I. INTRODUCTION

One salient aspect of the high-T_c materials is the vicinity of two, at first sight rather different, states of matter, superconductivity (SC) and antiferromagnetism (AF), in their phase diagram. The transition between the undoped (AF) system at half filling and the SC phase is driven by doping with mobile holes. In most of the materials, this transition is not direct, and a disordered “spin-glass” phase occurs in between. However, it has been argued that the “clean” material would display a direct transition from AF to SC phases, and that the spin-glass phase occurs due to the high sensitivity to impurity disorder in the vicinity of the phase transition.

A direct transition from an insulating into a SC phase in a quasi-two-dimensional system (such as the high-T_c materials) is a very interesting, yet insufficiently understood issue. In fact, it is not clear whether this transition is second order down to zero temperature, and thus is related to a quantum critical point, or whether there is a finite-temperature classical bicritical point. In the framework of the projected SO(5) theory of high-T_c superconductivity,1 it has been suggested that the AF and the SC phases may indeed coexist in some portion of the temperature versus doping phase diagram. Another open question is the nature, i.e., the universality class of this transition. For example, it has been suggested that this transition may be controlled by an SO(5)-symmetric fixed point.2 SO(5) symmetry is thus restored in the long-wavelength limit,3 and AF and SC can be described in terms of a unique superspin vector4 in the vicinity of the critical point.

Many efforts have been directed towards studying the AF-SC transition in strongly correlated lattice models by numerical techniques such as quantum Monte Carlo (QMC) simulations. As a relevant model, the Hubbard model, is widely accepted for the description of salient features of high-T_c materials. Unfortunately, it is quite difficult to study large enough Hubbard-model systems by QMC, due to the occurrence of the minus-sign problem at finite doping. The numerical problem can, in principle, be cured, if one can drive the AF-SC transition by means of a parameter, alternative to the doping, which conserves particle-hole symmetry and therefore avoids the tedious minus-sign problem. This idea was followed through by Assaad, Imada, and Scalapino (AIS) (Ref. 6) in terms of their so-called t-U-W model. It rests on adding an interaction term W, which depends on the square of the nearest-neighbor hopping. This W term can be obtained from a Su-Schrieffer-Heeger-type of electron-phonon interaction in the adiabatic limit.5 In QMC simulations6–10 this t-U-W model exhibits a transition from an antiferromagnet to a d-wave superconductor at half filling and at a critical value of the interaction $W_c = 0.3t$ ($U = 4t$, $T = 0$ K). The QMC data of AIS supports the picture of a continuous quantum phase transition in the sense that the magnetization vanishes continuously at the critical point. The disadvantage of the t-U-W model is that the bandwidth grows substantially with W. Therefore one of us11 suggested to introduce a phase factor in the W term which has a d-wave-like symmetry. Although this latter model solves the problem of the bandwidth, the existence of a phase transition to a d-wave superconductor remains open.

While QMC calculations provide an essentially exact description of the properties of the model, semianalytical, i.e., diagrammatic, calculations allow for a more direct under-
standing of the processes which are responsible for a given phenomenon. For this reason, in this paper we carry out a systematic diagrammatic study of the t-U-W model.

We first consider in Sec. III the simple Hartree-Fock level, which, due to the complexity of the interaction terms, allows for different broken-symmetry phases. However, a careful comparison of the energies of these phases shows that the antiferromagnetic phase is always the stabllest one, even for very large values of W. This holds for both versions of the t-U-W model which are considered, i.e., with and without phase factors. Moreover, the only allowed superconducting solution in the simple t-U-W model has an s-wave symmetry, while d-wave symmetry is not allowed. These mean-field results are in strong contrast with the QMC calculations, which predict a transition to a d-wave SC state at some finite W. On the other hand, in the AF region our mean-field results are in very good accord with QMC, in particular concerning single-particle dispersions, as shown in Sec. III.

The fact that the transition to the superconducting state does not come out correctly is of no surprise within an Hartree-Fock approximation. Indeed, the relevant transition does not come out correctly is of no surprise within an Hartree-Fock approximation. Indeed, the relevant transition does not come out correctly is of no surprise within an Hartree-Fock approximation. Indeed, the relevant transition does not come out correctly is of no surprise within an Hartree-Fock approximation.

Next, in some analogy to the RPA analysis of the t-U Hubbard model by Schrieffer, Wen, and Zhang, we derive the effective two-particle interaction vertex in the static limit, and solve the associated BCS equation. As for the simple Hartree-Fock Green’s functions, in order to obtain the frequency- and momentum-dependent spin and charge susceptibility. The solution of the corresponding Bethe-Salpeter equation is technically quite difficult to achieve and significantly more demanding than the standard case of the simple Hubbard model. This is due to the finite extension of the interaction, as well as its dependence on all (three) momenta, and not on the momentum transfer only. By changing to a mixed real-space momentum-space representation, we demonstrate that it can be reduced, for generic momenta, to the inversion of a 52×52 matrix.

In the d-wave phase, we obtain a decreasing superconducting gap as a function of W, in spite of the fact that the attraction between the quasiparticles should be increased by W. This is due, on the one hand, to the approximation of taking an energy cutoff for the effective interaction, which has been chosen to be of the order of the AF gap, which, in turn, decreases with increasing W. On the other hand, the reduction of the density of states at the Fermi level, which is related to the broadening of the bands produced by W, contributes in reducing the superconducting gap.

