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The one-electron spectral function of the Holstein-Hubbard bipolaron in one dimension is studied using
cluster perturbation theory together with the Lanczos method. In contrast to other approaches, this allows one
to calculate the spectrum at continuous wave vectors and thereby to investigate the dispersion and the spectral
weight of quasiparticle features. The formation of polarons and bipolarons, and their manifestation in the
spectral properties of the system, is studied for the cases of intermediate and large phonon frequencies, with
and without Coulomb repulsion. A good agreement is found with the most accurate calculations of the bipo-
laron band dispersion available. Pronounced deviations of the bipolaron band structure from a simple tight-
binding band are observed, which can be attributed to next-nearest-neighbor hopping processes.
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I. INTRODUCTION

In recent years, angle-resolved photoemission spectros-
copy sARPESd has proved to be very helpful in obtaining
information about the electronic states of strongly correlated
systems. While a lot of data is available from experiments,
reliable theoretical calculations of the one-particle spectral
function—which can often be regarded as being proportional
to the ARPES spectrum—for popular models of, e.g., the
Hubbard ort-J type, are usually very demanding. As a con-
sequence, many interesting problems of condensed matter
physics have not been investigated systematically regarding
their spectral properties in a satisfactory way. Among them is
the bipolaron problemof two electrons, which can form a
bound state even in the presence of strong Coulomb repul-
sion if they are coupled to phonons. Despite the long history
of this problem, bipolaron formation is still the subject of
ongoing discussion due to its potential role, e.g., in high-
temperature superconductors1 and manganites,2 two classes
of materials studied extensively over the past decade.

Most existing results for the Holstein-HubbardsHHd
model considered here have been obtained using exact di-
agonalizationsEDd. Apart from a systematic error due to the
necessary truncation of the Hilbert space, this method gives
exact results for the one-electron spectrum, but is restricted
to rather small systems, especially for small phonon frequen-
cies and/or strong electron-phonon coupling. Consequently,
it is difficult to study the dispersion of the spectral peaks
throughout the Brillouin zone. To overcome this limitation,
we employ here cluster perturbation theorysCPTd, extending
the recent application to the Holstein model with one
electron.3 In contrast to ED, CPT permits one to calculate the
spectral function for continuous wave vectors. Moreover,
finite-size effects are strongly reduced compared to direct
diagonalization of small clusters, and results are much more
realistic than previous work based on, e.g., a two-site
system.4–6 CPT becomes exact in the weak- and strong-
coupling regimes, and has been successfully applied also to
other problems.7–14A review of cluster methods for strongly
correlated systems is by Maieret al.15 Here we would merely
like to point out the recent application of the dynamical clus-
ter approximation to the half-filled Holstein model by
Hague.16

In this work, we study in detail the formation of polarons
and bipolarons, and its dependence on phonon frequency and
electron-phonon and electron-electron interaction. To test the
reliability of our results, and to interpret the quasiparticle
sQPd features in the spectra, comparison is made to ED, as
well as to the most accurate approach to the one-dimensional
HH bipolaron currently available, namely, the variational di-
agonalization method.17 Moreover, we also investigate the
form of the bipolaron band dispersion and compare it to that
of models with nearest-neighbor and next-nearest-neighbor
hopping.

This paper is organized as follows. We begin with a re-
view of the HH bipolaron in Sec. II. In Sec. III, we discuss
some details of the application of CPT. Results are presented
in Sec. IV and, finally, Sec. V contains our conclusions.

II. THE HOLSTEIN-HUBBARD MODEL

The HH model is defined by the Hamiltonian

H = − t o
ki j ls

scis
† cjs + H.c.d + vo

i

bi
†bi − go

i

nisbi
† + bid

+ Uo
i

ni↑ni↓. s1d

Here cis
† scisd and bi

† sbid createsannihilated an electron of
spin s and a phonon of energyv s"=1d at site i, respec-
tively, and ni =osnis with nis=cis

† cis. The first two terms
correspond to the kinetic energy of the electrons and the
kinetic and elastic energy of the phonons, respectively. The
electron-phononsel-phd and electron-electronsel-eld interac-
tions are described by the third and fourth terms. We have
three model parameters, namely, the amplitude for nearest-
neighbor hopping,t, the phonon frequencyv, the el-ph cou-
pling constantg, and the el-el interaction strengthU.0. For
U=0, Eq. s1d is identical to the pure Holstein model, while
for g=0 we recover the Hubbard model. We introduce the
commonly used dimensionless coupling constantl
=2g2/ svWd, whereW=4tD is the bare bandwidth inD di-
mensions. We further define the dimensionless parameters
v=v / t and U=U / t, and express all energies in units oft.
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Consequently, the independent parameters of the model are
v, U, andl. In the following, we shall also use the polaron
binding energyEP=lW/2, which emerges as a natural pa-
rameter from the Lang-Firsov transformation.18 Finally, the
lattice constant is taken to be unity.

Owing to the complexity of even the two-electron prob-
lem, we will not discuss effects of bipolaron-bipolaron inter-
action here. An investigation of the latter, which will defi-
nitely play an important role in real materials, requires a
study of the HH model with many electronsssee, e.g., Ref.
19 and references thereind, which is beyond the scope of our
method in its present form.

