabatic regimé&-ig. 1 to the stronger retardation effects
Hence, the effect of el-ph interaction on the bipolaron masgor w=1. As a consequence, the polaron state is more ex-
is much more pronounced in or near the adiabatic regime duended below the small-polaron cross over occurring\ at
to the larger mass of the oscillators. =1 (see, e.g.,)| leading to a stronger residual interaction on
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FIG. 4. (Color onling Spectral functiong\,(k, €) (solid lineg andA(k, €) (dashed linescalculated with CPT for different values of the
el-ph coupling\, using =0.08. All other parameters as indicated in the figures. The truncation errord<r¢a) 3.3x 1075, (b) 2.0
X 1075, (c) 9.9x 1078, (d) 6.7x 10°". The vertical lines correspond to variational diagonalization results for the polaron and bipolaron band
dispersionsE’(0)+E'(k) (dashedl and ET'(k) (solid), respectively(Ref. 44.

a finite cluster, which also manifests itself in the CPT results. In Fig. 4, we present the results for the spectral function,
In contrast, foro=4, the lattice distortions around the elec- again forn=0.5-1.25. For weak coupling=0.5[Fig. 4a)],
trons are very localized, and the two polarons are almosthe most striking difference from the=0 case discussed
independent. Abova=1, i.e., in the small-polaron regime, above is the fact that there appears only one band at low
the two-polaron dispersion fas=1 again follows closely a energies. Together with the incoherent contributions, and tak-
two-polaron-like feature in the spectrufifigs. 3c) and  ing into account the doubling of the number of carriers lead-
3(d)]. ing to a shift of energies, the spectrum bears a close resem-
_ blance to that of a single polaron with the same parameters
2.U=4 B (Fig. 3 of I). This is also underlined by the polaron and

So far, we have only presented resultslior 0, for which  bipolaron band dispersions shown in Figay¥ which are
a bipolaron state is always favored. However, in material&lmost identical throughout the Brillouin zone, and lie just
such as the cuprates or the manganites, strong local correlaelow the corresponding band in the spectral function. In
tions hinder the carriers from forming on-site bipolaronsparticular, the band displays the typical flattening agdsdk,
even for strong el-ph coupling. To model such effects, wewhere the low-energy excitations have mostly phononic
therefore consider here a finite value of the el-el repulsiorcharacter. Furthermore, owing to the finite on-site repulsion,
u=4. the low-energy band i is very similar to that inA; since,

In the case of two electrons with opposite spin, the Lancfor finite U and weak el-ph coupling, the singlet ground state
zos results for the cluster Green function converge faster as@nsists of two weakly bound polarons. Consequently, the
function of N, for U>0 compared tdJ=0 as a result of the singlet and triplet states have comparable energies, although
reduced effective el-el interaction. This is fortunate, since ithe spectral weight i\, is again very small neak=0.
allows us to use slightly larger clusters, thereby partly com- For A=0.75[Fig. 4(b)], the ground state of the system is
pensating for the increased finite-size effects due to the sp&till given by two polarons, and the spectrum is almost in-
tially more extended ground state in the weak-coupling redistinguishable from\=0.5. In the present case, the condi-
gime. tion for the existence of an intersite bipolaron is expected to

From the general discussion in Sec. Il, we expect thdie between the weak- and strong-coupling results 2Ep
ground state to consist of two weakly bound polarons forandU < 4Ep.Y” However, owing to its small binding energy,
2Ep,<U, and a crossover to a bipolaron state at a criticathe intersite state is difficult to distinguish from the two-
value of the el-ph interaction. In the antiadiabatic limit, the polaron state in the spectral function.
latter is determined byE»=U (i.e., \=1 for the case con- At N=1.0[Fig. 4c)], the band inA; begins to split. Al-
sidered herefor weak coupling, and by B,=U for strong though the energy difference between the polaron and bipo-
coupling. laron band dispersions is still relatively small néar0, an
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Telt T et FIG. 6. Bipolaron dispersiofE!'(k) as a function of the wave
vectork (Ref. 44. Also shown is the bare tight-binding dispersion
FIG. 5. Comparison of the spectral functién(0,¢) calculated  for nearest-neighbor hopping, and a fit to the resultsUer4, \

with ED and CPT, respectively, for different cluster siaésusing  =0.5 using a dispersion for nearest- and next-nearest-neighbor hop-
7n=0.08. The crosses correspond to the VDM result for the bipo-ping (see text All curves have been scaled to the interjall,0],
laron energyE'+(0) (Ref. 44. with the actual bandwidths given in the legend.

