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Boltzmann and kinetic equations

Boltzmann equation: semiclassical equation to describe

nonequilibrium systems (e.g. transport)

Afterwards: derivation within NGF theory, and gquantum generalisation
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space volume element at time t
[

(we can generalize consildering band i1ndices and crystal momentum)

in equilibrium for an homogenous system: i%? = 7/; (/5;9’> Fermi func.
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semiclassical eqg. of motion
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In the absence of scattering between particles, thus
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to linear order in A &/
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we assume a further modification of f due to scattering
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|  Start from Dyson equation

The treatment follows in general the Book by Haug and Jauho,
although there are some small differences

oy

GG v GAE+U )26

N C \ Y

for simplicity of notation, we now omit the “96/'

we have separated the contr. from pure external potential U

and the rest ( :f)

A -
G i) G =T+ 26

A

The retarded (1,1) component of this equation gives
(see "useful relations" on p. 35)

/ N (cf.An9)
| — / ) P —— pay — /
0N (g Va? / O —~— (C12)
Similarly, the Keldysh (1,2) component gives (ef  210)
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we have already seen that (apart for singularities) \;70 i T

We have learned that it 1is justified to neglect these
singularities when the free system is interacting with a

continuum which provides a dissipation mechanism.

In the same spirit, we shall neglect the singularities in

-1 V7
E;O/d/ 6 o 1
, =0 a

we thus obtain
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Col-U) G, = 5,60+ Z, Ca

similarly, the "right-hand™ Dyson equation

6:60+62<70

yields
/ -
(o (G 1)) = S LS
K \ \/Uq/ v/ Nz C//4 f ~n @
— 7 -7

subtracting the two egquations we obtain

This 1s (essentially) the generalized Kadanoff-Baym (GKB)
equation (to be precise

one needs a further symmetrisation between r and a quantities),

Below, we will further transform the r.h.s. to obtain an expression
similar to, .e.g. Haug-Jauho
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gince there is no translation invariance neither in time
nor in space, we should work in real time and space, so
that all objects have to be interpreted as matrices
n—time—and space;,—and

he expressions above have to be interpreted as

th S H-

atrix products in time and real space, i. e. convolutions,

or example
)\(4' el / L/\/L( )7,1‘ )
\ /

sing the notation A/

(C2B)

It is convenient to introduce Wigner coordinates
\ \ /[ .—»\ L\
X = Xt X [T K X = X7 =Xy=(6))
s U T

and i1nverse

><n - t></ T+ X ;X: = >K/:~ X (c3)
N > 2 7\ v

! 2

in general, one carries out a Fourier transform over the

relative coordinates :If . }) _ (/LU} ﬁf)

()

£>GVL \
F) \Y/ \ - ( ,J ﬁi»r Y B //N//>K{4‘ X | - X \
AV R

we define for convenience a Minkowski-like scalar product

—_®

P°X£ W'é - ]9"}7 (C4n)




We now quote without proof a useful relation for convolutions
(see Haug - Jauho's book)

(cf. C2B)
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(C6)

where the arrow indicate on which side the differential

operator acts, and the scalar products are again Minkowski-like

D— (@R

— —

ng( ! C7é = C%T. C)hf - C)ﬁ? ‘923 (c7)

Of course, for translation invariance, the guantities do not
depend on X , so that (=

C - T

7
and one recovers the well-known result that

((P) =A(P) B(F)

(Fourier transform of convolution)
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Let us now apply this to the GKB equation (cf.C2)

the fields change slowly as a function of time and space.

This means that gradients and time derivatives are small and we
can restrict to lowest order in those derivatives

("gradient expansion"), which amounts to using

(cf.C6)

[ = =

C(FX) = T+ 5, 9P -2y 2

A
=4

first observe that




it is convenient to express the action of the "commutator" term
(lhs of the GKB equation) on a generic function.zg in the form

(valid within the gradient expansion)

TR e
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=

— . .
if not specified
p) ( P

/quw /q/}_+ B ! derivative apply to
- P - the righ)

;o op
Proof:

first of all the "1" term in C8 cancels in the commutator

the second term is already a commutator, and thus simply acquires a 2

U, - LGty
J A\

U 1
“\)1
2k

A -

explicitly, we can write, again using (C7):

S -
Q C Iy

/ (C10)
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We need the following property:

1f‘§ 1s a function of <:7ékj _— Lj onl% we have
(cf. C10)
1 N A
o n (TN Ny /) 7\
L S\ Yo V)T A T T /)
X / v