There exists a considerable amount of work on the HH
bipolaron, although it is by far not as well understood as the
simpler one-electron case. In the following, we restrict our
discussion to recent developments in the field. A very com-
plete review of earlier work has been given by Alexandrov
and Mott.20

While the pairing of electrons in momentum space can be
accurately described by Migdal-Eliashberg theory21 for weak
enough coupling, no reliable theory is available for the for-
mation of bipolarons—corresponding to pairing of electrons
in real space—at intermediate to strong el-ph interaction.
In recent years, progress was made using either
variational approaches22–28 or, more importantly, unbiased
numerical studies based on ED,4–6,29,30 variational
diagonalization,17,31–33density matrix renormalization group
sDMRGd,34 and quantum Monte CarlosQMCd methods.35–37

The ED and DMRG calculations were restricted to rather
small systems consisting of two,4–6 four,29 six,34 eight,30,31or
twelve sites,32 while the methods of Refs. 17, 35, and 36 are
almost free of finite-size effects. The larger number of pho-
non states required to obtain converged results makes nu-
merical studies with ED methods even more challenging
than for a single electron, especially for small phonon fre-
quencies.

Since the HH model represents a simplified description of
the situation in real materials, it is highly desirable to study
more complex models. To this end, it is interesting to note
that the QMC methods of de Raedt and Lagendijk35 and
Macridin et al.36 may be generalized to include dispersive
phonons. Furthermore, both approaches can be applied to
models with long-range Coulomb interaction,35,36 similar to
the work of Bonča and Trugman.38 Finally, bipolaron forma-
tion in a model with Jahn-Teller modes—as present, e.g., in
perovskite manganites—has recently been investigated by
Shawishet al.33

To discuss bipolaron formation in the HH model, we have
to distinguish between two cases. The two electrons can have
either the same or opposite spin, which leads to a singlet or
triplet state, respectively. We consider these possibilities
separately.

A. Singlet state

For two electrons in a singlet state, the formation of a
bound bipolaron state in the absence of Coulomb interaction
originates from the fact that the potential well—arising from
a displacement of the oscillators—around an occupied lattice

site deepens in the presence of a second electron. This may
easily be seen in the atomic limitt=0, using the Lang-Firsov
transformation.18 On different lattice sites, each electron
gains an energy −EP by distorting the lattice, whereas the
energy shift becomes −4EP if both particles occupy the same
site ssmall or on-site bipolarond. For tÞ0, the competition
between the kinetic energy of the electrons on the one hand
and the displacement or lattice energy on the other hand
determines the cross over from a state with two weakly
bound polarons, sometimes also referred to as alarge bipo-
laron, for l,lc to a small bipolaron forl.lc, wherelc
denotes the critical value of the el-ph coupling. In Sec. II,l
has been defined asl=2EP/W, i.e., as the ratio of the energy
gain due to polaron formation to the kinetic energy of a free
electron. Whilelc=1 in the adiabatic regime for the small-
polaron crossover in the model with one electronssee, e.g.,
discussion in Ref. 39d, here we expectlc=0.5 sfor v!1d
due to the energy gain of −2EP per electron compared to −EP
in the single-polaron problem. This is well confirmed by the
calculations of Welleinet al.,30 who find a strong decrease of
the kinetic energy nearl=0.5 for v=0.4.

For v@1, the lattice energy becomes important since the
trapping of the carriers requires a sizable lattice distortion.
This gives rise to the additional condition 2ÎEP/v.1 for a
small bipolaron.40 Similar to the one-electron problem, the
crossover is very gradual in the nonadiabatic regime.30 The
correlation or binding of the two electrons depends crucially
on the phonon frequency, since the latter determines the
maximum distance across which the two particles feel an
attractive interaction due to the phonons. Up to second order
in g, this coupling is given by

Ueffsed = g2Dphsq,ed = −
2g2v

v2 − e2 , s2d

whereDphsq,ed denotes the phonon propagator. Equations2d
reveals that the energy-dependent interaction is attractive for
e,v, and becomes instantaneous in the antiadiabatic limit
v→` whereUeff=−2g2/v. Hence, the binding always de-
creases with increasing phonon frequency.29

For U.0, there is a competition between the retarded,
attractive interaction mediated by the phonons and the in-
stantaneous, repulsive Hubbard interaction. Consequently, a
state with two unbound polarons—stabilized by the onsite
repulsion—can exist for sufficiently weak el-ph coupling.30

This is in contrast to the extended HH model with long-range
interaction, in which a bipolaron state is formed irrespective
of the value ofU.41 The effective el-el interaction in the HH
model determining the nature of the bipolaron state is

Ueff = U − 2EP. s3d

From this result, which can be obtained either from the gen-
eralization of Eq.s2d to UÞ0 in the limit v→`, or in the
antiadiabatic strong-coupling limit,36 one may be tempted to
expect a bipolaron state to exist only forUeff,0, i.e., if there
is a net attractive interaction between the particles. While
this is true for the effective Hubbard model onto which the
HH model maps in the antiadiabatic strong-coupling limit, a
consideration of virtual hopping processes leads to the less
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stringent conditionU,4EP.17 The energy gain due to virtual
exchange processes of two electrons on neighboring lattice
sites—not suppressed by strong el-ph coupling—permits the
formation of a weakly boundintersite bipolaronwith the two
electrons most likely to reside on neighboring lattice
sites.17,36A phase diagram for bipolaron formation as a func-
tion of l and v in one dimension has been presented by
Weißeet al.32 Eventually, for sufficiently strong el-ph cou-
pling 2EP*U, the effective on-site potentialUeff becomes
attractive, and a small bipolaron is formed.

Starting from a small bipolaron, a crossover to an intersite
bipolaron takes place when the Coulomb interaction be-
comes large enough.17,36,41 The intersite bipolaron has a
much smaller effective mass than the small bipolaron and
may therefore also exist as a mobile carrier in real
materials.17 In the adiabatic limitv=0, the on-site-intersite
bipolaron transition has been shown to be of first order,25,26

but for finite phonon frequencies it is expected to happen in
a more gradual way because of retardation effects, in agree-
ment with recent calculations.17 Estimates for the region of
existence of the intersite bipolaron state forv=1 are U
,2EP for weak coupling, andU,4EP for strong el-ph
coupling,17 and phase diagrams in thesU ,ld plane have been
reported in one17 and two dimensions.36 While the above
conditions are quite accurate in the nonadiabatic regimev
ù1, the casev!1 remains an open problem.

