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Problem 2.1

As a first example for the quantum mechanics of a charged particle in an
electromagnetic field we consider the case of a constant magnetic field (and
vanishing electric field). We will revisit this problem in the lecture, but al-
ready discuss it here in a different form.

We assume the B-field in the z-direction, i.e., ~B = (0, 0, B). Show that

~A = − 1

2
~x× ~B , φ = 0 , (1)

are a correct choice for the vector- and scalar potentials (Are there other
possible choices?). Determine ~A explicitly and insert this form of ~A in the
time-independent Schrödinger equation for this problem,
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ψ = E ψ , (2)

and multiply out the square of the operator on the left hand side. Now it
is convenient to switch to cylinder coordinates, where Laplace- and Nabla
operator are given by (check these formulas in your vector analysis notes if
you do not remember how to use them)
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Use the fact that the B-field in the mixed term (the term with one Na-
bla operation) is proportional to ~eϕ (write also ~x in cylinder coordinate to
see that) and simplify the mixed term. Then use the following factoriza-
tion ansatz ψ(ρ, ϕ, z) = um(ρ) eiϕm eikz for the wave function in cylinder
coordinates and determine the resulting equation for the radial functions
um(ρ).

Remark: With the Ansatz um(ρ) = ρ|m| exp(−αρ2)ω(ρ) and the substituti-
on y = ρ2 one can transform the radial equation into the Laguerre differential
equation which you might remember from the hydrogen problem. However,
this is a painful battle and in the lecture we will discuss a more elegant
treatment for the problem of the electron in a constant magnetic field.
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Problem 2.2

In the lecture we have discussed how the vector- and scalar potentials ~A(~x, t)
and φ(~x, t), as well as the wave function ψ(~x, t) transform under a gauge
transformation. In this example we study the same quantum mechanical
problem for two different choices of the potentials that are related by a
gauge transformation, i.e., describe the same physical fields.

We consider a particle with charge q and mass m in a constant external
electric field ~E = E0 ~ex. We can restrict the problem to one spatial dimen-
sion, i.e., we consider just the x coordinate and of course the time t. In this
case also the vector potential reduces to a scalar function A(x, t) (which is
the x-component of ~A) and the Nabla operator is replaced by ∂/∂x. Fur-
thermore we use natural units in which h̄ = c = 1.

Different forms of the vector- and the scalar potentials A(x, t) and φ(x, t)
that are related by a gauge transformation give the same E(x, t). For the
given constant electric field E(x, t) = E0 construct A(x, t) and φ(x, t) for
the following two gauge choices :

(1) A(x, t) 6= 0, φ(x, t) = 0,

(2) A′(x, t) = 0, φ′(x, t) 6= 0,

and find also the gauge transformation function Λ(x, t) that connects the two
choices of gauge. Ansatz: (1) A(x, t) = c1t, (2) φ′(x, t) = c2x, Λ(x, t) = c3 t x.

Determine the corresponding Hamiltonians: Ĥ for the gauge choice in (1)
and Ĥ ′ for the choice in (2). Write down the time-dependent Schrödinger
equation (TDSE) for the two Hamiltonians Ĥ and Ĥ ′.

Starting from an initial wave function ψ(x, t = 0) = eikx solve the TDSE for
H in the following way:

(i) Use an ansatz of the form

ψ(x, t) = eikxf(t) (4)

and determine the corresponding differential equation for f(t).

(ii) Write down and solve the equation for log f(t). This gives f(t) and thus
ψ(x, t).

In the lecture we have discussed how the wave functions ψ(x, t) and ψ′(x, t)
are related when the corresponding potentials are connected via a gauge
transformation. Use this relation to determine the wave function ψ′(x, t).
Show that ψ′(x, t) obeys the TDSE with the Hamilton operator Ĥ ′.
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Problem 2.3

As another repetition of material you already know from your previous QM
courses we discuss the time evolution of a wave packet. This involves two
key techniques: Working with improper states (plane waves) and solving the
quantum mechanical initial value problem.

We consider a free particle of massm and again study the one-dimensional
problem. At t = 0 the initial wave function is given by

ψ(x, t = 0) = ψ0(x) = A exp

(
− 1

4d2
x2
)
. (5)

Determine the amplitude A such that ψ0(x) is normalized correctly.
Show that the free, time-independent one-dimensional Schrödinger equa-

tion is solved by the plane waves eikx and determine the corresponding ener-
gies E(k). The full time dependent solution is then given as a superposition
of plane waves in the form

ψ(x, t) =

∫ ∞
−∞

dk ρ(k) e−i
E(k)t

h̄ e ikx . (6)

Use your knowledge of Fourier transformation to determine the coefficient
function ρ(k) from the initial wave function ψ0(x).

As a final step insert ρ(k) in (6) and solve the resulting Gaussian integral.
Discuss the behaviour of |ψ(x, t)|2 as a function of time.

Find the arguments that lead to the conclusion that the wave function for
the same problem in three dimensions is the product of the one-dimensional
wave functions for the three spatial directions.
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