(C11)

which can be seen by explicit replacement, or by observing that

— | N
7
in that case J}' commutes with CDCXN _,.(/
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Before going on, let us observe that in the lowest (nonzero)

E NNV £ + 1]
OLdJdcir 0OL ClI

gradient expansion, the equation for the retarded Green's function

/ g | <_\/_ o (cf. ClA)
(boh*ufln/b/l = 1

C =
i i imply obtained b i = , 1. e.
s quilite simply obtaine vy setting éT/
~+ —

\/h\u//\/~ \vv~(/u/ >4

~ Q

in the GKB equation (C2), since there one has terms like 23, (:7Q-— C? ‘Z
H

which are already first order in the gradient expansion (commutators)

Quasiparticle Approximation

The Boltzmann equation relies on the "quasiparticle approximation"

M Q
(in some cases one could also introduce a renormalisation of the

B
single-particle energy originating from >_ )

_5
A _cp )/
V/A/,(w o v

/X\L,71*>,
A

(2

Q
N

the spectral function reads

L\(P,y)~ ,—’Yj /Ch«@@ ) - S(W~-£(F)-0)
/ AN 7 e { 4

2

(C13)
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In order to make progress, we express the Keldysh Green's function
in a form similar to equilibrium

:(C/z 6@) 56 )

= =/ /—/J/p’ /’*\) ([ )P/ ) 5(6*) (C14)

(fermions)

Remember, in equilibrium 7K(

was the distribution function.

nonequilibrium distribution function. The central quantity

in Boltzmann's theory

In principle, J7/

2 )

Howewver, due to the §> originating from /Li T/A// . Cl3),we can eliminate

Mj»in favor of the other variables and write Cl4 as

r= )

[N
\
J
S

72?(\“/\/
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A

N
W / < NP Cii
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oy — g It~ ALVA /s
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-/
In the absence of scatterings, i. e. ;ng - 6:7
the GKB equation (C2) without self-energy, thus reads
\ j 0 /7 )
A AP SN . \/ I
o(W-elf)-U) J fff(‘”/’(/vy
since %?does not depend on Lbr’ . We thus have:
/ ""7( jr\ /)/;\7 /\
(D +0V o= t T ﬁ)%(ﬂ’/(/ﬂ
N A /1 ’

which is identical to the Boltzmann equation (C0) in absence of
scattering

The scattering term can be then derived from the r.h.s. of

the GKB equation (C2) wpon setting |y - ¢ 57y | f/y )

vl




elf-energy term

We now work on the rhs of the GKB equation (C2) , we always restrict to

the lowest order in the gradient expansion

Z ”{‘S’c/‘u o) <

S - = == e £,

Z— e
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--—// fb C— — \ 7
)
N
anticommutator
]
we obtain 3!
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Zhv CD,// "bkznv - Z/L- bl/t ’i’éi-_/ Q,Z{JY

: L 3 fd ~ /{ L 3 3 . LI 4 ~q
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inserting in the GKB equation (C2) yields

B

where we have 1ntroduced the spectral tfunctions

(Cc17)
/-7;‘7']'__- — /‘ —
(N / \ - OA \;7q/
> = [ ST S
~ o | R ey 7
(C17a)

This is actually the standard form of the GKB equation
so far this is exact, i. e. not restricted to the gradient expansion

ber—t] . . - . —

over internal variables
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Scattering term 1n the

Boltzmann equation

—For—the Boltzmann equation, we assume that gradients are small,
and self energies are small.

to gradients square (cf. C8), so that, at this order,

we can neglect self-energies within [...]

Moreover, in the same approximation, we can replace anticommutators

{ bl

1 YA \ : 3 3 4
1...5 Oy (LWICE) Sllple Products.

In this way, (Cl7) with (C9) vyields

A
\ {V i / \ . A/n Z /J/) \ h"/ﬂ/)X 0/){\\
o IC (e et 2, (Gx )= 1) G, (F X))
SAVIER A/ / < \ //
(Cc18)
Ag discussed earlier (cf. C15), the left hand side produces the "flow"
term of the Boltzmann equation (CO0). The right h.s., is thus the scattering
term:
We will evaluate this term, which is of course important, since it,
ultimately, leads to equilibrium, for the simple case of
s¢attering from impurities
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Scattering from impurities

we evaluate this term for the case of

scattering from diluted random impurities

for this case the self-energy can be obtained within the

self-consisten Born approximation (we will show this later)

