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The superfluid to Mott insulator transition in cavity polariton arrays is analyzed using the variational
cluster approach, taking into account quantum fluctuations exactly on finite length scales. Phase diagrams
in one and two dimensions exhibit important non-mean-field features. Single-particle excitation spectra in
the Mott phase are dominated by particle and hole bands separated by a Mott gap. In contrast to Bose-
Hubbard models, detuning allows for changing the nature of the bosonic particles from quasilocalized
excitons to polaritons to weakly interacting photons. The Mott state with density one exists up to tem-
peratures T/g = 0.03, implying experimentally accessible temperatures for realistic cavity couplings g.
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The prospect of realizing a tunable, strongly correlated
system of photons is exciting, both as a testbed for quan-
tum many-body dynamics and for the potential of quantum
simulators and other advanced quantum devices. Three
proposals based on cavity-QED arrays have recently
shown how this might be accomplished [1-3], followed
by further work [4—8]. Engineered strong photon-photon
interactions and hopping between cavities allow photons
(as a component of cavity polaritons) to behave much like
electrons or atoms in a many-body context. It is clear that a
particular signature of quantum many-body physics, the
superfluid (SF) to Mott insulator (MI) transition, should be
reproducible in such systems and be similar to the widely
studied Bose-Hubbard model (BHM). Yet, the BH analogy
is not complete. The mixed matter-light nature of the
system brings new physics yet to be fully explored.

“Solid-light”” systems—so-named for the intriguing MI
state of photons they exhibit—are reminiscent of cold
atom optical lattices (CAOL) [9], but have some advan-
tages concerning direct addressing of individual sites and
device integration, and the potential for asymmetry con-
struction by individual tuning, local variation, and far from
equilibrium devices [4]. Photons as part of the system serve
as excellent experimental probes, and have excellent “fly-
ing” potential so that they can be transported over long
distances. Temporal and spatial correlation functions are
accessible, and nonequilibrium quantum dynamics may be
studied using coherent laser pumping to create initial
states. The possible implementations are many [1]. In
particular, microcavities linked by optical fibers [2,10],
small arrays of stripline superconducting Cooper-pair
boxes or ‘“‘transmon’ cavities [1,11], condensate arrays
[12] and color center or quantum dot periodic band-gap
(PBG) materials [1,5] seem most promising.

Here we focus on the simplest solid-light model [1],
describing L optical microcavities each containing a single
two-level atom with states ||), |T) separated by energy e.
The Hamiltonian reads (& = 1)
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HIC = |11 + w()ajai + g(11: X la; + |li><Ti|a,T)'

Here w, is the cavity photon energy, and A = w, — €
defines the detuning. Each cavity is described by the
well-known Jaynes-Cummings (JC) Hamiltonian H'C.
The atom-photon coupling g (a;r , a; are photon creation
and annihilation operators) gives rise to formation of polar-
itons (combined atom-photon excitations) whose number
Np = Zi(a;ra,» + |1,X1;1) is conserved and couples to the
chemical potential p [7]. We consider nearest-neighbor
photon hopping with amplitude ¢, define the polariton
density n = (N,)/L, use g as the unit of energy and set
o/ g [13], kz and the lattice constant to one.

Hamiltonian (1) represents a generic model of strongly
correlated photons amenable to numerical methods.
Existing theoretical work has focused on mean-field cal-
culations [1], exact diagonalization of few-cavity systems
[2,3,7], and the 1D case [8]. Here we employ a quantum
many-body method for the thermodynamic limit to explore
the physics of the model. In particular, quantum fluctua-
tions on a finite length scale are included. We discuss Mott
lobes (also at experimentally relevant finite temperatures),
the effect of detuning and for the first time in such systems
calculate single-particle spectra, a necessary connection to
experiment and also a key metric in early proof of concept
calculations of CAOL systems.