Finally, the physically most interesting regime, which is
unfortunately also the most difficult case to treat theoreti-
cally, is defined byv!1, and a Coulomb repulsion at least
as large as the attractive interaction due to the el-ph cou-
pling.

B. Triplet state

For two electrons of the same spin, the Pauli principle
forbids double occupation of a site. In principle, a bound
state may be formed with the two particles being located on
different lattice sites. While two electrons can lower their
energy by sharing a lattice distortion in the large-bipolaron
regime, especially for small phonon frequencies, the ex-
change process stabilizing the singlet intersite bipolaron state
at intermediate-to-strong el-ph coupling andU.0 is not
strong enough to bind two polarons in a triplet intersite
state.17 Furthermore, forU,`, the ground-state energy of
the triplet state is always larger than for a singlet state be-
cause two particles with parallel spin cannot occupy the
samek=0 energy level. Finally, the singlet and triplet states
become degenerate in the limitU→`.

III. METHOD

As mentioned above, here we use CPT in combination
with the Lanczos recursion method.42 Details about the ap-
plication to el-ph problems have been given in Ref. 3, hence-
forth also referred to as I. The major difficulty we are facing
in the present case is the larger number of phonon states
needed to obtain converged results. From a physical point of
view, this is not surprising since each of the two electrons
will create a lattice distortion or phonon cloud, whereas there

is only one dressed particlespolarond in the case of the Hol-
stein polaron considered in I. However, in addition to the
simple doubling of the number of particles, it has been
shown by previous authors29,30,34 that multiphonon states
play a more important role for the bipolaron as a result of the
phonon-mediated binding.

ED sand also CPTd for el-ph systems is affected both by
finite-size effects and the truncation error due to the re-
stricted number of phonon states kept in calculations. Obvi-
ously, if one used very small clusters, good convergence with
respect to the phonons could be achieved even for strong
el-ph coupling. On the other hand, for small numbers of
phonon states, rather large clusters can be studied. The ap-
proach which has been widely used in the past is to require
the truncation error, e.g., of the ground-state energy, to be
smaller than a certain limit, and to use the maximal cluster
size which can be handled for this number of phonons. Here,
an additional challenge arises form the fact that the diago-
nalization of the cluster has to be performed for open bound-
ary conditions.3 Consequently, one cannot exploit transla-
tional symmetry to reduce the dimensionality of the Hilbert
space. However, this drawback is clearly outweighed by the
advantages of CPT outlined below.

We would like to briefly discuss some interesting features
of CPT. The method is based on a breakup of the infinite
lattice into clusters ofN sites, say.8 The one-electron cluster
Green function, denoted here asGab,s fsee Eq.s4d in Ig, of
the model under consideration is calculated for one of these
sidenticald clusters using open boundary conditions. This can
be done, e.g., using ED or analytical approaches.3 The hop-
ping between adjacent clusters is then treated as a perturba-
tion to obtain the Green function of the original system,
Gssk ,ed.8 A basic limitation of the theory is that the Hamil-
tonian must not contain any nonlocal interactions, except for
one-electron terms. Additionally, CPT in its present form can
only be used to calculate one-particle Green functions.8

Therefore, interesting observables such as, e.g., el-el corre-
lation functions or transport properties are not yet available.

From the nature of the approximation made, it is clear that
CPT will work particularly well if the local interactions
dominate the physics of the system, i.e., for the case of the
HH model s1d, if g, U@ t. This point will be illustrated in
Sec. IV. The method becomes exact in the atomic limitt=0,
for noninteracting electronssg, U=0d, as well as forN=`.8

The quality of the results obtained with CPT has been tested
for several models,7–14and a very good agreement with other
work has been found. In I, we pointed out the occurrence of
finite-size effects which show up as additional peaks in the
corresponding one-electron spectral function. The weight of
the latter reduces quickly asN→`, so that the spectrum is
not affected significantly.

One of the most important advantages of CPT is that it
gives, in principle, results for an infinite system, although the
approximate treatment of the intercluster hopping introduces
some finite-size effects, which can be systematically reduced
by increasing the cluster size. As a consequence, the one-
electron Green function can be calculated for any wave vec-
tor in the Brillouin zone, even forN=1. This allows one to
study the dispersion of the QP peaks, in strong contrast to
standard ED methods on finite clusters, for which only a few
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points in momentum space are accessible, owing to the
rather small values ofN<2–20 usually used.

Since we consider only the one-dimensional HH model in
the following, we shall adopt the notation accordingly. We
are interested in the one-electron Green function

Gssk,ed = k↓ ucks

1

e − H
cks

† u↓l, s4d

whereu↓ l denotes the ground state with one electron of spin
down, ands=↑, ↓. Equations4d contains only the inverse
photoemission part of the total one-electron Green function.
In the case ofG↑, the second part—corresponding to
photoemission—vanishes, since there is no↑ electron in the
ground state. The situation would be different if we started
with a two-electronssinglet or tripletd ground state. Then, the
photoemission part of the one-electron spectral function also
contains valuable information. However, due to limited com-
puter memory, such computations involving three-electron
states are not possible with the code used here.