— [ \ (‘) N Nes B T2 ‘ / / o
Z‘!& & 5 X/ ) C/) Qg(f }[U( e )/ Gﬂ( ’”/ X (c19)
[ /D la /a Lo oD /’D/i \
Notation d P 9 ;: d/ / bp( /;/ :(27[// b ( /”/
(/2 77)0 (C19m)

dimension

)
I

N
_Cﬁ igs the impurity concentration and 'U the potential
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(C20)
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ulsing again

("”/U

Q)

nd integrating over both sides

. C18,C20)

leading to W — E(ﬂ}fL)

Q)

-4 7 AChHX)

nd dividing both sides by

2

using (C10),

\“*‘:3

Interpr ion: 7 (Fx)
prob.

d
5 )
FiﬁCTéESéSduéfCESCafféTiﬁgfTCﬁp*prWifhpTCb.ff7£éﬁ%hﬂ<}

J £ .
—delta enforces energy conservation




Random impurity potential

7

(see, e.g. Bruus-Flensberqg)
We have impurities with concentration ¢ at random positionsﬁjM

VX = > A (x-0.)
V \ / m \ J/

A /nyh-”')@/” ~/

[ () A o~ \ ) ,
Notation d{) 9 = d / 50(?;);/\/27() b (?/
BT

:_ZJQV ' /\f(Q)\ (c23)

1 A
Impurity average: average over the positions an

‘\/’(cj"): ﬁ;:f)wmé’ Ay,

4 A 4

A\
= CAFCT0) byl 7 (C24)

\/ independent of x
\',

(

(C25)

VA = C w(§o)

(cf. CR




Second-order term:
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In general, one can write , e.g.

——C

VLIVAT ) u(Ss) = Vi) \/(5’ VLT

7~

C

L 2 2 t < ,

f\/(% V{9 )V(95) + \T)V- )\//?z

Sum over connected terms

N

- \/ — connected average
N

In this case, the connected average in the sum above runs

over just one impurity index, e.dg.

—(C
\/(a V\//9W//9 ) =
VK/i/VkZ/Vk/B/
y yau @@44’921'?3)(9/;@ . ‘ PN
L7 (dy, W)V (5 )

N Nar/0

r\ { (}
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o~ /(] e \ \ / \
— E;nLZN‘Z’ZT 3/ Lla)2l Lia ) /thj/ (c28)
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Diagrams

Without averaging N//Q)
VAV /W
» W9 oy
+ > T

Gl

N~
[}

\v/(fij \/(72/) !

2
Fa)

C

e 94 li+9 /2 Vf%g(’?z

B L

»/—/'———X X—X—— + -~ — -

Momentum is obviously not conserved
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Impurity averaging

consider one contribution

AT TraAI-Nor

V) VR ) V()
3 >/ \/

average: sum over connected contributions

> N
AN /(\
// L\ f C -
7 A J
// I \ \/(9/]) /(77) \/ Q\
Example N /AR | z] V4 L/g/
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let us introduce the momenta of the Green's functions

N/ N
N\ X
, \
24 I O .0 e 9.9 L9
\ ARG
\ /(9. \/(4.) \/(9,)
V\‘é7/ V\I 4/ v //

Using the expressions for the averages

\/ (9N (9 ) = S (I) ) gD(%fQ&o)

JV
\/( /(%) = CAr(o) & (F)

we can represent schematically the diagram as

(c29)

is restored!
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The total contribution to the diagram C(29) is,

thus

E S : 3 3 +— 3 +— ~ .
1T 15 dll 1Ilaepellaellt proauct OL Celrllls

orresponds to a 2x2 matrix in Keldysh space,

and an impurity

otential termis proportional to the identity in 2xX2 Keldysh space

T

thus, important

he order of the product is,
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Let us consider a term with three connected potentials

Iy v
Vo

) ’ ‘91’?2
Y Y 12 2
\ " n L, Nrn I
Sk HtUt9, 7
— ~C
WW 2 2 = 3 17T 1 2 3

A\

_Qq ¢ M‘f7 hfg7+9‘2\0{3y1 0/392
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For a term at a certain order in V one has to sum

over all connected possibilities. For example, at
third order one has

Xy 2 XX

and each vertex conserves momentum

=
T~
Ns)

I
—

2x¥2 (both the X as well as the

- _vertices where dashed and solid line meet )

Notic

e that since impurity potentials are time-independent, this

means

/
that 1n frequency space, each dashed line carries frequency \Y — O

Y . & .

