Introduction to theoretical physics

Sheet 2

Exercise 5:

Consider the following vector fields:

$$\mathbf{v} = \mathbf{a}(\mathbf{r} \cdot \mathbf{a})$$

$$\mathbf{u} = (0, 0, (x^2 + y^2)z),$$

a sphere S with radius R centered on the origin of the coordinates, and a cyilinder C with length L and radius R, also centered on the origin.

a is perpendicular to the axis of the cylinder.

Determine the flux

- a) of **v** through the surface ∂S of the sphere S.
- b) of **u** through the surface ∂S von der sphere S.
- c) of **v** through the surface ∂C of the cylinder C.

verify in all these cases Gauss' law.

[Hint: use the results of exercises 2-g and 2-h]

Exercise 6

Determine the \mathbf{E} -field of an infinitely long, charged cylinder with radius R and charge density

$$\rho(r) = a/r \qquad (for \ r \le R)$$

(with r the distance to the axis of the cylinder and a a constant) for a point P outside and inside of the cylinder.

Hint: use the symmetries of the field as well as Gauss' law for a cylindrical Gauss surface. Determine the voltage between the axis of the cylinder and a point P outside of the cylinder.

Exercise 7

A point charge q is located in front of two metallic half planes, which cut each other at an angle of 90° and have the potential $\Phi = 0$.

Using the method of the mirror charge (here you need 3 mirror charges) determine the potential $\Phi(\mathbf{r})$ for an arbitrary point \mathbf{r} within the sector delimited by the two planes.

Determine the surface charge density at the surface of the metal.

Write down the potential in cartesian coordinates.