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Boltzmann and kinetic equations

Boltzmann equation: semiclassical equation to describe 
nonequilibrium systems (e.g. transport)

Afterwards: derivation within NGF theory, and quantum generalisation

Distribution function 

in equilibrium for an homogenous system:

N. of particles in the corresponding phase
space volume element at time t

(we can generalize considering band indices and crystal momentum)

Fermi func.

For a quantum system, of course,  cannot be infinitesimal

but must be coarse grained  

Consider now the action of an external field

semiclassical eq. of motion

In the absence of scattering between particles, thus
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to linear order in 

if we assume a further modification of f due to scattering

we get the Boltzmann equation

we will discuss the last term later

(C0)
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Start from Dyson equation

The retarded (1,1) component of this equation gives
         (see "useful relations" on p. 35)

we have separated the contr. from  pure external potential U 

and the rest 

Similarly, the Keldysh (1,2) component gives

we have already seen that (apart for singularities)

The treatment follows in general the Book by Haug and Jauho,
although there are some small differences

We have learned that it is justified to neglect these 
singularities when the free system is interacting with a
continuum which provides a dissipation mechanism.

In the same spirit, we shall neglect the singularities in

and we set them equal

we thus obtain

for simplicity of notation, we now omit the 

(cf. A10)

(cf.A9)

(C1)

(C1A)
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similarly, the "right-hand" Dyson equation

yields

as discussed above, we set 

subtracting the two equations we obtain

commutator

This is (essentially) the generalized Kadanoff-Baym (GKB) 
equation (to be precise
one needs a further symmetrisation between r and a quantities),
which is the im principle exact quantum kinetic equation.

Below, we will further transform the r.h.s. to obtain an expression
similar to, .e.g. Haug-Jauho

(C2)
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Since there is no translation invariance neither in time
nor in space, we should work in real time and space, so
that all objects have to be interpreted as matrices 
in time and space, and
the expressions above have to be interpreted as
matrix products in time and real space, i. e. convolutions, 
for example

using the notation 
 

It is convenient to introduce Wigner coordinates 

in general, one carries out a Fourier transform over the 
relative coordinates

we define for convenience a Minkowski-like scalar product

has the meaning

and inverse

(C3)

(C4)

(C2B)

(C4A)
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We now quote without proof a useful relation for convolutions
(see Haug - Jauho's book)

where      is an operator acting on left and right variables:

where the arrow indicate on which side the differential 
operator acts, and the scalar products are again Minkowski-like  

Of course, for translation invariance, the quantities do not 
depend on X , so that 

and one recovers the well-known result that 

(C5)

(C6)

(C7)

(cf. C2B)

(Fourier transform of convolution)
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The assumption for Boltzmann equation to be valid is that 
the fields change slowly as a function of time and space.
This means that gradients and time derivatives are small and we
can restrict to lowest order in those derivatives 
("gradient expansion"), which amounts to using

Let us now apply this to the GKB equation

first observe that

(cf.C2)

(cf.C6)

(cf. C4)

(C8)
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it is convenient to express the  action of the "commutator" term 
(lhs of the GKB equation) on a generic function    in the form 

with the differential operator 

Proof:

(valid within the gradient expansion)

explicitly, we can write, again using (C7):

first of all the "1" term in C8 cancels in the commutator
the second term is already a commutator, and thus simply acquires a 2

(C9)

(if not specified
derivative apply to
the righ)

(cf.C7)

(cf. C0)

(C10)
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if   is a function of                      only we have    

which can be seen by explicit replacement, or by observing that

in that case      commutes with 

We need the following property:

(cf. C10)

(C11)
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Before going on, let us observe that in the lowest (nonzero) 
order of the
gradient expansion, the equation for the retarded Green's function

is quite simply obtained by setting  , i. e.

and similarly for the advanced 

The Boltzmann equation relies on the "quasiparticle approximation"
according to which one neglects         in         
(in some cases one could also introduce a renormalisation of the
single-particle energy originating from      )

the spectral function reads 

 in the GKB equation (C2), since there  one has terms like 

which are already first order in the gradient expansion (commutators)

(cf. C1A)

And indeed, it is sufficient to use the lowest order for  and

Quasiparticle Approximation

and

(C12)

(C13)
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In order to make progress, we express the Keldysh Green's function
in a form similar to equilibrium

