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Problem 2.1

As a first example for the quantum mechanics of a charged particle in an
electromagnetic field we consider the case of a constant magnetic field (and
vanishing electric field). We will revisit this problem in the lecture, but al-
ready discuss it here in a different form.

We assume the B-field in the z-direction, i.e., B = (0,0, B). Show that

A=—-FxB, ¢ =0, (1)
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are a correct choice for the vector- and scalar potentials (Are there other
possible choices?). Determine A explicitly and insert this form of A in the
time-independent Schrédinger equation for this problem,
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and multiply out the square of the operator on the left hand side. Now it
is convenient to switch to cylinder coordinates, where Laplace- and Nabla

operator are given by (check these formulas in your vector analysis notes if

you do not remember how to use them)
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Use the fact that the B-field in the mixed term (the term with one Na-
bla operation) is proportional to €, (write also & in cylinder coordinate to
see that) and simplify the mixed term. Then use the following factoriza-
tion ansatz ¥(p, ¢, 2) = um(p) e?™e** for the wave function in cylinder
coordinates and determine the resulting equation for the radial functions

U (p)-

Remark: With the Ansatz u,,(p) = pI™ exp(—ap?)w(p) and the substituti-
on y = p? one can transform the radial equation into the Laguerre differential
equation which you might remember from the hydrogen problem. However,
this is a painful battle and in the lecture we will discuss a more elegant
treatment for the problem of the electron in a constant magnetic field.



Problem 2.2

In the lecture we have discussed how the vector- and scalar potentials A(Z, t)
and ¢(Z,t), as well as the wave function (Z,t) transform under a gauge
transformation. In this example we study the same quantum mechanical
problem for two different choices of the potentials that are related by a
gauge transformation, i.e., describe the same physical fields.

We consider a particle with charge ¢ and mass m in a constant external
electric field E = FEy€,. We can restrict the problem to one spatial dimen-
sion, i.e., we consider just the x coordinate and of course the time ¢. In this
case also the vector potential reduces to a scalar function A(z,t) (which is
the x-component of ff) and the Nabla operator is replaced by 9/0,. Fur-
thermore we use natural units in which A =c = 1.

Different forms of the vector- and the scalar potentials A(x,t) and ¢(z,t)
that are related by a gauge transformation give the same FE(z,t). For the
given constant electric field F(z,t) = Ey construct A(z,t) and ¢(z,t) for
the following two gauge choices :

(1) Az, t) # 0, ¢(x,t) =0,
(2) A'(x,t) =0, ¢/(x,t) # 0,
and find also the gauge transformation function A(z,t) that connects the two

choices of gauge. Ansatz: (1) A(z,t) = e1t, (2) &' (x,t) = cox, A(x,t) = c3 t .

Determine the corresponding Hamiltonians: H for the gauge choice in (1)
and H' for the choice in (2). Write down the time-dependent Schrodinger
equation (TDSE) for the two Hamiltonians H and H'.

Starting from an initial wave function ¢(z,t = 0) = €’** solve the TDSE for
H in the following way:

(i) Use an ansatz of the form

(. t) = ™ (1) (4)
and determine the corresponding differential equation for f(¢).

(ii) Write down and solve the equation for log f(¢). This gives f(t) and thus
P(z,t).

In the lecture we have discussed how the wave functions ¢ (z,t) and ¢’ (x, t)
are related when the corresponding potentials are connected via a gauge
transformation. Use this relation to determine the wave function ¢/(x,t).
Show that ¢/ (z,t) obeys the TDSE with the Hamilton operator H’.



Problem 2.3

As another repetition of material you already know from your previous QM
courses we discuss the time evolution of a wave packet. This involves two
key techniques: Working with improper states (plane waves) and solving the
quantum mechanical initial value problem.

We consider a free particle of mass m and again study the one-dimensional
problem. At t = 0 the initial wave function is given by

Wt =0) = bo(e) = Aexp(~jpa?) | (5)
Determine the amplitude A such that ¥y(x) is normalized correctly.

Show that the free, time-independent one-dimensional Schrédinger equa-
tion is solved by the plane waves e?** and determine the corresponding ener-
gies E(k). The full time dependent solution is then given as a superposition
of plane waves in the form

00 CE(k)t .
P(z,t) = / dkp(k)e " Tr et (6)
—0o0
Use your knowledge of Fourier transformation to determine the coefficient
function p(k) from the initial wave function ().

As a final step insert p(k) in (6) and solve the resulting Gaussian integral.
Discuss the behaviour of |i(z,t)|> as a function of time.

Find the arguments that lead to the conclusion that the wave function for
the same problem in three dimensions is the product of the one-dimensional
wave functions for the three spatial directions.