Our paper is organized as follows. In Sec. II the t-U-W model with and without phase factors is introduced, and briefly summarized. In Sec. III, we carry out the Hartree-Fock (HF) mean-field study of the antiferromagnetic phase. We discuss the HF results and compare them with QMC calculations. In Sec. IV we derive and solve the Bethe-Salpeter equation, i.e., we account for fluctuation effects in the time-dependent HF or generalized RPA scheme. We obtain spin and charge susceptibilities, as well as the effective interaction vertex. In Sec. V, we write down and solve the BCS gap equation, obtained from this effective interaction within a static approximation. Finally, we present our conclusions in Sec. VI, partly based on detailed comparisons with QMC data.
fourth term which generates singlet pair hopping and produces an antiferromagnetic exchange interaction, i.e.,

\[H^{(4)}_{\text{eff}} = -2W \sum_{i,\delta,\delta'} f(\delta) f(\delta') \Delta_{i,\delta}^{\dagger} \Delta_{i,\delta}. \tag{5} \]

where \(\Delta_{i,\delta}^{\dagger} = (c_{i+1,\delta}^{\dagger} c_{i,\delta} - c_{i,\delta}^{\dagger} c_{i+1,\delta})/\sqrt{2} \). For \(\delta = \delta' \) the terms in \(H^{(4)}_{\text{eff}} \) contribute to the exchange giving

\[2W \sum_{i,\delta} (S_i \cdot S_{i+\delta} - \frac{1}{2} n n_{i+\delta}). \tag{6} \]

III. HARTREE-FOCK CALCULATIONS

The details of our HF calculation are given in the Appendix. After solving the self-consistent equations for the mean-field parameters in Eqs. (A5)–(A7) and (A20)–(A22) (Appendix), we arrive at the following results.

Figure 1 displays the free energy of the different phases (antiferromagnetic, superconducting, and paramagnetic) for the simple \(t-U-W \) model (top) and the \(t-U-W \) model with phase factors (bottom) as a function of \(W \) for fixed \(U = 4t \) and \(T = 0 \) K. For the sake of comparison, we only plot the difference to the paramagnetic energy.

In the simple \(t-U-W \) model (Fig. 1, top) the antiferromagnetic solution (AF) is always the most favorable. However, with increasing \(W \) the energy of this solution approaches the paramagnetic solution (PM). The superconducting solution (SC) has a much higher energy than the other solutions. The only possible superconducting solutions have \(s_1 = s_3 = 0 \) (see the Appendix: no on-site pairing, due to \(U \)) and \(s_2 \neq 0 \) (nearest-neighbor singlet pairing), while for \(W \leq 0.3t \) there exists no superconducting solution. The superconducting order parameter \(s_2 \) corresponds to an \(s-wave \)-like symmetry. The transition from an antiferromagnet to a \(d_{x^2-y^2} \) superconductor observed in QMC simulations is not reproduced at the mean-field level.

In the \(t-U-W \) model with phase factors (Fig. 1, bottom) the mean-field ground state is also antiferromagnetic (AF). Here, however, in contrast to the simple \(t-U-W \) model, the difference in energy with the paramagnetic (PM) solution is increasing with increasing \(W \). As discussed in the Appendix, there also exist two different superconducting solutions, that lie energetically between the antiferromagnetic and the paramagnetic solution and evolve continuously from the paramagnetic solution at \(W = 0t \). In the first solution, \(s_1 \) and \(s_3 \) are nonvanishing, while \(s_2 = 0 \) (s wave). The order parameter has an \(s-wave \) symmetry with a superimposed weak modulation of the gap. In the second, energetically more favorable, solution one has \(s_1 = s_3 = 0 \) and \(s_2 \neq 0 \), yielding an order parameter with \(d-wave \) symmetry. Notice that also in QMC simulations at half filling, no transition to a superconductor was found in the \(t-U-W \) model with phase factors, in agreement with our results. However, the mean-field result in Fig. 1 is promising in direction of doping away from half filling, where the AF phase is suppressed.

The band structure of the antiferromagnetic solutions is evaluated along the usual paths through the Brillouin zone, as shown in Fig. 2. Figure 3 (top) gives the bands of the simple \(t-U-W \) model for \(W = 0.15t \). One can recognize easily that the bands are much wider than in the Hubbard model but their shape is nearly unaltered. This means that if one would scale the bands by a factor \(\frac{1}{2} \), they would be almost identical. The effect of \(W \) seems thus to be a mere “dilatation” of the bands.

In the \(t-U-W \) model with phase factors, things look quite different. The bands are plotted in Fig. 3 (middle) along the path shown in Fig. 2(a) and in Fig. 3 (bottom) along the path shown in Fig. 2(b) with \(W = 0.05t \). The width of the bands is nearly the same as in the Hubbard model, except for the lifting of the degeneracy along the boundaries of the magnetic Brillouin zone (MBZ). At \(k = (\pi, 0) \) a kind of double-hump structure can be seen like it appears in \(t-t'-t'' \) models to describe high-\(T_c \) superconductors. This can be explained...
as follows: The W term contains also hopping processes to second and third nearest-neighbor sites which, due to the phase factors, have the same sign as in the standard fit parameters t, t', t'' which are often used to adjust the bands to the experimental data of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ and YBa$_2$Cu$_3$O$_{7-\delta}$.

If one compares the antiferromagnetic bands to the QMC data of the t-U-W model as in Figs. 4 and 5, one gets a very good agreement. The width of the bands as well as the antiferromagnetic gap were reproduced excellently. In addition, the energy bands of the t-U-W model with phase factors (Fig. 3) show the same double-hump structure at $k = (\pi, 0)$ like it is seen in the QMC spectral weight $A(k, \omega)$ (Fig. 5). They also reproduce well the lift of the degeneracy along the boundaries of the MBZ.