The variational cluster approach (VCA)—introduced
first for strongly correlated electrons [14]—has previously
been applied to the BHM [15]. The main idea is to ap-
proximate the self-energy 2 of the infinite system by that
of a finite reference system. The matrix notation includes
orbitals and bosonic Matsubara frequencies, 3 =
3,p(iw,). The optimal choice for % follows from a gen-
eral variational principle §Q[2] = 0, Q) being the grand
potential. Trial self-energies from isolated clusters (with
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L. sites) are parametrized by the one-particle parameters
& =11, €, w§, u} of the reference-system Hamiltonian,
ie., X = X(&°). For bosons [15],

Q=0+ Trin(G,' —2)"' = Trin(G°).  (2)

Here, ¢, G¢, and X are the grand potential, Green’s
function, and self-energy of an isolated cluster, and G, is
the noninteracting (g = 0) Green’s function. G, G¢, and 3,
are evaluated at bosonic Matsubara frequencies iw,, and
traces include frequency summation. The stationary solu-
tion is given by 9Q)/9&¢ = 0. Traces can be evaluated ex-
actly using only the poles of the Green’s function but not
their weights [14,15]. The poles w,, of G,! — 3 are ob-
tained from a bosonic formulation of the Q-matrix method
[16]. At temperature T > 0, the required matrix diagonal-
ization restricts L. and T,,.. For simplicity, we restrict
ourselves to a single variational parameter £¢ = wy.

The full quantum dynamics are taken into account ex-
actly on the length scale of the cluster L., and even for
L. =1 VCA results are beyond the mean-field solution
[1,15]. The present formulation cannot describe the prop-
erties of the SF phase, as the required symmetry-breaking
term I:I¢ = 1//2,-(41;r + a;) cannot be cast into a single-
particle operator. However, this does not affect the accu-
racy of the phase boundary of the MI. The numerical effort
is very moderate as compared to, e.g., the density matrix
renormalization group [8], and the VCA provides T = 0
and T > 0O static and dynamic properties in one and two
dimensions.

The T = 0 phase diagram in one (chain) and two di-
mensions (square lattice) is shown in Fig. 1. There exists a
series of Mott lobes with integer polariton density n;,, =
0,1, ... and compressibility k = dn/du = 0 [1]. In con-
trast to recently proposed photonic MI phases [4], (afa)
fluctuates even for constant, integer n. Inside the lobes,
where the VCA yields a solution, the system has an energy
gap E, , (E,;) for adding a particle (hole) equal to the
vertical distance of p from the upper (lower) phase bound-
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FIG. 1 (color online). Ground-state phase diagram: (a) 1D,
(b) 2D, and (c) different coordination numbers z. Lines are
guides to the eye.

ary [17]. The spacing of the points u, = wy + g(\/n —
v/n + 1) where adjacent lobes touch at /g = 0 decreases
quickly with increasing n, in contrast to the BHM where
M, = Un. Convergence with cluster size L. is surprisingly
fast. The 1D data agree well with exact results, although
the VCA slightly underestimates #* (the value of ¢ at the
lobe tip, t*/g = 0.2 in [8]). Figure 1(b) represents the first
accurate (non-mean-field) phase diagram in two dimen-
sions, arguably the most important case for experimental
realizations.

For t/g =0, the MI states are [];|¢,);, where the
n-polariton eigenstate of H’C (the |—, n) branch in [1]) is
a superposition of photonic (|, n), with n photons) and
excitonic states (|1, n — 1)),

l.) = n(A, n)lL,n) + ¢(A, n)|T,n = 1. 3)

Lobes with n > 1 are much smaller due to the effective
polariton repulsion decreasing with n, and we focus on the
n =1 case for which quantum effects are strongest, and
which can be easily initialized experimentally.

Figures 1(a) and 1(b) show significant deviations from
the parabolic lobes predicted by mean-field theory in both
one and two dimensions. However, quantum fluctuation
effects diminish quickly with increasing coordination num-
ber z [Fig. 1(c)]. In particular, the reentrant behavior with
increasing ¢/g [18] and the cusplike tip indicative of the
Berezinskii-Kosterlitz-Thouless transition [19] exist only
for z = 2.

Spectral properties play a key role in understanding
condensed matter systems, but are notoriously difficult to
calculate accurately. In cavities, the occupation and spectra
can be directly monitored through luminescence spectra,
with angular emission translating into momentum k, much
more straightforward than in CAOL.