In Eq. s4d, we have omitted the energyE0
↓ of the ground

stateu↓ l, which usually enters in the formH−E0
↓, to permit

direct comparison with the singlet bipolaron band dispersion
E↑↓skd in Sec. IV. The one-electron spectral function is re-
lated to the Green functions4d via

Assk,ed = − p−1 lim
h→0+

Im Gssk,e + ihd. s5d

To calculate the cluster Green function by ED, a truncation
of the phonon Hilbert space is necessary, and we use the
same truncation scheme as in I. The number of phonon states
Nph will be chosen so as to push the truncation errorD
;uE0

↑↓sNph+1d−E0
↑↓sNphdu / uE0

↑↓sNphdu of the energyE0
↑↓ of the

two-electron ground stateu↑ ↓ l below 10−4. The use ofE0
↑↓ to

monitor convergence with respect toNph comes from the
observation that—for the same number of phonons—the
truncation error of the latter is always smaller than for the
triplet stateu↓ ↓ l. This may be ascribed to the fact that for
two electrons of the same spin, no bound on-site or intersite
state exists. In particular, there will be no large local lattice
distortion surrounding an onsite bipolaron, the description of
which requires a significant number of phonons. In previous
work on the HH bipolaron, using ED with periodic boundary
conditions,4–6,29,30 the truncation error was usually smaller
than 10−6. However, these methods were restricted to only a
few k vectors. Furthermore, our calculations show that even
a relative errorD=10−4 ensures satisfactory convergence of
the one-electron spectrum. The smaller number of phonon
states enables us to use larger clusters and thereby signifi-
cantly diminish finite-size effects since, within the CPT, even
an increaseN→N+1 noticeably improves the results. Once
the cluster size has been fixed, we use the maximal possible
number of phonons. The accuracyD varies for the different
calculations and will be reported in each figure.

In its present form, our method is restricted to the nona-
diabatic regimevù1, except for weak el-ph coupling. To
study smaller phonon frequencies—relevant to, e.g., transi-
tion metal oxides—a combination with variational diagonal-
ization techniques or the use of shared-memory systems
would be necessary. As in I, we restrict our calculations to

the spectral function, which is the most fundamental quantity
that can be obtained from CPT.8

IV. RESULTS

The one-electron spectral function of the problem consid-
ered here has been calculated before using EDsRefs. 4–6d
and DMRG,34 both in one dimension. However, results were
given only for k=0, and for very small systems withN=2
and 6, respectively. With the above methods, and for periodic
boundary conditions, the spectral functions5d can be evalu-
ated forN different wave vectors, of which onlyN/2+1 are
physically nonequivalent. This makes it difficult or even im-
possible to study the dispersion of QP features. Recently, a
parallelized DMRG code has been developed,43 which al-
lows studies of one-dimensional Holstein models on very
large clusters even at half filling.19 However, the calculation
of spectral functions within DMRG is very time consuming,
since it has to be done separately for each point on the en-
ergy axis. Several authors have also calculated dressed spec-
tral functions,5,6,34 with the fermion operators in Eq.s4d re-
placed by their Lang-Firsov transformedsi.e., dressedd
counterparts, as well as pair spectral functions.34 The corre-
sponding spectra show a simplified structure in certain re-
gimes, indicating that polarons and bipolarons are “good”
QP’s for these parameters.

De Mello and Ranninger5 have pointed out that to study
the crossover between polarons and bipolarons it is, in gen-
eral, necessary to investigate both photoemission and inverse
photoemission. This can easily be understood by considering
electron emission from the two-electron singlet ground state,
i.e., the Green functionk↑↓ uck↑

† se−Hd−1ck↑u↑ ↓ l. Depending
on the parameters,u↑ ↓ l may consist of either two weakly
bound polarons or a bipolaron. Consequently, photoemission
spectra will show only a single QP band. In contrast, the
Green functions4d with s=↑ corresponds to adding an↑
electron to the one-electron ground stateu↓ l. For example,
the additional particle can either go into the ground state to
form a bipolaron, or go into an excited polaron state. In
general, we therefore expect two QP bands in the spectral
function, whose weights, positions, and widths vary withv,
U, andl.

As we will compare our findings with the variational di-
agonalization methodsVDM d of Bonča et al.,17,33 we would
like to comment on the accuracy of the latter. The problem is
defined on an infinite system, so that the approach is free of
boundary finite-size effects. However, the method involves a
variationally determined Hilbert space with two variational
parameters, namely, the maximal allowed distance between
electrons and phonons, and between the two electrons, re-
spectively. For the bipolaron problem under consideration,
the limiting parameter in the regimevù1 is the maximum
distanceNh between the two electrons. The results presented
here have been obtained usingNhø18. While the method
gives very accurate results—with errors smaller than the
linewidth in the figures—for the case of a small bipolaron
sU!2EPd, it is less reliablesrelative errors&1%d for strong
on-site repulsionU@2EP favoring two weakly bound po-
larons, similar to ED and CPT. Due to additional towers of
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phonon excitations that are located in the neighborhood of
the electron sites, the method achieves good convergence in
the small-bipolaron regime even for strong coupling. Never-
theless, the adiabatic regimev!1 represents a difficult
problem, as is the case for other approaches. Finally, as in
CPT, results may be obtained at any wave vector.

We shall see below that there is a close correspondence of
the QP bands in the spectra to the polaron and bipolaron
dispersion relations denoted here asE↑skd andE↑↓skd, respec-
tively. The notationE↑skd is convenient, but there is no spin
dependence in the case of a single electron, i.e.,E↑skd
=E↓skd. Results forE↑↓skd have been reported by Welleinet
al.30 and Weißeet al.32,41 However, in contrast toAssk,ed,
E↑skd and E↑↓skd do not reveal the spectral weight of the
corresponding QP’s. Nevertheless, the comparison with the
spectra will yield valuable insight and serve as a test of the
CPT results. Moreover, a direct calculation of energy bands
does not suffer from the restricted energy resolution of CPT
due to the use of a smearing parameterfEq. s5dg.

