
Advanced Quantum Mechanic – Winter Term 2017/18

Problem Sheet 01 – due on October 11th

E. Arrigoni, R. Berger, C. Gattringer, T. Kamencek

Problem 1.1

For the discussion of quantum mechanics of a charged particle in an electro-
magnetic field we will need the following results from electrodynamics.

The equation of motion of a charged particle (charge q, mass m) in an
electromagnetic field is given by:

m~̈x(t) = q ~E(~x(t), t) +
q

c
~̇x(t) × ~B(~x(t), t) . (1)

The ~E- and ~B-fields can be represented by a vector potential ~A(~x, t) and a
scalar potential φ(~x, t):

~E(~x, t) = − 1

c

∂

∂t
~A(~x, t) − ∇φ(~x, t) , ~B(~x, t) = ∇ × ~A(~x, t) . (2)

Insert this in (1) and show that the equations of motion assume the form

mẍj(t) = − q
c
Ȧj(~x(t), t) − q

∂ φ

∂xj
(~x(t), t) (3)

+
q

c

∑
k

ẋk(t)

(
∂ Ak
∂xj

(~x(t), t)− ∂ Aj
∂xk

(~x(t), t)

)
.

Show that this equation of motion corresponds to the Lagrange function

L =
m

2
~̇x(t) 2 + q

(
1

c
~̇x(t) · ~A(~x(t), t) − φ(~x(t), t)

)
, (4)

by evaluating the Euler-Lagrange equations

d

dt

∂

∂ẋj
L − ∂

∂xj
L = 0 . (5)

Finally perform the Legendre transformation to the Hamilton function,

H = ~p · ~̇x − L , (6)

where the components of the generalized momentum are given by pj =
∂L/∂ẋj . Show that

H =
1

2m

(
~p(t) − q

c
~A(~x(t), t)

)2

+ q φ(~x(t), t) . (7)
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Problem 1.2

A short repetition of calculating with the Pauli matrices and some app-
lication to spin.

Remember/show the following identities of the Pauli matrices:

Trσj = 0 , σ 2
j = 1 , σj · σk = i εjkl σl (k 6= j) . (8)

Denote by ~σ the vector of the three Pauli matrices, such that ~a · ~σ is the
matrix

∑
j ajσj . Using these identities show that

(~a · ~σ )2 = ~a 2 1 , (~a · ~σ )(~b · ~σ ) = ~a ·~b1 + i ~σ · (~a×~b) . (9)

Finally, let ~n be an arbitrary vector of length 1 and β ∈ [0, π] and show

U(β, ~n) ≡ e iβ ~n·~σ = cos(β)1 + i sin(β)~n · ~σ . (10)

The identity can be obtained by expanding the exponential in a power se-
ries. Demonstrate that U(β, ~n) is a unitary matrix with determinant 1, i.e.,
U(β, ~n) is in the group SU(2) (special unitary 2× 2 matrices).

The quantum mechanical spin operator is given by ~̂S = h̄
2 ~σ. Consider a

spinor given by

ψ(t) =

(
A+ e

−iωt

A− e
+iωt

)
with A2

+ + A2
− = 1 . (11)

The quantum mechanical expectation value of an operator Ô is given by
〈Ô〉 = ψ(t)†Ô ψ(t). Compute

〈 ~̂S 〉 =

 〈Ŝx〉〈Ŝy〉
〈Ŝz〉

 . (12)

Show that 〈 ~̂S 〉2 = 〈Ŝx〉2 +〈Ŝy〉2 +〈Ŝz〉2 = h̄2/4 and compare this to 〈( ~̂S )2〉.

Problem 1.3

Later in the course we will discuss Fock spaces, a useful type of Hilbert
spaces for many particle problems. The Fock space construction makes use
of creation and annihilation operators as you know them from the algebraic
treatment of the harmonic oscillator. We here repeat some basic properties
of the formalism.

2



The eigenstates |n〉, n = 0, 1, 2 ... , are given by

|n〉 =
1√
n!

(a†)n |0〉 , n = 0, 1, 2 ... , (13)

where a† is the creation operator and |0〉 denotes the ground state (vacuum
state) which is normalized, i.e., 〈0|0〉 = 1. Together with its adjoint operator
a, the annihilation operator obeys the commutation operators

[ a , a ] = 0 , [ a† , a† ] = 0 , [ a , a† ] = 1 . (14)

The annihilation operator a annihilates the vacuum state, i.e., a|0〉 = 0. Use
these properties of a and a† to show that the states |n〉 are orthonormal,

〈n|m〉 = 〈0| 1√
n!
an

1√
m!

(a†)m |0〉 = δnm . (15)

The number operator n̂ is defined as n̂ = a†a. Show that it obeys

n̂ |n〉 = n |n〉 , (16)

which implies that the Hamilton operator Ĥ = h̄ω
(
n̂+ 1

2

)
has the eigen-

states |n〉:
Ĥ |n〉 = En |n〉 with En = h̄ω

(
n+

1

2

)
. (17)

Problem 1.4

Use Rayleigh-Schrödinger perturbation theory (details see below) to compu-
te the first and second order corrections to the energy for an infinitely deep
potential well with a perturbation. The Hamilton operator Ĥ = Ĥ(0)+λĤ(1)

for this 1-d problem is given by

Ĥ(0) = − h̄2

2m

d2

dx2
+ V (0)(x) , Ĥ(1) = V (1)(x) , (18)

where

V (0)(x) =

{
0 for x ∈ (0, L)
∞ otherwise

, V (1)(x) =

{
sin(πx/L) for x ∈ (0, L)

0 otherwise
.

(19)
Equations for first and second order corrections to the energy (you should
already know them):

En = E(0)
n + λE(1)

n + λ2E(2)
n + O(λ3) , (20)

E(1)
n = 〈n(0)|Ĥ(1)|n(0)〉 , E(2)

n =
∑
m6=n

|〈m(0)|Ĥ(1)|n(0)〉|2

E
(0)
n − E(0)

m

, (21)

ψ(0)
n (x) =

√
2

L
sin(nπx/L) , E(0)

n =
h̄2 π2

2mL2
n2 , (22)
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Two useful integrals:∫ π

0
dy sin(y) sin(ny)2 =

4n2

4n2 − 1
, (23)∫ π

0
dy sin(y) sin(ny) sin(my) =

−2mn (1 + (−1)m−n)

1− 2(m2 + n2) + (m2 − n2)2
. (24)
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