Finally, we want to look at two characteristic features of the antiferromagnetic solution: the sublattice magnetization and the Mott-Hubbard gap. The sublattice magnetization, defined as

$$m = \langle c_{i,\uparrow}^\dagger c_{i,\downarrow} \rangle - \langle c_{i,\downarrow}^\dagger c_{i,\uparrow} \rangle,$$

is plotted in Fig. 6 (top) as a function of W. As expected from the behavior of the free energy (Fig. 1), the sublattice magnetization decreases with increasing W in the simple t-U-W model. On the other hand, the sublattice magnetization of the t-U-W model with phase factors is getting stronger with increasing W. This is also confirmed by QMC data, which show an amplification of the antiferromagnetic correlations with increasing W.

A similar picture occurs for the antiferromagnetic gap (Fig. 6, bottom). Like the sublattice magnetization, the Mott-
Hubbard gap is decreasing with increasing W in the simple t-U-W model, while it increases (nearly linear) with W in the model with phase factors.

In summary, the Hartree-Fock calculation gives the antiferromagnetic solution as ground state for any values of W in both models. However, qualitatively there are remarkable differences between the two models with and without phase factors. A comparison of these results with the QMC data shows that the antiferromagnetic phase is described quite well by the mean-field approximation.

On the other hand, the mean-field level is not able to reproduce the transition to a $d_{x^2-y^2}$ superconductor at $W_c \approx 0.3t$ observed in QMC simulations in the simple t-U-W model. This is of no surprise since results of an Hartree-Fock approximation at finite values of the interaction should be taken with due care and cannot give decisive conclusions about the correct phase diagram of a model without a comparison with more reliable calculations, such as, e.g., QMC.

Nevertheless, for large W, for which the AF gap becomes small, one would expect the antiferromagnetic solution to become instable with respect to fluctuations beyond the mean-field level. This is what we analyze in the next section.

IV. TIME-DEPENDENT HARTREE FOCK (GENERALIZED RPA)

As demonstrated in the previous section, the HF mean-field approximation is not sufficient to describe the transition to a $d_{x^2-y^2}$ superconductor occurring in the simple t-U-W model according to QMC simulations. For that reason, we carried out an improved calculation, including charge- and spin-density fluctuations. This has been done by means of a time-dependent HF or generalized random-phase approximation (RPA), in which we summed both “bubble” and “ladder” particle-hole diagrams. In contrast to the fluctuation exchange approximation (FLEX), the Green’s functions are not calculated self-consistently, but taken over from the Hartree-Fock results, as it has been done in Ref. 12.

A. Hartree-Fock correlation function L^0 and interaction vertex I^0

The 2×2 antiferromagnetic Hartree-Fock Green’s function can be written as [see the Appendix, Eqs. (A4)–(A12)]

$$G^{HF}(\mathbf{k}, \omega, \sigma) = \frac{1}{\sigma \Delta(\mathbf{k})} \frac{i \omega - \epsilon(\mathbf{k})}{i \omega + \epsilon(\mathbf{k})} = \frac{1}{\omega^2 - E^2(\mathbf{k})}.$$

With this Green’s function we can construct the Hartree-Fock two-particle propagator L^0:

$$L^{m_1 m_2}_{\sigma_1 \sigma_2}^{m_1' m_2'}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{q}, \omega_1, \omega_2, \nu)$$

$$= \delta_{\sigma_1 \sigma_2} \delta_{\sigma_1' \sigma_2'} \delta_{\nu} \frac{1}{\omega^2 - E^2(\mathbf{k})}$$

$$\times G^{HF}_{m_1 m_2}(-\mathbf{q} - \mathbf{k}_1, \omega_1, \nu, \sigma_1)$$

$$= \delta_{\sigma_1 \sigma_2} \delta_{\sigma_1' \sigma_2'} \delta_{\nu} \frac{1}{\omega^2 - E^2(\mathbf{k})}$$

$$\times G^{HF}_{m_1 m_2}(-\mathbf{q} - \mathbf{k}_1, \omega_1, \nu, \sigma_1).$$

where the set of \(m_i \) stand for the indices of the \(2 \times 2 \) matrix in Eq. (8). After a unitary transformation with help of the Pauli matrices, i.e.,

\[
U_{\alpha \beta} = \frac{1}{\sqrt{2}} \sigma^\alpha_{\beta}\sigma^\gamma_{\delta}, \quad \alpha = 0, x, y, z,
\]

(11)

we can write the correlation function in the charge-/spin-channel representation as

\[
\bar{L}^0 = U^\dagger L^0 U,
\]

(10)

where

\[
\begin{pmatrix}
\bar{L}^0_{00} m'_1 m_2 m_1 m_2(k_1, k_2, q) & 0 & 0 & \bar{L}^0_{02} m'_1 m_2 m_1 m_2(k_1, k_2, q) \\
0 & \bar{L}^0_{0+} m'_1 m_2 m_1 m_2(k_1, k_2, q) & 0 & 0 \\
0 & 0 & \bar{L}^0_{0-} m'_1 m_2 m_1 m_2(k_1, k_2, q) & 0 \\
\bar{L}^0_{10} m'_1 m_2 m_1 m_2(k_1, k_2, q) & 0 & 0 & \bar{L}^0_{12} m'_1 m_2 m_1 m_2(k_1, k_2, q)
\end{pmatrix}
\]

(12)

Here and in the following \(k = (k, \omega) \), \(q = (q, \nu) \), and so on.

