Advanced Quantum Mechanics – Winter Term 2017/18 Problem Sheet 04 – due on December 12th33 E. Arrigoni, R. Berger, C. Gattringer, T. Kamencek

Problem 4.1

During the written test it turned out, that discussing better the Gaussian integral (one of the most important integrals in theoretical physics) is clearly a good idea. More specifically you are supposed to show the following result for the 3-dimensional Gaussian integral:

$$\int_{\mathbb{R}^3} d^3 r \ e^{-\frac{c^2 \, \vec{r} \, ^2}{2} \, - \, i \vec{r} \cdot \vec{q}} = \left(\frac{\sqrt{2\pi}}{c}\right)^3 \, e^{-\frac{\vec{q} \, ^2}{2 \, c^2}} \, . \tag{1}$$

We now solve the integral in three different ways which all relate to some of the questions that were asked during and after the test. All three ways use the one-dimensional integral (proven in the theory of complex functions)

$$\int_{-\infty}^{\infty} dx \, e^{-\frac{a^2 x^2}{2}} \, e^{-ixb} = \frac{\sqrt{2\pi}}{a} \, e^{-\frac{b^2}{2a^2}} \, . \tag{2}$$

- 1. Use the fact that \vec{r}^2 and $\vec{r} \cdot \vec{q}$ both are sums of three terms that only depend on one of the coordinates x, y and z. Together with $d^3r = dx \, dy \, dz$ this allows you to completely factorize the integral (1) into the product of three integrals of the type (2).
- 2. You may also choose the z-axis for your integration over \vec{r} such that it points in the direction of \vec{q} . In these coordinates we have $\vec{q} = q\vec{e}_z$, where $q = |\vec{q}|$. Again you can factorize the integral (1) into three integrals of the type (2). Now the integrals over x and y, do not even have a linear term in the exponent. Still, the result is again (1).
- 3. For the brave: You may also use spherical coordinates. Choose the z-axis for the integration parallel to \vec{q} , but now switch to spherical coordinates. Solve the φ -integral (trivial) and the θ -integral (as in the lecture). You will have a remaining integral over r with a factor $\sin(rq)$ in the integrand. Use $\sin(rq) = -1/r d/dq \cos(rq)$ and write the cosine as the sum of $e^{\pm iqr}/2$. For the e^{iqr} part of the integral perform the change of variables $r \to -r$ and combine the resulting integral with the e^{-iqr} part to an integral of the form (2). Solve this integral with (2). Perform the derivative d/dq and you will again find the result (1).

With different levels of complication all 3 methods lead to the same result.

Problem 4.2

In the lecture we went through a quick reminder for the properties of the angular momentum. The components \hat{L}_k of the angular momentum operator are given by

$$\widehat{L}_{k} = \epsilon_{klm} \,\widehat{x}_{l} \,\widehat{p}_{m} \,\mapsto\, -i\,\hbar\,\epsilon_{klm} \,x_{l} \,\frac{\partial}{\partial x_{m}} \,. \tag{3}$$

The operator $\hat{\vec{L}}^2$ and the ladder operators \hat{L}_{\pm} are defined as

$$\hat{\vec{L}}^2 = \hat{L}_1^2 + \hat{L}_2^2 + \hat{L}_3^2 , \qquad \hat{L}_{\pm} = \hat{L}_1 \pm i \hat{L}_2 .$$
(4)

Show the following relations

$$\hat{L}_{k}^{\dagger} = \hat{L}_{k}, \quad \hat{\vec{L}}^{2\dagger} = \hat{\vec{L}}^{2}, \quad \hat{L}_{\pm}^{\dagger} = \hat{L}_{\mp}.$$
(5)

$$\left[\hat{L}_{k},\hat{x}_{l}\right] = i\hbar\epsilon_{klm}\hat{x}_{m}, \quad \left[\hat{L}_{k},\hat{p}_{l}\right] = i\hbar\epsilon_{klm}\hat{p}_{m}.$$

$$(6)$$

$$\begin{bmatrix} \widehat{L}_k, \widehat{L}_l \end{bmatrix} = i\hbar \epsilon_{klm} \widehat{L}_m, \quad \begin{bmatrix} \widehat{L}^2, \widehat{L}_k \end{bmatrix} = 0, \quad \begin{bmatrix} \widehat{L}_3, \widehat{L}_{\pm} \end{bmatrix} = \pm \hbar \widehat{L}_{\pm}.$$
(7)

$$\vec{\hat{L}}^{2} = \hat{L}_{+}\hat{L}_{-} - \hbar\,\hat{L}_{3} + \hat{L}_{3}^{2}, \quad \vec{\hat{L}}^{2} = \hat{L}_{-}\hat{L}_{+} + \hbar\,\hat{L}_{3} + \hat{L}_{3}^{2}.$$
(8)

Problem 4.3

For the addition of angular momenta we will need to solve the following counting problem: We consider two angular momenta j_1 and j_2 , where without loss of generality $j_1 \ge j_2 > 0$. The corresponding z-components are labelled by the quantum numbers $m_i \in \{-j_i, -j_i+1, \dots, j_i-1, j_i\}, i = 1, 2$. The z-component m of the total angular momentum is given by

$$m = m_1 + m_2 . (9)$$

When m_1 and m_2 are varied independently, obviously m assumes values in the range between $-(j_1 + j_2)$ and $+(j_1 + j_2)$. However, the values of m may be degenerate.

- For each value of *m* determine the corresponding degeneracy.
- Compute the sum of all degeneracies and use this sum to check whether your result is plausible.