We will now treat some simple
examples 1in steady state

1) Switching on a diagonal potential at é: - é;&
L - :Zj gﬂ Cj+ (T we take fermions
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the steady state of course occurs at a time far away from é;()

S(Pw)=Me  Laox,

Dyson's equation

Y A N NN
O = Lo T L,

/“"7 - 7] ~u
L - C)o — L
i uati ig valid in g uti

integral equation, provided one carries out the inversions

in the appropriate space, which could be the space of

’

space

in here i im ranslation invarian
we can transform into frequency space, in which G are diagonal.

[ In addition, in this problem they are also diagonatr

in quantum number space , so we need just to invert in 2x2

Keldysh space
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4
the unperturbed Green's functions 6(
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We don't specify the index p, since expressions are the same
for—allp
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is periodic,

so the steady state can never be reached unless one
introduces some dissipation mechanism.

finite quantity and taking

g—-ﬁ Q‘l’ only at the end
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Of course we should not forget that alsogj(boh/?p/> becomes

a lorentian curve for nonzero g?
o
CL’ - /?5/ Q) N\ /“\ C/bvf)
v T Jrnga )P
A / 4 y

0 - B //i \

- ~/L \/ \ _ [ .f\’
On g T Ve )= (Ve T Vptao )

\U )

As expected, this is the retarded Green's function of the

total Hamiltonian Flo 4 V()

A e

a - W
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Since

Now, this result 1s NOT what we would have expected!
It tells us, that the chemical potential contained in

N /(/fvf\ - N on /1/1/' P(/\
P S G /A A

has not changed. This means that, for example, if

r AN ~\
\/ ;> @) the number of particles has decreased!

Where have the particles gone? (/«

The point is that by taking a nonzero C)

we assumed a small interaction with some environment.

This 1s necessary,otherwise the system cannot reach the
steady state.

The particles have thus leaked into the environment!

We will see this issue more in detail later

The point is that we take two limits

{j"“"w and %—%O

and these have to be carried out in this order.
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But let us now evaluate the particle number
(we can evaluate the particle number for each p)

For this we have to use a relation valid in general
(not only for equilibrium Green's functions)

e //J\_ />/ /4/ \
OnlY- G gt G L)
for t=0
, ) + i N
GulbPEze) = =2 CGG=Cplp >
A N NS
= XA Nty Oty
\ — [ n ) AN 4
CColp ) == 2 Gy [ W, C0) + 25,
= > < 7 2

v\ dW C 0 W) L
2)227 ) / 2 °f

Which is an expression we will use often
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For our problem
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Description of mesoscopic tunneling structures

S Y v )

lreass [ > o e\

leads

contimun \ a0\ \

\\of levelsl) Y ) <;F> )

central region

(discrete levels) <? l////A
| 4 e.g. guantum dot R

/VLL

At t< t0 V=0, each region is in equilibrium

generally with different chemical potentials
Mo, Moy M
/

Of course if the chemical potentials

of the two leads are different, we espect a current to

region (initial state), being a system with few degrees of freedom

does not play a role 1n the steady state.

espect the central g;giq9 to end up to equilibrate with the

contact with, say, / 7/ L

ot icity — 1 . et t j

region has only one level. The extension to many levels 1is

straightforward

= 17

[ — 7
Hy- 26 C.Co + ad o

F leads central region
s AP s \
\/ - igl »/f <<::F Cj + Ci/ (Vf //)

coupling
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In this case , the different p level mix up, so that one
must in principle invert a "big" matrix

Time translation invariance is still valid, so we can

work in freguency gspace
WO Ik Lreguency spa .

T

Dyson's equation can be written for each W/

N O N/
Gy g Ve

where this has to be seen as a matrix equation

/W

(’7/) }}/ ’%

0 - A C 0
Sy O, s T,

where the index g can refer to a p or to 0 (associated with

the d-level).

For each couple of indices each term is a 2x2 matrix in
Keldysh space, for example

e LR
[ | ]

Y

T\ L Gr )

o,

TAT. ~ | L S ~ A
we  Cdadll TIOW CSXP1LTO1T U L1l aC T clliatc L1l & are dlagonal, and

\ /
that \/9 9 is nonzero only when one of the two g is O:
2 /3
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We write two equations for the central region
and for the connections

i O f\\ \/ Pren)
(:)OO - %u T Joo \/Om (5,
I v

i Q
~00 JOO +/00 \/OF JPP po 200

This has the same form as a (closed) Dyson equation

for the environment, whit an "effective" self-energy

\

S =LY

TOrUeeYpo

The solution is again

o ~ N\ 7

Goo = | Joo — 2 )

Remember, each one is a 2x2 matrix in Keldysh space.

In fact this matrix form can be straightfowardly applied

In that case the various matrices with index 0 refer to many

levels as well
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With the help of the "useful relations" we recognize that the

retarded and advanced Green's function do not mix.
Therefore we have

7 [/ Pb\“ﬂ /\/)7/ \—~7
Goo = (oo ) = 2 )
e Z’”; \ / Q/)z\/

Vor dre Voo

The Keldysh GF is somewhat different

Using the expression for the 1nversion, we obtain

—H ’ Ty K 4
0 ~ Ggo (%O — i) Oy,
;ég; - - \4;/” oy \
e 7o
/@’7\}(# o T an g’
(o ) == Fo Po

Where we have used the fact that V is diagonal in Keldysh space
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Again this term is in principle zero for a system with a finite number
of degrees of freesom. Formally

[qh-7  qa°7 y _ o4 S (§—01)
\ P ﬂ/oo /T '

However, 1in this case, we can see that this term can be often

set to zero.