In contrast to the Hubbard model, also the nondiagonal elements which couple the charge channel to the longitudinal spin channel have to be taken into account. For the following calculations it is also advantageous to transform from the representation

\[
\bar{L}^0_{ab} m'_1 m_2 m_1 m_2(k_1, k_2, q) \quad \text{with} \quad k_1, k_2, q \in \text{MBZ},
\]

(13)

to the representation

\[
\bar{L}^0_{ab}(k_1, k_2, \omega_1, \omega_2; q + nQ, q + n'Q, \nu) \quad \text{with} \quad k_1, k_2 \in \text{BZ}, \quad q \in \text{MBZ},
\]

(14)

where \(n, n' \) take the values \(\{0, 1\} \) and \(Q = (\pi, \pi) \).

In this representation, e.g., the longitudinal spin-correlation function can be written as a matrix in the indices \(n, n' \):

\[
\begin{pmatrix}
\delta_{n_1, n_2} & \delta_{n_1, n_2} & \frac{1}{\beta N} \sum_{\alpha, \beta} \left(\bar{G}^{\text{HFM}}_{\alpha}(k_1) \bar{G}^{\text{HFM}}_{\beta}(k_1 - q) + \delta_{k_1, k_2} \bar{G}^{\text{HFM}}_{\alpha}(k_1) \bar{G}^{\text{HFM}}_{\beta}(k_1 - q) \right) \\
0 & 0 & \delta_{n_1, n_2}
\end{pmatrix}
\]

(15)

Here the \(\bar{G}^{\text{HFM}} \) are spin independent Green’s functions [i.e., \(\bar{G}^{\text{HFM}}, \) Eq. (8) with spin index \(\sigma \) set equal to +1]. The interaction vertex in this representation is given by

\[
\Gamma^0_{ab}(k_1, k_2; q + nQ, q + n'Q) = \frac{1}{\beta N} \left\{ \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix} \otimes \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} U \right.
\]

\[
+ \begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} \otimes \begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix} V^w(k_2 - q, k_1, q) + \begin{pmatrix}
0 & 1 \\
0 & 0 \end{pmatrix} V^w(k_1, k_2, q + Q) \\
\left. \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \otimes \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix} V^w(k_2 - q, k_1, k_1 - k_2) \right).
\]

(16)

It is written as a direct product of spin and \((n,n')\) matrices with the W-dependent interaction \(V^w \) given by
This is now a simple matrix equation which can easily be inverted due to the complicated space and spin structure of the W term. For this reason, we apply a method due to Hanke and Sham, which is based on the partial transformation of the interaction vertex back into real space. For short-range interactions, this yields finite sized matrices in real space. With the Fourier-transformed correlation function and interaction vertex

$$\hat{L}_{ab}(k_1, k_2; q, q', \nu) = \hat{E}^0_{ab}(k_1, k_2; q, q', \nu) + \sum_{k_3, k_4} \hat{E}^0_{ac}(k_1, k_3; q, q''_c, \nu) \times \hat{\Gamma}^0_{cd}(k_3, k_4; q''_c, q'_d) \hat{L}_{db}(k_4, k_2; q''_d, q', \nu).$$

Unlike for the standard ($W=0$) Hubbard model, this equation cannot be easily inverted due to the complicated space and spin structure of the W term. For this reason, we apply a method due to Hanke and Sham, which is based on the partial transformation of the interaction vertex back into real space. For short-range interactions, this yields finite sized matrices in real space. With the Fourier-transformed correlation function and interaction vertex

$$\hat{L}_{ab}(R_1, R_2; q, q', \nu) = -\frac{1}{\beta N} \sum_{k_i, k_2} e^{ik_1 R_1} e^{-ik_2 R_2} \hat{L}_{ab}(k_1, k_2; q, q', \nu),$$

$$\hat{\Gamma}^0_{ab}(R_1, R_2; q, q') = -\frac{\beta}{N} \sum_{k_i, k_2} e^{ik_1 R_1} e^{-ik_2 R_2} \hat{\Gamma}^0_{ab}(k_1, k_2; q, q'),$$

we obtain the Bethe-Salpeter equation in matrix form

$$\hat{L}_{ab}(R_1, R_2; q, q', \nu) = \hat{L}^0_{ab}(R_1, R_2; q, q', \nu) + \hat{L}^0_{ab}(R_1, R_2; q, q', \nu) \times \hat{\Gamma}^0_{cd}(R_3, R_4; q''_c, q''_d) \hat{L}_{db}(R_4, R_2; q''_d, q', \nu).$$

This is now a simple matrix equation which can easily be inverted for the interacting two-particle propagator \hat{L}:

$$\hat{L} = (1 - \hat{L}^0 \hat{\Gamma}^0)^{-1} \hat{L}^0.$$

In contrast to the Hubbard model we have to deal with complex 26x26 matrices for the transverse spin channel and complex 52x52 matrices for the coupled charge/longitudinal spin channel. The RPA susceptibilities can be constructed by taking the $\langle 0, 0 \rangle$-matrix element in real space, i.e.,

$$\chi_{ab}(q, q'; \nu) = \hat{L}_{ab}(0, 0; q, q', \nu).$$

FIG. 7. Longitudinal spin susceptibility $\chi_{ab}(Q, Q; \omega)$ of the simple t-U-W model (top, $W=0.1t$), the t-U-W model with phase factors (middle, $W=0.05t$), and the Hubbard model (bottom, $W = 0t$); (as usual: $U=4t$, $T=0$ K, $\mu = 0t$).
which is diagrammatically represented in Fig. 8.