The VCA yields the single-particle spectral function
A(k, o) = —7 'ImG(k, w), shown in Fig. 2 for the pa-
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FIG. 2. Single-particle spectra at T = 0 in one dimension [(a)—
(¢), L. = 6] and 2D [(d)—(f), L. = 2 X 2]. I-III refer to the
marks in Fig. 1, i.e., (a) t/g = 0.16, (b) 0.08, (c) 0.01, (d) 0.05,
(e) 0.02, (f) 0.005.
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rameters marked in Fig. 1. Important for detection in
experiment, the MI state is characterized by cosinelike
particle and hole bands, separated by the Mott gap E,,
minimal at k = 0, which decreases with increasing ¢/g,
and eventually closes in the SF phase. The phase bounda-
ries w+ are related to the particle or hole dispersions
g,k =0,1) via u (1) = £,(0,1) and u_(1) = &,(0, 1),
and the Mott gap is given by E, (1) = €,(0,1) — &,(0,1)
[20].

For t < 1*, particles are much lighter than holes (e.g.,
tm, =~ 0.33, tm;, = 0.81 in Fig. 2(c); obtained from para-
bolic fits). The particle or hole bandwidth scales almost
linearly with #, confirming the weakly interacting Bose gas
picture for the superfluid fraction of particles/holes doped
into the MI [19]. The hole bandwidth in both one and two
dimensions is about z¢. For the BHM model, the ratio of the
bandwidths is W,/W,, = 2 for the MI with n = 1 due to
the effective particle (hole) hopping ¢, = (n + 1)t (1), =
nt) [15,21]. For the JCM, the matrix elements for hop-
ping of one particle or hole in the MI have to be evaluated
using the dressed states |¢,,), and we find W, /W), = 3/2 +
V2 =291 in one dimension, in good agreement with

Figs. 2(a)—2(c). The bandwidth ratio is fairly independent
of t/U, respectively, t/g because the interaction energy of
a single particle or hole is the same at every site. In the
BHM, emergent particle-hole symmetry leads to m, =
my, — 0 for t — ¢* [22]. This behavior is also seen in the
JCM (m,,/m;, = 1.3 for t = 0.16 in 1D), but the VCA does
not permit a detailed analysis near #*.

In contrast to CAOL, the parameters € and w and hence
the detuning A = € — w, can easily be changed experi-

mentally. This permits to tune the character of the bosonic
particles. The states |¢,) are excitonlike for wy > e,
photonlike for wy < €, and polaritonlike for w, = €.
The 1D phase diagrams for A/g = =2 are shown in
Figs. 3(a) and 3(b). The excitonic system (A/g = 2) with
small photon-mediated hopping exhibits a large n =1
Mott lobe, whereas the latter is very small in the photonic
system with small exciton-mediated interaction. Reentrant
behavior due to quantum fluctuations is seen for the ex-
citonic case, but is absent in the photonic case for large
enough L.

Single-particle spectra in one dimension near the lobe
tips are shown in Fig. 3(c) and 3(d). The excitonic system
shows a very large ratio of particle and hole bandwidths
(W,/W, = T), whereas W,/W, =~ 2.1 (very close to the
BHM, since |i,) = ||, 1)) for the photonic case. These
values result from the different admixture of the states
[1,0) and ||, 1) to |¢,) depending on A. In particular, the
approximate relation W, = zt found for A = 0 does not
hold. The excitonic MI with n = 1 is approximately given
by [:I1, 0);, whereas we have [];|l, 1); for the photonic
case. Finally, the incoherent features in Fig. 3(c) may
originate from the finite cluster size L., and should be
addressed using other exact methods.
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FIG. 3 (color online). Phase diagram for detuning (a) A/g =
-2, (b) A/g = 2, and spectra for (c) A/g =2, t/g = 0.7, and
(d) A/g = =2, t/g = 0.0.018 in one dimension at T = 0.