Remember, in equilibrium 

was the distribution function.
In this nonequilibrium case, we can interpret            as the 
nonequilibrium distribution function. The central quantity
in Boltzmann's theory 

due to the       originating from             (cf. C13),we can eliminate
 

   in favor of the other variables and write C14 as

In principle,

However,

(fermions)

(C14)
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In the absence of scatterings, i. e. 

the   GKB  equation (C2) without self-energy, thus reads

Let us now apply the lhs of the GKB equation  (C2 with  C9)

where we have used the fact that (cf. C11), 

since A is a function of 

since   does not depend on        . We thus have:

which is identical to the Boltzmann equation  (C0) in absence of
scattering

The scattering term can be then derived from the r.h.s. of
the GKB equation (C2) upon setting 

(C15)
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Self-energy term

We now work on the rhs of the GKB equation (C2) , we always restrict to
the lowest order in the gradient expansion

we introduce

we obtain

similarly for  G ( with analogous definitions to C16)

anticommutator

(C16)
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inserting in the GKB equation (C2) yields

where we have introduced the spectral functions

This is actually the standard form of the GKB equation 
so far this is exact, i. e. not restricted to the gradient expansion

remember, the "products" in this equation are convolutions 
over internal variables

(C17)

(C17A)
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Scattering term in the 
Boltzmann equation

For the Boltzmann equation, we assume that gradients are small,
and self energies are small.

In the GKB equation commutators [...] are proportional
to gradients square (cf. C8), so that, at this order,  
we can neglect self-energies within [...]

Moreover, in the same approximation, we can replace anticommutators 
{...} by (twice) simple products. 

In this way, (C17) with (C9) yields

As discussed earlier (cf. C15), the left hand side produces the  "flow"
term of the Boltzmann equation (C0). The right h.s., is thus the scattering
term.

We will evaluate this term, which is of course important, since it, 
ultimately, leads to equilibrium, for the simple case of
scattering from impurities

(C18)
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we evaluate this term for the case of 
scattering from diluted random impurities

for this case the self-energy can be obtained within the
self-consisten Born approximation (we will show this later)

is the impurity concentration and the potential

The rhs of the Boltzmann equation  (C18) becomes

Notation

= dimension

inserting the expression for      from the quasiparticle approxim. (C14):

Scattering from impurities

To get    (C17A)one simply has to replace with       in C19

(C19)

this equation holds for all three self energies 

(C19A)
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The lhs is (cf. C15)

which identifies the scattering term (cf. C0)    

using again 

and integrating over        both sides (cf. C18,C20) 
(leading to                 )

and dividing both sides by 

this was the 

Interpretation:        decreases due to a scattering from p to p' with
               prob.
and increases due to a scattering from p' to p with prob.  

The delta enforces energy conservation

(C20)

yields:

using (C10), and since      does not depend on 

(C21)
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Random impurity potential

We have impurities  with concentration c at random positions 

Impurity average: average over the positions

independent of x

Notation

= dimension

(see, e.g. Bruus-Flensberg)

(C23)

(C22)

(cf. C22)

(C24)

(C25)
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in real space

Second-order term:

(C26)

(C27)
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In general, one can write , e.g. 

connected average

In this case, the connected average in the sum above runs
over just one impurity index, e.g.

Sum over connected terms

(C28)



75

Diagrams

Without averaging

Momentum is obviously not conserved
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Impurity averaging

consider one contribution 

average: sum over connected contributions

averaging

we indicate the connected terms by linking the   together

Example 
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let us introduce the momenta of the Green's functions

Using the expressions for the averages

we can represent schematically the diagram as 

we can thus interpret the dashed line as carrying momentum,

the nice things (however expected) is that momentum conservation
is restored!

(C29)
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The total contribution to the diagram C(29) is, thus

It is an independent product of terms

In Keldysh notation one should remember that a solid line
corresponds to a 2x2 matrix in Keldysh space, and an impurity 
potential termis proportional to the identity in 2x2 Keldysh space

The order of the product is, thus, important
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Let us consider a term with three connected potentials

Total contribution
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For a term at a certain order in V one has to sum
over all connected possibilities. For example, at
third order one has

The rules consist then in associating to each dashed line a term

and each vertex conserves momentum 
(both the    as well as the 
 vertices where dashed and solid line meet )

Moreover, each     contributes          (concentration) 

And as usually, each solid line contributes 

which is a 2x2 matrix

Notice that since impurity potentials are time-independent, this
means that in frequency space, each dashed line carries frequency 
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Self-energy

One can define a self-energy in the usual way, as the
sum of all single-particle connected diagrams

and of course we have Dyson's equation

when there are other perturbations, like, el.-el., el.-phonon,
or external potential U) one in principle should consider all mixed
contribution, e.g.