From this one obtains the retarded susceptibilities by the analytic continuation \(i\nu \to \omega + i\eta \).

Starting from the idea that spin fluctuations are responsible for the pairing of the quasiparticles, it is reasonable to first concentrate on the dynamic spin susceptibilities for the antiferromagnetic nesting vector \(\mathbf{Q} = (\pi, \pi) \) as a function of \(\omega \), as we expect the strongest response there. In Fig. 7 (top), \(\chi_{zz} \) is plotted for the simple \(t-U-W \) model with \(W=0.1t \), while in Fig. 7 (middle) \(\chi_{zz} \) is displayed for the model with phase factors and \(W=0.05t \). Both calculations can be compared with the result for the Hubbard model, reported in Fig. 7 (bottom).

One can clearly see that the spectral weight is mainly concentrated at low frequencies and that it is abruptly decreasing at a frequency \(\omega \approx 2\Delta_{AF} \), which corresponds to the antiferromagnetic gap. This behavior is most evident in the simple \(t-U-W \) model. Moreover, one can recognize that the overall magnitude of the longitudinal spin susceptibility is biggest in the simple \(t-U-W \) model and smallest in the \(t-U-W \) model with phase factors.

C. Effective interaction

In this section, we calculate the effective two-particle interaction mediated by the collective charge and spin fluctuations evaluated in the preceding section. Here, we restrict to the model without phase factors, since this is the only one which, according to QMC calculations, displays \(d \)-wave superconductivity. As a first step, we evaluate the fluctuation vertex, from which we can determine the modifications of the bare two-particle interaction given by the \(t-U-W \) Hamiltonian. The calculation of the fluctuation vertex is performed with the same techniques that were used to calculate the Bethe-Salpeter equation. This gives the expression

\[
\Gamma^{\sigma_1 \sigma_2}_{\alpha}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q},\mathbf{q'}) = \sum_{k_3,k_4} \hat{\Gamma}^{\sigma_1 \sigma_2}_{\alpha}(k_1,k_3;q,q') \tilde{L}_{cd}(k_3,k_4;\mathbf{q'},\mathbf{q''},\nu) \\
\times \hat{\Gamma}^{\sigma_1 \sigma_2}_{\alpha}(k_4,k_2;\mathbf{q''},\mathbf{q'})
\]

\[
= \sum_{R_1,R_2} \sum_{q''} \frac{1}{BN} e^{-i\mathbf{k}_1.R_1} \Gamma^{\sigma_1 \sigma_2}_{\alpha}(R_1,R_3;\mathbf{q},\mathbf{q''}) \\
\times \hat{L}_{cd}(R_3,R_4;\mathbf{q''},\mathbf{q''}',\nu) \hat{L}^{\alpha}_{db}(R_4,R_2;\mathbf{q''},\mathbf{q'}) e^{i\mathbf{k}_2.R_2},
\]

which is diagrammatically represented in Fig. 9.

Next, we have to change from the charge/spin channel representation back to the simple spin representation by inverting the transformation given by Eq. (10):

\[
\Gamma^{\sigma_1 \sigma_2}_{\alpha}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q},\mathbf{q'}) = U_{\sigma_1} \Gamma^{\sigma_1 \sigma_2}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q},\mathbf{q'})(U_{\sigma_2})^\dagger
\]

\[
= \frac{1}{2} \left[\Gamma^{\alpha_0}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q},\mathbf{q'}) \sigma^{0}_{\alpha_1 \alpha_2} \sigma^{0}_{\alpha_1 \alpha_2} \\
+ \Gamma^{\alpha_0}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q},\mathbf{q'}) \sigma^{0}_{\alpha_1 \alpha_2} \sigma^{0}_{\alpha_1 \alpha_2} \\
+ \Gamma^{\alpha_0}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q},\mathbf{q'}) \sigma^{0}_{\alpha_1 \alpha_2} \sigma^{0}_{\alpha_1 \alpha_2} \\
+ \Gamma^{\alpha_0}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q},\mathbf{q'}) \sigma^{0}_{\alpha_1 \alpha_2} \sigma^{0}_{\alpha_1 \alpha_2} \right].
\]

Since we want to use the effective interaction in order to write an effective Hamiltonian, only the static limit of the fluctuation vertex has to be considered. Thus simple diagrammatic rules yield for the correction to the bare interaction:

\[
\tilde{\gamma}^{\alpha_1 \alpha_2}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q},\mathbf{q'}) = \Gamma^{\alpha_1 \alpha_2}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q},\mathbf{q'},0)(-BN)(-1).
\]

The effective interaction can then be written as (see Fig. 9 for diagrammatic representation)

\[
\gamma^{\alpha_1 \alpha_2}_{\text{eff}}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q},\mathbf{q'}) = \gamma^{\alpha_1 \alpha_2}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q},\mathbf{q'}) + \tilde{\gamma}^{\alpha_1 \alpha_2}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q},\mathbf{q'}) (27)
\]

with the bare two-particle interaction

\[
\gamma^{\alpha_1 \alpha_2}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q}) = W^{\alpha_1 \alpha_2}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q}) + W^{\alpha_1 \alpha_2}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q}) (28)
\]

and \(W^{\alpha_1 \alpha_2}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q}) \) given by Eq. (17). Since one has to consider the pairing of the Hartree-Fock quasiparticles, the effective interaction has to be transformed into the \(\gamma \) base, which produces additional coherence factors.