Owing to the limitations regarding the number of phonon
states, we shall show only results forvù1. To be more
specific, we consider two values of the adiabatic ratio,
namely,v=4 and 1. Forv=4, the spectra will turn out to be
relatively simple, and we are able to study even strong el-ph
coupling. Consequently, we start with a discussion of the
antiadiabatic regime, and then move on to the more difficult
casev=1.

A. Antiadiabatic regime

In this section, we restrict the discussion toU=0, while
the influence of Coulomb repulsion will be studied below.

Figure 1 shows the evolution of the one-particle spectrum
with increasing el-ph coupling. Here and in subsequent fig-
ures, solid lines represent results forA↑ and dashed lines
correspond toA↓.

For U=0, two electrons of opposite spin always form a
bipolaron state for anyl.0. At weak couplingl=0.5 fFig.
1sadg, A↑ exhibits two well visible bands, as well as an inco-
herent part centered ate<0. To understand the nature of the
coherent excitations, we have also included in Fig. 1 the
bipolaron band dispersionE↑↓skd ssolid vertical lined, calcu-
lated by the VDM.44 The latter fits well the low-energy band,
with the minor deviations at intermediatek—i.e., the split-
ting of the low-energy peak into several small satellites—
being finite-size effects, as has been verified by calculations
on smaller and larger clusters for a smaller number of pho-
non statessnot shownd. A more detailed discussion of finite-
size effects will be given below forv=1.

Even at weak couplingl=0.5, the bipolaron band already
has a relatively small width ofW8 /W<0.37 compared to the
free-electron valueW. Moreover, the spectral weight of the
lowest-energy peak, obtained by integration over the CPT
spectrum, decreases significantly from about 0.68 atk=0 to
about 0.08 atk=p. At the same time, the weight contained in
the incoherent part of the spectrum increases with increasing
k. This behavior is very similar to the single-electron case.3

We now turn our attention to the second, higher-lying
band appearing in Fig. 1sad. From the general discussion in
Sec. II, we expect that it corresponds to an excited state with
two polarons. We therefore compare it to the energy of two
independent polarons in an infinite system. SinceA↑ de-
scribes the process of adding an electron with momentumk
to the one-polaron ground state with energyE↑s0d fcf. Eq.

FIG. 1. sColor onlined Spectral functionsA↑sk,ed ssolid linesd andA↓sk,ed sdashed linesd calculated with CPT for different values of the
el-ph couplingl, using h=0.05t fsee Eq.s5dg. All other parameters as indicated in the figures. The truncation errors areD, sad 5.3
310−6, sbd 1.0310−5, scd 2.4310−7, sdd 6.7310−6 ssee textd. The vertical lines correspond to VDM results for the polaron and bipolaron
band dispersionsE↑s0d+E↑skd sdashedd andE↑↓skd ssolidd, respectivelysRef. 44d.
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s4dg, we show in Fig. 1sad the band dispersionE↑s0d+E↑skd
sdashed vertical lined. The comparison with the spectral
function yields a very good agreement at intermediate and
large k, while there are some discrepancies at small mo-
menta. A density plot ofA↑ sFig. 2d reveals more clearly that
the two coherent bands hybridize and repel each other near
the point where they would be degenerate, giving rise to an
upper band with inversed dispersion at smallk. The situation
is similar to the hybridization of the coherent and incoherent
parts in the one-electron case occurring foruE↑skd−E↑s0du
,v ssee Id. Of course, such effects are absent in the band
dispersion of a system with two independent polarons. Since
the residual interaction between two polarons vanishes in the
limit N→`, the hybridization visible in the CPT spectrum
may be attributed to finite-size effects. The latter originate
from the fact that within CPT, translational symmetry is bro-
ken by treating inter- and intracluster hopping differently,
and only approximately restored afterward.

The spectral functionA↓, also shown in Fig. 1sad, contains
a coherent band at low energies, and an incoherent part
which is very similar to that ofA↑. Well away fromk=0, the
coherent peaks inA↓ follow closely the polaron band inA↑.
Thus the excited two-polaron state of the system with two
electrons of opposite spin is very similar to the ground state
of the system with two electrons of the same spin. Neark
=0, the spectral weight of the low-energy peak inA↓ is small
s<0.08d compared to the polaron peak inA↑s<0.2d. This is a
result of the fact that two polarons with the same spin cannot
occupy the samek=0 state. The picture changes at larger
momenta, where both bands have similar weight, although
the sharp peaks inA↓ are higher than the broadened features
in A↑.

With increasing el-ph coupling, the low-energy bipolaron
band becomes even narrower until it is virtually flat atl

=1.5 fFig. 1scdg. Here, the two conditions for a small bipo-
laron sSec. IId are identical tol.0.5. Consequently, finite-
size effects are very small in Figs. 1sbd–1sdd, as confirmed by
the excellent agreement of the CPT data with the results for
E↑↓skd. The reduction in bandwidth with increasingl is ac-
companied by a loss of spectral weight. Fork=0, the latter
decreases from the value 0.68 atl=0.5 given above to about
0.10 atl=2.0. Both the narrowing and the loss of weight
indicate a significant increase of the effective bipolaron
mass.

While the polaron band lies relatively close to the bipo-
laron band atl=0.5 fFig. 1sadg, the increase of the coupling
leads to a clear separation, and to a downward shift of both
bands proportional to the polaron binding energyEP. In the
antiadiabatic strong-coupling regime of Fig. 1sdd, the energy
gap between the two bands is well described by the atomic-
limit value 2EP=8t. Similar tol=0.5, the two-polaron band
dispersionE↑s0d+E↑skd agrees well with the polaron band in
the spectra, with some differences being visible neark=0.
Interestingly, in Fig. 1scd, there is a mixing of the bipolaron
state with one phonon excited, which lies an energyv=4t
above the lowest band, and the two-polaron excitation.