The lowest order term 

is just a constant, and can be absorbed in the single-
particle energy 

i.e. replacing 

we can omit that term
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at the lowest order we take for the self energy

Full Green's function

Self-consistent Born approximation

since the      are proportional to the identity

this is an equation for each component (r,a,k)

it can be shown that this is the dominant term in the 
low impurity concentration limit   

It's the equation we have used above  in (C19)

possible terms 
not considered

(C30)
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Rules to transform from continuum to discrete momenta

In solid state physics it is more common to consider 
a finite volume and replacing the integral over q with 
a sum 

Useful relation

(C31)
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Discussion about validity of gradient expansion
in the scattering term

First point: we always consider impurity average quantities.
(otherwise quantities would be strongly variing)

This includes G, which means   is the impurity averaged one  

Impurity averaged means that                       is coarse

grained in the variable R , so R includes a "small volume"

 around R.      contains a large number of impurities so that 

averaging is justified.  Since we are considering the 

low-impurity density limit (Born approximation) , we require 

= interimpurity distance

this condition gives 

Giving this, we are allowed to average over impurities.

is thus understood as being the one associated
 
with the averaged 

(of course      is not the impurity averaged    , as it appears 

the denominator)

where

(C32)



85 Consider now the Born approximation, 
we write the expression   in real space

There is no gradient approximation yet. Notice that the full G
contains the external potential U, thus it depends on the
center-of-mass coordinate X as well.

On the other hand, the important point is that the second
order impurity averaged term     , only depends on the difference
coordinates. This is exact.

Already from this expression one can intuitively understand that

is a function of      of 

and we can estimate 

interatomic distances. Quite generally we can take   

wavelength of U

The gradient term is required to 
be small

and

Consistent with C(32), we need 
(C33)
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Let us try to be more precise 

we go over to the Wigner coordinates

There is no gradient approximation here

This is the expression we have in fact used

Since V does not depend on time 

from usual Fourier transform rules:
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define 

Now define 

obviously we eventually need 

INSERTION: check that the third-order term is also
small in the sense of the gradient expansion
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in Wigner coordinates 

(notice:      have to be inserted wherever appropriate)

    evaluating       in Wigner coordinates w.r. to 

where is an external variable 

To evaluate we proceed by first
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there is always the small parameter 

Here we take the LOWEST order gradient approximation      since 

to carry out the convolution, i. e. the integral over 

we can use the gradient approximation 

indeed   for both      and         we have 

as there is no    here!

In this approximation we get

we have  

which finally gives 

which is the expected
expression

END INSERTION
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We evaluate the scattering term for an isotropic system (constant force)
assuming that the deviation from equilibrium is small,
i.e. we write

for the small deviation       we can assume, 1) that it only

changes in the vicinity of the Fermi surface, so we can take it to
depend only on an angle. Since the preferred direction is the force
F, we take it (at lowest order) to be 

The scattering integral (C21), thus, becomes

Evaluation of scattering term for a simple case

(C34)
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again, close to the Fermi surface we can take the impurity
potential to depend only on the angle between the p's

The scattering integral (C34) becomes

Close to the Fermi surface we can replace

so we have 

Useful expression

= ( 0,0,1) = (       , 0,       )

We choose the directions of the vectors:

(C35)
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so that we can write

with the (inverse) relaxation time

the integral over    can be easily done, removing the term

This justifies the often adopted relaxation time approximation. However,
notice that this form depends on the fact that we have an external
force.

(C36)
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 We show that in equilibrium  the time-independent form 

is a solution of the exact kintetic equation (C17)

indeed from this we have

In this way, the RHS of the kinetic equation (C17,C17A) yields

LHS:    Since we are at equilibrium, there is no dependence
on T. We assume  that the system is homogeneous (I don't know
how it works if one relaxes this hypothesis), so there
is no dependence on 

Therefore convolution are replaced by products , and 
commutators vanishes, so the LHS vanishes as well.

Proof that the equilibrium form is a solution 
of the  GKB kinetic equation
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Useful observables

Single particle observables can be determined from

It is convenient to express it in terms of the Keldysh GF
we use the relations on page 25 to get

(C37)
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Particle density

Particle current

(C38)

(C39)