For physical reasons, only the pairing of particles with opposite spin (singlet pairing) was considered. In order to take into account the effect of the dynamics on top of our static approximation, we follow Ref. 12, and introduce a cutoff frequency \(\omega_c \), analogous to the Debye frequency \(\omega_D \) in

\[
\tilde{\gamma}^{\alpha_1 \alpha_2}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q},\mathbf{q'}) = \Gamma^{\alpha_1 \alpha_2}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q},\mathbf{q'}) + \tilde{\gamma}^{\alpha_1 \alpha_2}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q},\mathbf{q'}) (27)
\]

with the bare two-particle interaction

\[
\gamma^{\alpha_1 \alpha_2}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q}) = W^{\alpha_1 \alpha_2}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q}) + W^{\alpha_1 \alpha_2}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q}) (28)
\]

and \(W^{\alpha_1 \alpha_2}(\mathbf{k}_1,\mathbf{k}_2;\mathbf{q}) \) given by Eq. (17). Since one has to consider the pairing of the Hartree-Fock quasiparticles, the effective interaction has to be transformed into the \(\gamma \) base, which produces additional coherence factors.

For physical reasons, only the pairing of particles with opposite spin (singlet pairing) was considered. In order to take into account the effect of the dynamics on top of our static approximation, we follow Ref. 12, and introduce a cutoff frequency \(\omega_c \), analogous to the Debye frequency \(\omega_D \) in
the standard BCS theory. This ensures that only particles within an interval of width $\hbar \omega_c$ above and below the Fermi energy E_F are paired.

The motivation for this cutoff frequency ω_c becomes clear if one looks at the spin susceptibilities of the simple t-U-W model in Fig. 7. We have already shown in the preceding section that the spectral weight is concentrated at low frequencies. Under the condition that the spin fluctuations are responsible for the pairing of the quasiparticles, the longitudinal spin susceptibility gives quite naturally a cutoff frequency of the size of the antiferromagnetic gap ($\omega_c \approx 2\Delta_{AF}$).

This implies that for hole dopings away from half filling, only the intravalence-band matrix elements have to be considered. The pairing part of the effective Hamiltonian can thus formally be written as

$$
\mathcal{H}_{\text{pair}} = \frac{1}{2N} \sum_{\mathbf{k},\mathbf{k}',\sigma,\sigma'} V_{\sigma\sigma'}^{\text{pair}}(\mathbf{k},\mathbf{k}') \Theta[\omega_c - |E^\sigma(\mathbf{k}) - E_F|] \\
\times \Theta[\omega_c - |E^{\sigma}(\mathbf{k}') - E_F|] \gamma^\sigma_{\mathbf{k}',\sigma'} \gamma^\sigma_{-\mathbf{k}',-\sigma'} \gamma^\sigma_{-\mathbf{k},-\sigma} \gamma^\sigma_{\mathbf{k},\sigma}.
$$

(29)

where $E^\sigma(\mathbf{k}) = -E(\mathbf{k})$ is the valance-band energy.

The direct interaction $V_{\sigma\sigma'}^{\text{pair}}(\mathbf{k},\mathbf{k}')$, which is given by $\sigma = \sigma'$ spin indices contains, besides the longitudinal spin fluctuations, also the bare interactions and the charge fluctuations. The exchange interaction with $\sigma = -\sigma'$ consists of the transverse spin fluctuations only. In Figs. 10–12, the direct interaction and the exchange interaction were plotted for different paths of \mathbf{k} and \mathbf{k}' through the magnetic Brillouin zone (MBZ) for the simple t-U-W model and the Hubbard model, respectively. The exchange interaction was plotted there as $-V_{\sigma\sigma}^{\text{pair}}(\mathbf{k},-\mathbf{k}')$, since it has exactly this form, with negative sign, in the BCS gap equation [see Eq. (31)].

Comparing the graphs for the simple t-U-W model ($W=0.1t$) with the simple Hubbard model, one can easily see that the W term amplifies the attractive parts of the direct interaction, whereas the attractive parts of the exchange interaction remain constant (see, e.g., Fig. 11). However, the repulsive parts of the direct interaction and the exchange interaction were both attenuated considerably by increasing W (see, e.g., Fig. 12). Therefore the pairing of the quasiparticles is favored in the simple t-U-W model altogether.

V. BCS GAP EQUATION

Finally, we want to solve the BCS gap equation for the effective pairing interaction. The starting point is the effective Hamiltonian, as obtained in the previous section:

$$
\mathcal{H}_{\text{eff}} = \sum_{\mathbf{k},\sigma} \left[E^\sigma(\mathbf{k}) - \mu \right] \gamma^\sigma_{\mathbf{k},\sigma} \gamma^\sigma_{\mathbf{k},\sigma} + \frac{1}{2N} \sum_{\mathbf{k},\mathbf{k}',\sigma,\sigma'} V_{\sigma\sigma'}^{\text{pair}}(\mathbf{k},\mathbf{k}') \\
\times \Theta[\omega_c - |E^\sigma(\mathbf{k}) - E_F|] \Theta[\omega_c - |E^{\sigma}(\mathbf{k}') - E_F|] \\
\times \gamma^\sigma_{\mathbf{k}',\sigma'} \gamma^\sigma_{-\mathbf{k}',-\sigma'} \gamma^\sigma_{-\mathbf{k},-\sigma} \gamma^\sigma_{\mathbf{k},\sigma}.
$$