excitation gap clearly emerges at larger Finally, at A . . L -
=1.25, two distinct bands with similar spectral weight havec'itical coupling, the physics is not altered significantly.
formed, which agree very well wittE'\(k) and E'(0) Ther(_afore, we have restricted our d|scu55|on. of the spectral
+E'(K), respectively. Interestingly, the band in the triplet fu_nctlor] tou=4, bgt some results for the bipolaron band
spectral functionA, lies noticeably higher than the polaron dispersion atJ=8 will be presented below.
band inA,. Thus, for the parameters considered here, two
olarons of opposite spin can lower their total energy b . . :

gccupying thepspame Iatt[i)ce site, which is just the mechggnis¥n The bipolaron band d|sper5|cE’?il(k) has been calculated
behind bipolaron formation. before by Welleinet al®® and WeiBeet al®*4! for small

The abovementioned discrepancies between the bipolard¥onon frequencies»=0.4 and w=0.5, respectively. Re-
band dispersioiE'/(k) obtained by Shawish and the band in markably, for parameters >0 andA>0 such that the ef-
A, are a result of finite-size effects in the CPT calculationsfective interactionUes=0 [Eq. (3)], they found a renormal-
The latter become smaller with increasing coupliago- ized, free-particle dispersion relatiéh?! In this section, we
gether with the size of the bipolaron, and for 1.25 we find ~ wish to extend these considerations to the Gasd, and to
a very good agreemefiEig. 4(d)]. To illustrate this point, we infinite systems. While the narrowing effect due to el-ph in-
compare in Fig. 5 the spectral functi?y at k=0, A=0.5, teraction has been discussed above, here we focus on the
and for different cluster sizeN, calculated using ED with form of the band.
periodic boundary conditionfeft column and CPT(right Owing to the limited energy resolution and finite-size ef-
column), respectively. The results reveal that for weak cou-fects in the CPT results shown above, we use the more ac-
pling and intermediat®, ED is superior to CPT concerning curate data from the VDM. In Fig. 6, we show Shawiéh’s
the convergence of the peak positions with respect to systemesults for the bipolaron energy as a functiorkpfor differ-
size. This is not surprising as CPT is based on a strongent values ofU and . To permit a direct comparison, we
coupling expansion in the hopping tefnkere, the el-el and have scaled all curves to the interyal1,0], with the actual
el-ph interactions are both of about the same magnitude asandwidths given in the legend.
the hopping, so that the method does not work as well as for We begin with the regime of a strongly bound small bi-
u=0. polaron. To this end we consider the case0 andA=1.25.

For U>0, finite-size effects in both CPT and ED are The corresponding band resembles quite closely a cosine dis-
larger due to the extended bipolaron state which exists fopersion, with some deviations being visible aroler/2.
weak coupling. Similar to the one-electron case discussed iA different behavior is found for finité) =4, as well as weak
[, deviations from the exact results due to the finite clustercoupling\=0.5. For these parameters, which favor a ground
size are usually smallest fé&=0, while they become larger state with two polaronksee Fig. 4c)], the form of the band
with increasingk. Although in Fig. 5 the positions of the is remarkably different from a simple tight-binding disper-
peaks in the CPT spectral function are slightly less accuratsion for nearest-neighbor hopping. This is still true far1,
than in the case of ED, the weights of the excited stateslthough a trend toward a cosine dispersion is visible. For
resemble more closely the results in the thermodynamieven largerU=8, the noncosinelike form persists even for
limit. A=1.