/
And as usually, each solid line contributes (;D L

which is a 2x2 matrix
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One can define a self-energy in the usual way, as the

>( )Q /( L
)
N\ AR AN
> //_‘ /s /LN
— VIS =
. P
/?Q\\_/OXk\ /////\ \\
7 N — , o
/
P P N N y \ N
T - < . — ~+

)

The lowest order term

cNT(o)

is just a constant, and can be absorbed in the single-

2 7
particlte energy

h\\\ J
|

- =
0 00\ C/r VN NI
1.e. replacing Z/ko’,/ —p Z L‘r’¢/ —+ G u//
) we can omit that term
r/“ when there are other perturbations, like, el.-el., el.-phonon,

N
A<

+.

C
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at the lowest order we take for the self energy

Self-consistent Born approximation

. /><\

p X X X
s ~ p /XN o .
//E;:‘\ s N ) . n AN . AN
~ —
Q‘(J 4\ \ \2(\
/ ) X\\ AN
L A <
=t -
Full Green's function —xX— T 6‘8 +
|
t
X
- ~
G :
e AA A AL S

possible terms >< PN
. 2. 4
not considered /)< \

low impurity concentration limit

/™~ yd \ ya

(C30)

since the /l/ are proportional to the i1dentity

this is an equation for each component (r,a,k)

It's the equation we have used above 1in (C19)
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Useful relation

In solid state physics it is more common to consider

a finite volume and replacing the integral over g with
a sum

Rules to transform from continuum to discrete momenta

ya

p
:

9 g _
iy 0] & S >
5

(C31)
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Discussion about validity of gradient expansion
in the scattering term

First point: we always consider impurity average gquantities.

(otherwise quantities would bg)strongly variing)

This includes G, which meansAK is the impurity averaged one

!

AN/
grained in the variable R , so R includes a "small volume" ~ Vv
AN/
%
around R. contains a large number of impurities so that
averaging is justified. Since we are considering the

0

A

/
g
o
R
®
N
I

interimpurity distance

:) is thus understood as being the one associated
—
with the averaged (fz
v
< <

(of course 41 is not the impurity averaged 41 as it appears

the denominator)
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Congider now the Born approximation,

we write the expression in real space
//X\
F‘_// s\ - L]
(X1, K,) _ \
o ~ \
L NN )= X X
7 2

- \Y/(X4>\,/(X2) ﬁ\/X7 X5

RV ARV (~(x, X )
-V (T2 ) VTS

There is no gradient approximation yet. Notice that the full G

center-of-mass coordinate X as well.

On the other hand, the important point is that the second

order impurity averaged term vz , only depends on the difference
coordinates.—This is exact:

v £ i . ) 1t

\ / ‘ (?>> is a function of fD and <;; (/FD/ %(i) of ﬁD/ ></

V

y

and we can estimate vz —

2
2P K, T

N . / J 5
“{ < Interatomic distances.) Quite generally we can take - A Y
4 Wr
{
;il. —~ S /</ =~ wavelength of U
VX A
;7 2 7 ] . .
The gradient term N x4 / Is required to
2x 2f A W - be small

Cons

) > -3
istent with C(32), we need /< :>>><§5\/' :>:> Ci :>> (1fF') (Cc33)
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Let us try to be more precise

————

h\

S G K ) = ) G(xa, X, )

2 M SN %

we go over to the Wigner coordinates

P I

Yl /
A

e

S(p ) )= (dx g
—\" )N )

VoG (x,
(N /

/

from usual Fourier transform rules:

_ 10 20

)
Je VT

V does not depend on time \V/Z (DC) et \/ g ()?)

VA ERTEEDRACD,

—

[ [ 7 —F = / ~ \
Vdg V) G(Fw x )

-~

This is the expression we have in fact used

T

iR . 9z . .
rllcl_c Lo 110 nguJ_cllt d.L)L)LUAJ_lllCI.tJ_Ull 1ITL T
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INSERTION: check that the third-order term is also
small in the sense of the gradient expansion

>

~ /X3

>
-

(3)
//3\/ ) \ = (S\(
\" 2/ !