(30)

With this Hamiltonian we want to study the superconducting properties of the simple t-U-W model for different hole doping and different values of the model parameter W. The BCS gap equation becomes

$$
\Delta(\mathbf{k}) = -\frac{1}{N} \sum_{\mathbf{k}'} \left[V_{\parallel}(\mathbf{k},\mathbf{k}') - V_{\parallel}(\mathbf{k}(-\mathbf{k}') \right] \frac{\Delta(\mathbf{k}')}{{2E(\mathbf{k}')}}.
$$

(31)

Here we used the abbreviations

$$
E(\mathbf{k}) = \sqrt{\Delta^2(\mathbf{k}) + \Delta^2(\mathbf{k})},
$$

(32)
The gap \(\xi(k) = E^\sigma(k) - \mu \),

\[
V_{\sigma}\sigma'\pi(k,k') = \frac{V_{\pi}^{\text{pair}}(k,k')}{\sqrt{2}} \theta[\omega_A - |E^\pi(k) - E_F|] \\
\times \theta[\omega_A - |E^\pi(k') - E_F|].
\]

The gap Eq. (31) was iterated by assuming different symmetries of the superconducting order parameter, however, only \(d \)-wave solutions turned out to converge.

The results for the simple \(t-U-W \) model are shown in Fig. 13 as diamonds, triangles, and squares. For all values of \(W \) considered, the superconducting gap becomes zero at half filling, which is consistent with QMC results. It can be shown easily with the aid of Eq. (31), that even including interband matrix elements does not change this result. This is due to the fact that the band gap is still quite large for these values of \(W \) (cf. Fig. 3) for interband matrix elements to contribute substantially to the gap equation. On the other hand, all curves seem to indicate that the superconducting phase starts at very small doping, which is in contrast with experiments. While there are no conclusive QMC results about the \(t-U-W \) model in this region, due to the minus-sign problem, the limitations of our perturbative procedure applied for moderate values of \(U \) suggest to consider this result with due care. Indeed, strong phase fluctuations, not included in a BCS-type calculation like Eq. (31), are known to be important and to suppress superconductivity at small doping.
The standard Hartree-Fock approximation captures only the “high-energy” physics, and is thus capable of reproducing bandstructures and the overall features of the single-particle spectral function. Equivalently, short-range pairing correlation functions should be well reproduced within this approximation. This is indeed the case. At short lengths scales (as shown in Table I) the extended s-wave vertex contribution to the pairing correlation functions is dominant in QMC simulations of the simple t-U-W model. It is only at larger distances that the d-wave pairing correlations become dominant. This crossover from short-range to long-range properties is not reproduced within the standard mean-field approximation. Alternatively, for the t-U-W model with phase factors d-wave pairing dominates in QMC simulations at small length scales (see Table II).

On the other hand, by including charge and spin fluctuations within a time-dependent HF, or generalized RPA sum-mation of ladder and bubble diagrams, we were able to obtain an effective attraction between the quasiparticles, which is enhanced by W. Moreover, we obtain a corresponding superconducting order parameter with the correct d-wave symmetry.

The QMC results indeed show that as W increases at fixed U or U decreases at fixed W, an instability towards d-wave superconductivity occurs. To illustrate this, Fig. 14 plots the vertex contribution to the d-wave pairing correlations as well
as the staggered spin susceptibility. As apparent at low U for fixed W, the superconducting d wave becomes the leading instability. Finally, it should be pointed out that our Hartree-Fock-Bethe-Salpeter procedure is of perturbative nature and, therefore, our results should be considered with due care, due to the fact that the interaction is not small.

ACKNOWLEDGMENTS

The authors express their deep gratitude to Professor M. Imada for many insightful discussions and clarifications of physical points. In this connection one of us (W.H.) is grateful to Professor Imada for the warm hospitality experienced during visits at the ISSP in Tokyo. He acknowledges the support granted by the joint German-Japanese cooperation project (DFG-JSPS: 446 JAP-113/114/0), which was central for the success of this work. Partial support by the DFG-Project Ha 1537/14-1 is also acknowledged.

APPENDIX: DETAILS OF THE HF CALCULATIONS

1. Antiferromagnetic mean field

We start with the following ansatz for the mean-field parameters:

$$\langle c_{1,\sigma}^\dagger c_{1,\sigma} \rangle = n_1 + \sigma e^{iQ}\sin^2 \frac{\Phi}{2^n},$$

$$\langle c_{1,\sigma}^\dagger f(\vec{\delta}) c_{1+\vec{\delta},\sigma} \rangle = n_3,$$

$$\langle c_{1+\vec{\delta},\sigma}^\dagger f(\vec{\delta'}) c_{1+\vec{\delta},\sigma} \rangle = n_4 + \sigma e^{iQ}\sin^2 \frac{\Phi}{2^n},$$

where Q denotes the antiferromagnetic nesting vector $Q = (\pi, \pi)$. Here the expectation values $\langle \cdots \rangle$ contain also an average over all $\vec{\delta}$ and $\vec{\delta}'$, whenever explicitly present. At half filling, it is easy to show that $n_1 = \frac{5}{2}$, and $n_4 = \frac{5}{2}$. The mean-field Hamiltonian can then be written as

$$\mathcal{H}_t^{MF} = \sum_{k,\sigma} \left(\epsilon(k) - \sigma \Delta(k) \right) \sigma^\dagger \left(\sigma \right) + \mathcal{E}_t^{MF},$$

with

$$\epsilon(k) = -2t\cos k_x - 2t\cos k_y - 96Wn_3 \cos k_x + \cos k_y,\quad (A5)$$

$$\Delta(k) = -Un_2 + 32Wn_5 - 8Wn_2 \cos k_x \cos k_y,$$

and

$$\mathcal{E}_t^{MF} = + Un_2 + 192Wn_5 - 64WN \frac{1}{\pi} + n_2n_5.\quad (A7)$$