Solid state quantum devices will operate at finite tem-
perature, much higher than in CAOL (estimated at nK).
This leads to the important question of the stability of the
MI state at 7 > 0, which will ultimately determine their
technological usefulness. Strictly speaking, there is no true
MI at T > 0 due to thermal fluctuations. However, there
exist regions where fluctuations are small enough for the
system to behave like a MI for experimental purposes [23].
We determine the region of existence of the MI using the
stringent criterion An = |n — ny,| = 1074, corresponding
to a “worst case scenario’”, since experimentally the MI
will survive as long as the Mott gap ~g is large compared
to thermal fluctuations.

Results for A = 0 are shown for one and two dimensions
in Fig. 4. Finite-size effects diminish quickly with increas-
ing temperature [see Fig. 4(a)]. The size of the n = 1 Mott
lobe is significantly reduced with increasing temperature,
and An exceeds 10”* at T*/g = 0.03 in both one and two
dimensions. This value is consistent with the onset of
deviations of n from 1 in the exact atomic-limit results,
and agrees with the few-cavity results of [7]. Lobes with
n > 1 disappear at much lower temperatures (not shown).
In contrast to 7 = 0, Mott lobes with » and n = 1 do not
touch at /g = 0, but are surrounded by the normal fluid
(NF) phase for sufficiently small ¢/g, and a transition NF-
SF occurs at larger ¢/g. However, while the VCA can
distinguish between the MI and the NF, the phase boundary
to the SF at 7 > 0 cannot be determined accurately. The
gap in A(k, w) increases with 7' [23]. Particle or hole bands

216401-3



PRL 100, 216401 (2008)

PHYSICAL REVIEW LETTERS

week ending
30 MAY 2008

T T T T T T T

I eeT/g=0.00(L,=6) |
03 =aT/g=001(L =2)]
I 5oT/g=001(L,=4) |
04 —T/g=002(L =2

s L +aT/g=003 (L =2) |
o 03:::::&“ =) |
=

0.2f J

0.1 B

L " L " L " L "
0.04 0.08 0.12 0.16 0.2

T T T

eeT/g=0 1
®)2D.A=0] . 7/5=0.005
L =1x1) +*Tg=001

g +aTig=0.02
> T/g = 0.03

0.5

04

o0
=03
=

0.2

0.1

FIG. 4 (color online). Mott-like regions for different 7.

are still well defined at T > 0, and spectra (not shown) look
very similar to 7 = 0. Excitation spectra of the NF and SF
deserve detailed future studies.

The quasi-MI lobes in Fig. 4 are dominated by the point
(t=0, u = 0.3) where Eg is maximal and by the T =0
lobe tip (u*, t*). The MI is destroyed by thermal excitation
of particles or holes, and therefore survives longest near
p = 0.3 where the energy cost is largest. Besides, 7" is
determined by the size of the lobe at T = 0, t = 0. Hence,
the system at T > 0 is dominated by atomic-limit physics
(yielding the same T* in 1D and 2D) and the T = 0 fixed
point (quantum critical point) of the MI-SF transition [19].
For the 1D BHM [19], the VCA yields T*/U = 0.059,
lower than T*/U = 0.2 found in [24] using a different
criterion [25]. The ratio of the critical temperatures for
the 1D JCM and 1D BHM is 0.56, close to the ratio of the
t =0, T = 0 Mott gaps (0.59).

Solid state cavity-QED systems offer the possibility of
large g. Taking a conservative estimate g = 10' Hz [1]
gives for the effective temperature of the quantum system
T* = 14 mK. Even taken as the actual temperature, this is
well accessible experimentally. The hopping rate 1/7 has to
be fast enough to permit equilibration before photon loss
and dephasing set in. Indeed, taking /g = 0.01 (inside the
Mott lobe in Fig. 4(b)], we obtain a realistic ! = 0.14 ps.
Finally, T* for the n = 1 Ml is enhanced by detuning A >
0 [Fig. 3(a)], which additionally increases r* and |u*|,
estimated as (u*, r*) = (0.08,0.02) meV in two dimen-
sions for T = A = 0.

In summary, motivated by theoretical predictions and
ongoing experimental advances, we have studied polariton
Mott phases by means of a versatile quantum many-body
approach. Phase diagrams, single-particle spectra and fi-
nite temperature effects have been related to the known

features of Bose-Hubbard models and possible experi-
ments, and the novel physics emerging from detuning has
been explored.
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