V)6 ) VX))

27

define \ /3 (X7 ~/>(ﬁ )(4, )
VAR 2/

ﬁ.....; )
J J ) =2
1)
/Y//\\/ >< }/\/}(\
A AN RS
N [3 /1 l}-//\/ \ l; \f/\/ o)
dx, WX, 851X ) 68,4, )

M|

(%] %)= [ dx
")

obv

iously we eventually need

/3\ /

~
‘X7/'Ké/>‘/ éf
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in Wigner coordinates
~ P
_ ) \/\w( %‘(3)/55 Y| \C\ c/):gd
<2~ kl)/\/*) a ( //\/J/
/
e _
( | = C /N “ \ﬁca)/z lex>
= jdxd X G (X)L e A
J/
e\ - .
e D> PP, =)
= | dXdxd9 e £ 2 (A dr)
J
a N3/
-(,\/o > /(MQ\/IQ\
= )v T /AN
J
(notice: Qﬁ have to be inserted wherever appropriate)
’\/(2)
To evaluate Z we proceed by first
[+ \
evaluating Win Wigner coordinates w.r. to X7/ X>
he X4 ’)( is an external variable
WIIELr e / A
| | \’//’;? / | >(\ / \
)0, X Xq=0 ) = \/ 7L X% ) (o[, X
vV \ / ‘| / V \ / /
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to

we

carry out the convolution, i. e. the integral over ><

3

can use the gradient approximation

i

B

deed for both L«//and <;; we have

”) 7 7 i

— - — . — as there is no Q here!

DP [(p \/ - A

/N

Her

C
e we take the LOWEST order gradient approximatiogﬁ?7 since

I
W U

the

>re 1s always the small parameter \/

n this approximation we get

/2] o) \ N\

-~ \ R N S N a5 W
D (P)XG) = WL A ST A)

r/ s

we have
/ \

=

(5 v e Lty o9 %) dY
ANV i 1/ c VARV
J

which finally gives

(3) \ /- l ;:}{'(a) LA \
> X )=lag 2 [(P+) X)) ) =
\ / ) / L / /
oo . -
ool A9 9N [p409"y ) (5 (P, X)
AL N A AR LY /
J
whijch is the expected q g ﬂ\\ —
expression ) P ~9( ~ -~
p p+7 t VT?*?'

ENI

D INSERTION
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Evalt

pation of scattering term for a simple case

l1.e. we wrilte

changes in the vicinity of the Fermi surface, so we can take it to

! ! ] . . ] - T . . he f

F, we take it (at lowest order) to be

The scattering integral (C21), thus, becomes

/ A

7
T

/% J (C34)




91
Usé

V\,v

(dp = wige) (de'ly dne

ZTT

Ve choose the directions of the vectors:

N

A
P=1(0,01 F=0wt 7 0,rg )

A A

T,

|
7

SO we have F p = (/OO/ 9

oy &

‘V\>

07
AN

P F» Caoecmé/ ’ff)umé?m/ﬂ(/ Ca@tﬁ

potential to depend only on the angle between the p's

Ve

NFE-e) — e

The scattering integral (C34) becomes

\ YAV \[, (| ’ - ”
M) J )y d e ) (Crd)

e =)
J = 4
A \ \
~ :7 ya
((Vﬂ — (020 )
‘// (C35)
ya Iﬁp N ﬁ»l 1/)’
Qo) @ Cap 0T Gt Cap
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1

l

/
the integral over (f)can be easily done, removing the term C::a;z %7

so that we can write

)

N
<

Sy ] NP AYS |
T CN ) Vdwe (e )7

/

(C36)

This justifies the often adopted relaxation time approximation. However,

btice that this form depends on the fact that we have an external

DYrce
ES -
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Proof that the equilibrium form is a solution
of the GKB kinetic eguation

We show that in equilibrium the time-independent form

D

mh
+
oy
D
,><:

indeed from this we have

, 7 , \
AR AN CR O (AN B I
AR A

\
ZZK

-
U///\

(C17,C17A) yields

In this way, the RHS of the kinetic equation

75(&/) | =0

VIEN

:
(5,5 Grm G | S W =] 6r-Gy 25,
L ) J "/ //

there is no dependence

Since we are at equilibrium,

so there

how it works if one relaxes this hypothesis),

is no dependence on ﬁ?

and

4

Therefore convolution are replaced by products
so the LHS vanishes as well.

commutators wvanishes,
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Useful observables

pauny, W /\
(X

A 1,0 )N
(> (Kq, X5 )= AN T (M) T L) 7

v 7

It is convenient to express it in terms of the Keldysh GF

/ 1/ N

< K 7
L -6 -6

> <

a5 5
> U ST
< /S e
(5 = (b — (W VY / O

4 ¢
. |,
‘”7 Q - ; N\ T /) (C37)




Particle density

VARV

.
)

0 /A
C

-, X7X4/

[ -

A (5

—_—

(C38)

A

ST
R R

—

N

Particle current

oo V) V) )

N

—
—

) (%)

—

= D W ) Y (%))

\

v, G

Q
D=
_ /’/\n - As

ST L X )

(C39)
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