The polaron band also narrows with increasing el-ph cou-
pling ssee also Id. However, the effect is much smaller than
for the bipolaron band. Additionally, the spectral weight of
the k=0 polaron peak inA↑ increases from about 0.20 atl
=0.5 to about 0.32 atl=2.0. This may be explained by the
fact that for weak couplingfFig. 1sadg, some of the weight of
the polaron state is contained in the large low-energy feature.
Calculations for a single electron and the same parameters
show that the spectral weight of the polaron atk=0 decreases
from about 0.86sl=0.5d to about 0.52sl=2.0d. Since the
spectral weight is, to a very good approximation, equal to the
inverse of the effective mass of the Holstein polaron,45 these
results indicate that the polaron mass does not increase at the
same rate as the bipolaron mass with increasing coupling, as
reflected by the corresponding changes in bandwidth in Fig.
1. Finally, we also find a comparable reduction of spectral
weight for the two-polaron band inA↓ from about 0.08sl
=0.5d to about 0.04sl=2.0d at k=0.

To conclude the discussion of the casev=4, we would
like to underline the enormous advantage of CPT in the
strong-coupling regime. It permits us to perform calculations
on a very small clustersN=4d—sufficient to obtain well-
converged results—but still yields the spectral function at
any desiredk.

B. Intermediate phonon frequency

In the preceding section, we have investigated in detail
the signatures of polaron and bipolaron states in the one-
particle spectrum forv=4. Owing to the large energy of
phonon excitations, most of the spectral weight resides in the
corresponding bands, allowing a fairly easy identification.
We now consider the casev=1, which turns out to be more
difficult to study numerically and to interpret. Nevertheless,
work in the regimevø1 is highly desirable to understand
many interesting strongly correlated systems such as, e.g.,
the manganites. Although the latter are usually characterized

FIG. 2. sColor onlined Density plot of the spectral function
A↑sk,ed for v=4.0, U=0, andl=0.5, as shown in Fig. 1sad. The
symbols correspond to VDM results forE↑s0d+E↑skd ssquaresd and
E↑↓skd scrossesd, respectivelysRef. 44d.
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by v! t, quantum effects are already visible forv= t. As a
consequence, previous authors4,17,34–36,38have often focused
on this case, which is numerically much easier to tackle than
the regionv!1. The casev!1 has been considered, e.g.,
by Welleinet al.30 and Weißeet al.32,41While the discussion
for v=4 was restricted toU=0, here we shall also take into
account a finite Coulomb repulsion.

1. U=0

Since converged results forv=1 require more phonon
states than forv=4, we have slightly reduced the cluster
sizes in our calculations. Consequently, finite-size effects are
larger, as discussed below. Moreover, we are not able to
reach the strong-coupling regime but instead restrict the
range ofl to 0.5-1.25.

Figure 3 contains the one-particle spectra forU=0. In
principle, for l=0.5, the results look quite similar to Fig.
3sad. However, the spectral weight of the two coherent bands
is much smaller, as a consequence of the increased impor-
tance of incoherent excitations forv=1. In particular, the
weight of the latter is strongly enhanced at largek, so that the
bands are no longer easy to identify. Therefore, and because
of the strong mixing of the bands with coherent and incoher-
ent excitations, it becomes difficult to accurately determine
the spectral weight by integration over the CPT spectra.

We see from Fig. 3 that the bipolaron bandwidth is much
smaller forv=1sW8 /W<0.1d than forv=4 fFig. 1sadg, de-
spite the fact that the value ofl is the same in both cases.
Hence, the effect of el-ph interaction on the bipolaron mass
is much more pronounced in or near the adiabatic regime due
to the larger mass of the oscillators.

In principle, the spectrum also contains coherent excited
states which are separated from the lowest-energy band by
less than the phonon energyv. However, owing to the rather
complex structure of the spectrum in the two-electron case,
they are difficult to distinguish from the other contributions.
A direct calculation of excited states in the Holstein model
with one electron has recently been presented by Barišić.46

Finally, the relation betweenA↓ andA↑ is very similar tov
=4.

As we increase the el-ph coupling, the bipolaron disper-
sion collapses to an extremely narrow bandfFig. 3sbdg. This
cross over is again associated with a significant loss of spec-
tral weight. At k=0, for example, we find a reduction from
about 0.50 atl=0.5 to about 0.14 atl=0.75. Increasingl
further to 1.25, we finally arrive at a bipolaron band with
W8 /W<10−4 and a spectral weight of less than 0.03 atk
=0. Similar to Fig. 1sdd, the spectrum displays several bands
equally spaced byv, which belong to states with one or
more phonons excited. Moreover, the polaron and bipolaron
bands are well separated, and the incoherent contributions
dominate at largek.

The agreement between the bipolaron band dispersion and
E↑↓skd in Fig. 3 is again very good. Similar tov=4, the
condition for a small bipolaron is given byl.0.5, so that
CPT yields very accurate results. In contrast, the two-polaron
energyE↑s0d+E↑skd fits less well to the corresponding bands
in the spectral function. We attribute this difference to the
antiadiabatic regimesFig. 1 to the stronger retardation effects
for v=1. As a consequence, the polaron state is more ex-
tended below the small-polaron cross over occurring atl
=1 ssee, e.g., Id, leading to a stronger residual interaction on

FIG. 3. sColor onlined Spectral functionsA↑sk,«d ssolid linesd andA↓sk,«d sdashed linesd calculated with CPT for different values of the
el-ph couplingl, using h=0.05t. All other parameters as indicated in the figures. The truncation errors areD, sad 9.1310−5, sbd 9.0
310−5, scd 1.2310−7, sdd 2.4310−6. The vertical lines correspond to variational diagonalization results for the polaron and bipolaron band
dispersionsE↑s0d+E↑skd sdashedd andE↑↓skd ssolidd, respectivelysRef. 44d.
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a finite cluster, which also manifests itself in the CPT results.
In contrast, forv=4, the lattice distortions around the elec-
trons are very localized, and the two polarons are almost
independent. Abovel=1, i.e., in the small-polaron regime,
the two-polaron dispersion forv=1 again follows closely a
two-polaron-like feature in the spectrumfFigs. 3scd and
3sddg.