Here, and in the following equations, the upper sign stands for the simple t-U-W model, while the lower sign is used for the t-U-W model with phase factors. The Hamiltonian can be diagonalized by the usual transformation

$$\gamma^{\dagger}(\vec{k},\sigma) = \left(u(k) \begin{array}{c} \gamma^{\dagger}_k,\sigma \\ \gamma^{\dagger}_{k+Q},\sigma \end{array} \right) = \left(\begin{array}{c} \epsilon(k) \\ \sigma \Delta(k) \end{array} \right) + \mathcal{E}_t^{MF},$$

with

$$u(k) = \frac{1}{2} \left(1 + \frac{\epsilon(k)}{\mathcal{E}_t^{MF}} \right)^{1/2},\quad (A9)$$

$$v(k) = \frac{1}{2} \left(1 - \frac{\epsilon(k)}{\mathcal{E}_t^{MF}} \right)^{1/2},\quad (A10)$$

and

$$\mathcal{E}_t^{MF} = \frac{\epsilon^2(k) + \Delta^2(k)}{4Wn_5}.$$\quad (A11)

The resulting Hamiltonian is given by

$$\mathcal{H}_t^{MF} = \sum_{k,\sigma} \mathcal{E}_t^{MF} \gamma^{\dagger}(\vec{k},\sigma) \gamma(\vec{k},\sigma) + \mathcal{E}_t^{MF}.$$\quad (A12)

Already at this point, one can see from Eq. (A5) and (A11) that the parameter n_3 produces extremely wide bands in the simple t-U-W model. On the other hand, it is straightforward to see that for the alternative t-U-W model with phase factors one must have $n_3 = 0$, in order to preserve the symmetry of the energy bands under interchange of x and y directions. This explains why the bandwidth of the t-U-W model with phase factors is drastically smaller, and essentially the same as the one of the simple Hubbard model.

2. Superconducting mean field

Here, the mean-field parameters are chosen as

$$\langle c_{1,\sigma}^\dagger c_{1,\sigma} \rangle = n_1,$$

$$\langle c_{1,\sigma}^\dagger f(\vec{\delta}) c_{1+\vec{\delta},\sigma} \rangle = n_3,$$

$$\langle c_{1+\vec{\delta},\sigma}^\dagger f(\vec{\delta'}) c_{1+\vec{\delta},\sigma} \rangle = n_4,$$

$$\langle c_{1,\sigma}^\dagger c_{1-\vec{\delta},\sigma} \rangle = \sigma s_1.$$\quad (A16)
The superconducting parameters can be divided into two groups: s_2 stands for the nearest-neighbor singlet pairing, which is suppressed by the Hubbard U. The mean-field Hamiltonian thus is

$$\mathcal{H}_{\text{MF}}^U = \sum_k \left(\varepsilon(k) \Delta(k) - \varepsilon(k) \Delta^{\dagger}(k) \right) + E_{\text{MF}}^U,$$

(A19)

with the single-particle energy $\varepsilon(k)$ and the gap parameter $\Delta(k)$ given by

$$\varepsilon(k) = -2t(\cos k_x + \cos k_y) - 96Wns_3(\cos k_x \pm \cos k_y),$$

(A20)

$$\Delta(k) = +Us_1 - 8Ws_1(\cos k_x \pm \cos k_y)^2 - 32Ws_2(\cos k_x \pm \cos k_y) - 32Ws_3.$$

(A21)

The energy constant E_{MF}^U stands for

$$E_{\text{MF}}^U = -UNs_1^2 + 64WN(s_1s_3 + s_2^2 - \frac{1}{4}) + 192WNs_3^2.$$

(A22)

Equation (A19) can be diagonalized with a Bogoliubov—de Gennes transformation, similar to Eq. (A8), i.e.,

$$\left(\begin{array}{c} \gamma_k^\dagger \\ \gamma_k \end{array} \right) = \left(\begin{array}{cc} u(k) & v(k) \\ v(k) & -u(k) \end{array} \right) \left(\begin{array}{c} \tilde{c}_k \nonumber \\ \tilde{c}_k^{\dagger} \end{array} \right),$$

(A23)

$$u(k) = \left[\frac{1}{2} \left(1 + \frac{\varepsilon(k)}{E(k)} \right) \right]^{1/2},$$

(A24)

$$v(k) = \left[\frac{1}{2} \left(1 - \frac{\varepsilon(k)}{E(k)} \right) \right]^{1/2} \text{sgn}[\Delta(k)].$$

(A25)

The resulting Hamiltonian now becomes

$$\mathcal{H}_{\text{MF}}^U = \sum_k E(k)(\gamma_k^{\dagger} \gamma_k - \gamma_k^{\dagger} \gamma_k) + E_{\text{MF}}^U,$$

(A26)

with the usual relation [Eq. (A11)] for $E(k)$. The paramagnetic solutions can be easily obtained by setting the antiferromagnetic parameters in Eq. (A4), or the superconducting parameters in Eq. (A19), equal to zero.