In particular it can be safely set to zero

1) When <5q G;q/ are nonsingular for frequencies on the real axis

as we shall see, this 1s often the case here

FAY4

OR

2) When — is nonzero, in that case it "shadows™ the small
imaginary part

As one can see, the "initial conditions" for the central region

expressed by its chemical potential /4(

do not affect its Green's function in the steady state.
This makes physically sense, since the steady state takes place

after a long time and the central region is finite.

7 ' 4 <
P Goo V P 2//’0 \/pn QOO (B4)
0 v

To make some progress we take &/;19 - &// independent of p

e — O
J/

5§05, )eer £l
0 P ) L

where é;;(/a/ ) is the density of states of the uncoupled lead,

which is a

W s P . . PP
continuous function of W provided Cthe environment 1s 1Inrinice.

o K > = PN N (1))

Z o= it W, Y (B5)
0
f
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B6)

~"00 - | /

where we have used the fact that

q K
(T

M
(;)OCD - <5(7@

The retarded GF 1s obtained as

n / ( p= o \ -7
<>7o() :(\ /00 - \/O{F %vp \/vpo /)
i | s ey =T
A wW-Aws -V = 3
\ A VA
— a () g 7 }“ < é
2 = 4@ Z 9/00 +A Z . (B6A)
I// Fore ' f> vt {\’~_\N’\¥r P Vir
k\/—jf“\“/// :1‘27,9 b* ,99 \ SN /N £>(2 A\
< F\Uﬂ’ vep ) L W)

2 .
(B6B)

\

where a’ can be neglected, since the coupling to

the environment provides a finite imaginary part

The imaginary part provides a broadening of the spectral

- Fanction {local density of states) S fA >




48

2
and ﬁgz gives a shift of the level ﬂ( \/ ﬁ?(/éi)

a RN il N
CJQO(W) - - -i—“ i}m bcm( W)

e L
— ﬁ(m (M{j (V=0 result)

//\

() [\

[ a¥ 7 / f’(¢> \\
/\ E(8) W —
]
o . Ly
With the expression (7 _ _
Q0 bbp éj’(%/) 7#4/[1;%/)

we can write

— ‘ n 2
o = 2wl ) 20w ()

k\vbo (/0o . (/

(BeC)

so that the Keldysh Green's function assumes a form similar
to the uncoupled case

o o)

N
Doo (Do =00/

N
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This is of course expected, since for the case of a single lead
the steady state is an equilibrium state.

The above equation tells us that the central region equilibrates

and its distribution is controlled by the initial distribution

N ]

7
function UH-kVV// of the lead. In other words the

central regionm acguires

the same chemical potential and temperature (both are included

™N
/
in )Qw only) of the lead.

Nu) = T1-2mW) = 7-24F (W-},)

for fermions, where jl’ 1s the Fermi function

/ !

The more interesting case of two leads can be easily obtained

by formally extending the above results.

We can, for example, associate the states of the Left lead

with p<0 and the ones of the right one to p>0

Everything is identical, except that the leads now have

two different distribution functions glj ggR, therefore (cf B5)

——

fr

, [ o\ -0 \
2 }”:~24‘W(\&(W) %W)f&/w/)ﬁ(w/i

-
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MO ACRACRIAURAG)
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on the other hand, (-f BgB)

| (W) =4 F’,\ (W)T/ODM/)/V

and

(B7A)

C m\\ /) /W)

00 VV// Ay

with an "averaged" distribution function

b
R (B72)

which of course cannot be associated to any

temperature and/or chemical potential

his he £ l - iad 3

In this situation it is interesting to evaluate the current
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Current

The current operator Als defilined via

7\

T . )&
—L p— &t —
d £

for example, if I 1s the current flowing away from the L lead,

then Q is its total charge

A -
T~~O/@L_ ) =" J e

{

i L
- d’A Lo _J F f
1 < @

I R = v B Ve A e
=z wr, Gl

o uw)
fco - — f<o
Its expectation value is evaluated with the Keldysh
Green's function

+ ‘ I«
CpOl.>:'~% Gop(t=0)

.
—
e

L
" (b0
ﬁ §/ \V/nf\ P e (//'/O
—_ ~ < rv ]\ﬁ NN (B8)
P<o
Fouriefr transformation: K (=a) [ ]Q}/ //ﬁ‘k //64) \ (B8A)
(Gop L E7O ) = )g%?f_ Oop L W)
and|we now work in frequency space /
with thel help of Dyson's equation we get K — C \/ Q/
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for the Keldysh component

o4
S o

N\
JVop

VA B K
- <<;)Oo 2%%? #J <>Oo

n A a R a ‘1
00 ML & v P Vop
Z
In view of pvn?nnfing I, for constant V, we need the sum over

p of this expression (cf BS

, B6A)

is imaginary we get

(cf B8, B8A)

is the spectral

(W)

v\l—v

- (W)-»dﬁ/)m

vUV

function of the
Cer LJ.GL.L J.CK_JJ.U

N

Y

which can also (cf B6C

b TV

written acs
written-as

G ]
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F B7B) 0 0 0
A

N A
o b 1770 UR

)

Oyt f/(z
_ -~ /' "[4")\ \.M (W) ) for fermions
72 =770 < \ N (M L /
— //) s PN N /. — \\
= (e e ))
. S /\ /A OOOO /0/_»::1‘\ 0//.¢\\
Q(M): 2T Mo (W) e tR [ [W)/ )i (W7%))
09, p° | /
C.TCk >
equivalently (Cf. B6QC)
N\

NBy
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I.e., we can express the current as

—
N
\

remember

Which has a simple interpretation:
at each energy w electrons contribute in proportion to the

combined density of states L and R and to the difference