2. U=4

So far, we have only presented results forU=0, for which
a bipolaron state is always favored. However, in materials
such as the cuprates or the manganites, strong local correla-
tions hinder the carriers from forming on-site bipolarons
even for strong el-ph coupling. To model such effects, we
therefore consider here a finite value of the el-el repulsion
U=4.

In the case of two electrons with opposite spin, the Lanc-
zos results for the cluster Green function converge faster as a
function ofNph for U.0 compared toU=0 as a result of the
reduced effective el-el interaction. This is fortunate, since it
allows us to use slightly larger clusters, thereby partly com-
pensating for the increased finite-size effects due to the spa-
tially more extended ground state in the weak-coupling re-
gime.

From the general discussion in Sec. II, we expect the
ground state to consist of two weakly bound polarons for
2EP,U, and a crossover to a bipolaron state at a critical
value of the el-ph interactionl. In the antiadiabatic limit, the
latter is determined by 2EP=U si.e., l=1 for the case con-
sidered hered for weak coupling, and by 4EP=U for strong
coupling.

In Fig. 4, we present the results for the spectral function,
again forl=0.5–1.25. For weak couplingl=0.5 fFig. 4sadg,
the most striking difference from theU=0 case discussed
above is the fact that there appears only one band at low
energies. Together with the incoherent contributions, and tak-
ing into account the doubling of the number of carriers lead-
ing to a shift of energies, the spectrum bears a close resem-
blance to that of a single polaron with the same parameters
sFig. 3 of Id. This is also underlined by the polaron and
bipolaron band dispersions shown in Fig. 4sad, which are
almost identical throughout the Brillouin zone, and lie just
below the corresponding band in the spectral function. In
particular, the band displays the typical flattening at larģe k,
where the low-energy excitations have mostly phononic
character. Furthermore, owing to the finite on-site repulsion,
the low-energy band inA↓ is very similar to that inA↑ since,
for finite U and weak el-ph coupling, the singlet ground state
consists of two weakly bound polarons. Consequently, the
singlet and triplet states have comparable energies, although
the spectral weight inA↓ is again very small neark=0.

For l=0.75 fFig. 4sbdg, the ground state of the system is
still given by two polarons, and the spectrum is almost in-
distinguishable froml=0.5. In the present case, the condi-
tion for the existence of an intersite bipolaron is expected to
lie between the weak- and strong-coupling resultsU,2EP
andU,4EP.17 However, owing to its small binding energy,
the intersite state is difficult to distinguish from the two-
polaron state in the spectral function.

At l=1.0 fFig. 4scdg, the band inA↑ begins to split. Al-
though the energy difference between the polaron and bipo-
laron band dispersions is still relatively small neark=0, an

FIG. 4. sColor onlined Spectral functionsA↑sk,ed ssolid linesd andA↓sk,ed sdashed linesd calculated with CPT for different values of the
el-ph couplingl, using h=0.05t. All other parameters as indicated in the figures. The truncation errors areD, sad 3.3310−5, sbd 2.0
310−5, scd 9.9310−6, sdd 6.7310−7. The vertical lines correspond to variational diagonalization results for the polaron and bipolaron band
dispersionsE↑s0d+E↑skd sdashedd andE↑↓skd ssolidd, respectivelysRef. 44d.
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excitation gap clearly emerges at largerk. Finally, at l
=1.25, two distinct bands with similar spectral weight have
formed, which agree very well withE↑↓skd and E↑s0d
+E↑skd, respectively. Interestingly, the band in the triplet
spectral functionA↓ lies noticeably higher than the polaron
band in A↑. Thus, for the parameters considered here, two
polarons of opposite spin can lower their total energy by
occupying the same lattice site, which is just the mechanism
behind bipolaron formation.

The abovementioned discrepancies between the bipolaron
band dispersionE↑↓skd obtained by Shawish and the band in
A↑ are a result of finite-size effects in the CPT calculations.
The latter become smaller with increasing couplingl to-
gether with the size of the bipolaron, and forl=1.25 we find
a very good agreementfFig. 4sddg. To illustrate this point, we
compare in Fig. 5 the spectral functionA↑ at k=0, l=0.5,
and for different cluster sizesN, calculated using ED with
periodic boundary conditionssleft columnd and CPTsright
columnd, respectively. The results reveal that for weak cou-
pling and intermediateU, ED is superior to CPT concerning
the convergence of the peak positions with respect to system
size. This is not surprising as CPT is based on a strong-
coupling expansion in the hopping term.7 Here, the el-el and
el-ph interactions are both of about the same magnitude as
the hopping, so that the method does not work as well as for
U=0.

For U.0, finite-size effects in both CPT and ED are
larger due to the extended bipolaron state which exists for
weak coupling. Similar to the one-electron case discussed in
I, deviations from the exact results due to the finite cluster
size are usually smallest fork=0, while they become larger
with increasingk. Although in Fig. 5 the positions of the
peaks in the CPT spectral function are slightly less accurate
than in the case of ED, the weights of the excited states
resemble more closely the results in the thermodynamic
limit.

