Introduction to Theoretical Physics

Problem set 3 until

Task 9-A

Consider two concentrical metal spheres i = 1, 2 with the radii R_1 and $R_2 > R_1$. The inner sphere carries the charge +Q while the outer sphere carries the opposite charge -Q. The charge is homogeneously distributed over the surfaces of the spheres.

- a) Calculate the electrostatic potential and the electric field \mathbf{E} for the entire space $0 \leq r < \infty$. Hint: use the symmetries of the field (spherically symmetric) and Gauss's theorem.
- b) Calculate the capacity C of this system (spherical capacitor). The capacity is defined as $C = Q/(V_1 V_2)$ whereas V_i is the potential on the sphere *i*.

Task 9-B

Calculate the magnetic field **B** of two thin, parallel and infinitely long conductors of distance 2a with given currents I_1 and I_2 . Give this expression in Cartesian coordinates.

Furthermore calculate **B** for $I_1 = -I_2$ under the assumption that the distance from the observer to the conductors is very large. How does **B** scale at large distances? (Hint: use the superposition principle!)