Finally, for U>4, the crossover to a small bipolaron oc- It is worth_ mentioning the great similarity of the results
curs at even larger values bf Apart from the change of the for U=4 andU=8 in the weak-coupling regime, which fol-

3. Bipolaron band dispersion
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lows from the fact that once the smdtn-site bipolaron  electrons of either the same or opposite spin. The method
state is energetically unfavorable for the two electrons due temployed here is cluster perturbation theory together with
the Coulomb repulsion, a further increase of the latter hashe Lanczos method, which represents a versatile and fast
very little effect. On top of that, the intersite bipolaron stateapproach.

which exists forU>0 has a very small binding energy, so  As a function of the electron-phonon and electron-
that the band dispersion is almost the same as that of twglectron interaction strength, polaron and bipolaron states

polarons. ) o o manifest themselves as quasiparticle bands, and results have
To identify the origin of the deviations from a free- peen compared to accurate data for the bipolaron energy dis-
electron band, we also included in Fi§ a fit of afree-  horqion For weak coupling and/or intermediate to strong

electron model with nearest- and next-nearest-neighbor hopy \nhard repulsion, finite-size effects are visible, but are

ping to th,e~band foru=4 and A=0.5, which yields an  m,ch smaller than in previous work restricted to small clus-
amplitudet’ ~ 0.6 for two-site hopping processes. AS pro- o1 The major advantage of the present method is that the
posed by Welleiret al,* the importance of long-range hop- gnecrum can be obtained at any poinkispace, even when
ping for the band dispersion of a single polaron may be dugjg clusters with only a few lattice sites for which enough
to a residual polaron-phonon interaction, with the phononsyhonon states can be kept in the calculation. This has al-

and the polaron residing on different sites. Since we finqgyeq ys to investigate the dispersion and the spectral weight
substantial deviations of the bipolaron band from a cosing the guasiparticle features throughout the Brillouin zone.
dispersion only in the regime of two weakly bound polarons,the yesyits and their dependence on the model parameters
it stands to reason to assume the same underlying mechgae peen discussed, and a perfect agreement has been found
nism. . . with the physical picture of the Holstein-Hubbard bipolaron

Finally, we would like Fo cqmment on the fact that d,ESp'teemerging from previous work. A comparison of the bipo-
Uer=0 for U=4 andA=1 in Fig. 6, we do not have a simple |3ron dispersion with a simple tight-binding band has re-
cosine ban(}lm contrast to the findings of Welletral™"and  \a51ed an important contribution from next-nearest-neighbor
Weil3eet al,** which have been attributed to the formation of hopping processes in the regime of a weakly bound state

oo Sy ) i .
an intersite bipolarofit In contrast, here we observe non- Finally, the adiabatic regime of small phonon frequencies,

cosinelike behavior even in the regime where an intersitgparacteristic of many real materials, remains an interesting
state exists. These differences are expected to be a result gf 4 demanding open issue for future work.

the larger value of the phonon frequentherew=1, while
®=0.4 and 0.5 in Refs. 30 and 41, respectiyelgading to a
noticeable reduction of retardation effects. Moreover, since
the critical coupling\. decreases as— 0, the bipolaron is
more strongly bound in the work of Refs. 30 and 41, thereby This work has been supported by the Austrian Science
suppressing the abovementioned nonlocal phonon-polaropPund (FWF), Project No. P15834. M.H. and M.A. are grate-
interaction. Further work along these lines is highly desirableful to DOC (the Doctoral Scholarship Program of the Aus-
to understand the dependence of the bipolaron band dispettian Academy of SciencgsWe are indebted to David M.
sion on the phonon frequency in the regimes 1. Eagles for stimulating correspondence, and to Samir El
V. CONCLUSIONS Shawish for useful discussions, as well as for providing us
’ with previously unpublished data. Finally, we would like to

We have presented a detailed study of the one-electrothank Holger Fehske for making valuable comments on the

spectral function of the Holstein-Hubbard model with two manuscript.
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