Finally, for U.4, the crossover to a small bipolaron oc-
curs at even larger values ofl. Apart from the change of the

critical coupling, the physics is not altered significantly.
Therefore, we have restricted our discussion of the spectral
function to Uø4, but some results for the bipolaron band
dispersion atU=8 will be presented below.

3. Bipolaron band dispersion

The bipolaron band dispersionE↑↓skd has been calculated
before by Welleinet al.30 and Weißeet al.32,41 for small
phonon frequenciesv=0.4 and v=0.5, respectively. Re-
markably, for parametersU.0 andl.0 such that the ef-
fective interactionUeff=0 fEq. s3dg, they found a renormal-
ized, free-particle dispersion relation.32,41 In this section, we
wish to extend these considerations to the casev=1, and to
infinite systems. While the narrowing effect due to el-ph in-
teraction has been discussed above, here we focus on the
form of the band.

Owing to the limited energy resolution and finite-size ef-
fects in the CPT results shown above, we use the more ac-
curate data from the VDM. In Fig. 6, we show Shawish’s44

results for the bipolaron energy as a function ofk, for differ-
ent values ofU and l. To permit a direct comparison, we
have scaled all curves to the intervalf21,0g, with the actual
bandwidths given in the legend.

We begin with the regime of a strongly bound small bi-
polaron. To this end we consider the caseU=0 andl=1.25.
The corresponding band resembles quite closely a cosine dis-
persion, with some deviations being visible aroundk=p /2.
A different behavior is found for finiteU=4, as well as weak
couplingl=0.5. For these parameters, which favor a ground
state with two polaronsfsee Fig. 4scdg, the form of the band
is remarkably different from a simple tight-binding disper-
sion for nearest-neighbor hopping. This is still true forl=1,
although a trend toward a cosine dispersion is visible. For
even largerU=8, the noncosinelike form persists even for
l=1.

It is worth mentioning the great similarity of the results
for U=4 andU=8 in the weak-coupling regime, which fol-

FIG. 5. Comparison of the spectral functionA↑s0,ed calculated
with ED and CPT, respectively, for different cluster sizesN, using
h=0.05t. The crosses correspond to the VDM result for the bipo-
laron energyE↑↓s0d sRef. 44d.

FIG. 6. Bipolaron dispersionE↑↓skd as a function of the wave
vectork sRef. 44d. Also shown is the bare tight-binding dispersion
for nearest-neighbor hopping, and a fit to the results forU=4, l
=0.5 using a dispersion for nearest- and next-nearest-neighbor hop-
ping ssee textd. All curves have been scaled to the intervalf21,0g,
with the actual bandwidths given in the legend.
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lows from the fact that once the smallson-sited bipolaron
state is energetically unfavorable for the two electrons due to
the Coulomb repulsion, a further increase of the latter has
very little effect. On top of that, the intersite bipolaron state
which exists forU.0 has a very small binding energy, so
that the band dispersion is almost the same as that of two
polarons.

To identify the origin of the deviations from a free-
electron band, we also included in Fig. 6 a fit of a free-
electron model with nearest- and next-nearest-neighbor hop-
ping to the band forU=4 and l=0.5, which yields an
amplitudet8<0.6t for two-site hopping processes. As pro-
posed by Welleinet al.,30 the importance of long-range hop-
ping for the band dispersion of a single polaron may be due
to a residual polaron-phonon interaction, with the phonons
and the polaron residing on different sites. Since we find
substantial deviations of the bipolaron band from a cosine
dispersion only in the regime of two weakly bound polarons,
it stands to reason to assume the same underlying mecha-
nism.

Finally, we would like to comment on the fact that despite
Ueff=0 for U=4 andl=1 in Fig. 6, we do not have a simple
cosine band, in contrast to the findings of Welleinet al.30 and
Weißeet al.,41 which have been attributed to the formation of
an intersite bipolaron.41 In contrast, here we observe non-
cosinelike behavior even in the regime where an intersite
state exists. These differences are expected to be a result of
the larger value of the phonon frequencysherev=1, while
v=0.4 and 0.5 in Refs. 30 and 41, respectivelyd, leading to a
noticeable reduction of retardation effects. Moreover, since
the critical couplinglc decreases asv→0, the bipolaron is
more strongly bound in the work of Refs. 30 and 41, thereby
suppressing the abovementioned nonlocal phonon-polaron
interaction. Further work along these lines is highly desirable
to understand the dependence of the bipolaron band disper-
sion on the phonon frequency in the regimevø1.

V. CONCLUSIONS

We have presented a detailed study of the one-electron
spectral function of the Holstein-Hubbard model with two

electrons of either the same or opposite spin. The method
employed here is cluster perturbation theory together with
the Lanczos method, which represents a versatile and fast
approach.

As a function of the electron-phonon and electron-
electron interaction strength, polaron and bipolaron states
manifest themselves as quasiparticle bands, and results have
been compared to accurate data for the bipolaron energy dis-
persion. For weak coupling and/or intermediate to strong
Hubbard repulsion, finite-size effects are visible, but are
much smaller than in previous work restricted to small clus-
ters. The major advantage of the present method is that the
spectrum can be obtained at any point ink space, even when
using clusters with only a few lattice sites for which enough
phonon states can be kept in the calculation. This has al-
lowed us to investigate the dispersion and the spectral weight
of the quasiparticle features throughout the Brillouin zone.
The results and their dependence on the model parameters
have been discussed, and a perfect agreement has been found
with the physical picture of the Holstein-Hubbard bipolaron
emerging from previous work. A comparison of the bipo-
laron dispersion with a simple tight-binding band has re-
vealed an important contribution from next-nearest-neighbor
hopping processes in the regime of a weakly bound state.

Finally, the adiabatic regime of small phonon frequencies,
characteristic of many real materials, remains an interesting
and demanding open issue for future work.
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