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We will now treat some simple
examples in steady state

1) Switching on a diagonal potential at 

the steady state of course occurs at a time far away from 

Dyson's equation

This equation is valid in general as solution of the 
integral equation, provided one carries out the inversions 
in the appropriate space, which could be the space of 
quantum numbers or possible time, as well as of course Keldysh 
space

Since there is time translation invariance, 
we can transform into frequency space, in which G are diagonal. 
In addition, in this problem they are also  diagonal
in quantum number space , so we need just to invert in 2x2 
Keldysh space

we take fermions
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In order to limit indices, we will denote by small 

the unperturbed Green's functions

Let us inspect the Keldysh part of the inverse Green's function

We don't specify the index p, since expressions are the same
for all p

This object is in principle zero since

and

The point is that the problem is ill defined since time dependence
is periodic, so the steady state can never be reached unless one
introduces some dissipation mechanism.
This can be formally provided by taking         to be a small but 
finite  quantity and taking             only at the end
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Of course we should not forget that also             becomes

a lorentian curve for nonzero 

At best we work with the general expression

so that

As expected, this is the retarded Green's function of the
total Hamiltonian
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Since 

Now, this result is NOT what we would have expected!
It tells us, that the chemical potential contained in

has not changed. This means that, for example, if 

            the number of particles has decreased!

The point is that by taking a nonzero 

we assumed a small interaction with some environment.
This is necessary,otherwise the system cannot reach the
steady state. 
The particles have thus leaked into the environment!

We will see this issue more in detail later
The point is that we take two limits 

Where have the particles gone?

and   

and these have to be carried out in this order.
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But let us now evaluate the particle number
(we can evaluate the particle number for each p)

For this we have to use a relation valid in general
(not only for equilibrium Green's functions)

for t=0

Which is an expression we will use often (B-1)
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For our problem

Histogram of occupied states
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Noninteracting resonant level model

Description of mesoscopic tunneling structures

leads leads

central region
(discrete levels)
e.g. quantum dot

continuum
of levels

At t< t0    V=0, each region is in equilibrium 
generally with different chemical potentials

Of course if the chemical potentials
of the two leads are different, we espect a current to
flow. We also espect that the chemical potential of the central
region (initial state), being a system with few degrees of freedom
 does not play a role in the steady state.

We start with a problem with a single lead. In that case we
espect the central region to end up to equilibrate with the
contact with, say, 

For simplicity, we consider here the case in which the central
region has only one level. The extension to many levels is
straightforward

leads central region

coupling
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In this case , the different p level mix up, so that one
must in principle invert a "big" matrix

Time translation invariance is still valid, so we can
work in frequency space.

Dyson's equation can be written for each 

where this has to be seen as a matrix equation

In index notation we can write it as

 

where the index q can refer to a p or to 0 (associated with
the d-level). 
Double (i.e. internal) indices are summed over.

For each couple of indices each term is a 2x2 matrix in 
Keldysh space, for example

We can now exploit the fact that the are diagonal, and

that  is nonzero only when one of the two q is 0:
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We write two equations for the central region
and for the connections

Remember, each one is a 2x2 matrix in Keldysh space.
In fact this matrix form can be straightfowardly applied
to the case in which the central regions are many levels.
In that case the various matrices with index 0 refer to many 
levels as well

This has the same form as a (closed) Dyson equation
for the environment, whit an "effective" self-energy

The solution is again

where 

(B2)

(B3)
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With the help of the "useful relations" we recognize that the
retarded and advanced Green's function do not mix.
Therefore we have

Where we have used the fact that V is diagonal in Keldysh space

with

And the same for the advanced part

The Keldysh GF is somewhat different

Using the expression for the inversion, we obtain

with

where 
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Again this term is in principle zero for a system with a finite number
of degrees of freesom. Formally

However, in this case, we can see that this term can be often 
set to zero.

In particular it can be safely set to zero
1) When            are nonsingular for frequencies on the real axis

as we shall see, this is often the case here

OR
2) When         is nonzero, in that case it "shadows" the small
 imaginary   part

As one can see, the "initial conditions" for the central region
expressed by its chemical potential 
do not affect its Green's function in the steady state.
This makes physically sense, since the steady state takes place 
after a long time and the central region is finite. 

We thus have

To  make some progress we take independent of p

where is the density of states of the uncoupled lead,
 which is a 

continuous function of provided the environment is infinite.

(B4)

(B5)
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where we have used the fact that 

The retarded GF is obtained as

where     can be neglected, since the coupling to

the environment provides a finite imaginary part

The imaginary part provides a broadening of the spectral

function (local density of states)

(B6)

(B6B)

(B6A)



48 and          gives a shift of the level

(V=0 result)

With the expression

we can write 

so that the Keldysh Green's function assumes a form similar
to the uncoupled case  

(B7)

(B6C)
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This is of course expected, since for the case of a single lead
the steady state is an equilibrium state.

The above equation tells us that the central region equilibrates
and its distribution is controlled by the initial distribution

function                of the lead. In other words the
central region  acquires

the same chemical potential and temperature (both are included

in       only) of the lead. 

for fermions, where                is the Fermi function

The more interesting case of two leads can be easily obtained
by formally extending the above results.

We can, for example, associate the states of the Left lead
with p<0 and the ones of the right one to p>0

Everything is identical, except that the leads now have

two different distribution functions           , therefore 

accordingly 

(cf B5)

(cf B6)
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on the other hand,

and

with an "averaged" distribution function

which of course cannot be associated to any
temperature and/or chemical potential

This is the first example of a nontrivial steady state

In this situation it is interesting to evaluate the current

(cf B6B)

(B7A)

(B7A)
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Current
The current operator ^is defined via 

for example, if I is the current flowing away from the L lead,
then Q is its total charge

Its expectation value is evaluated with the Keldysh 
Green's function

with the help of Dyson's equation we get

(B8)

Fourier transformation:

and we now work in frequency space

(B8A)
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for the Keldysh component

In view of evaluating I, for constant V, we need the sum over
p of this expression

and

For the current one needs the real part of this. Since 

               is imaginary we get 

is the spectral 
function of the
central region

which can also 
be written as

with

(cf. B7A)

(cf B8   , B6A)

(cf B8, B8A)

(cf B6C)
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for fermions

equivalently

(CF B7B)

(Cf. B6C)
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I.e., we can express the current as 

Which has a simple interpretation:
at each energy w electrons contribute in proportion to the
combined density of states L and R and to the difference 
of occupations (Fermi function) between L and R multiplied 

by an energy dependent transmission coefficient,

with

remember

2


