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Problem 4.1

During the written test it turned out, that discussing better the Gaussian
integral (one of the most important integrals in theoretical physics) is clearly
a good idea. More specifically you are supposed to show the following result
for the 3-dimensional Gaussian integral:
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We now solve the integral in three different ways which all relate to some of
the questions that were asked during and after the test. All three ways use
the one-dimensional integral (proven in the theory of complex functions)∫ ∞
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1. Use the fact that ~r 2 and ~r · ~q both are sums of three terms that only
depend on one of the coordinates x, y and z. Together with d3r =
dx dy dz this allows you to completely factorize the integral (1) into
the product of three integrals of the type (2).

2. You may also choose the z-axis for your integration over ~r such that
it points in the direction of ~q. In these coordinates we have ~q = q~ez,
where q = |~q |. Again you can factorize the integral (1) into three
integrals of the type (2). Now the integrals over x and y, do not even
have a linear term in the exponent. Still, the result is again (1).

3. For the brave: You may also use spherical coordinates. Choose the
z-axis for the integration parallel to ~q, but now switch to spherical
coordinates. Solve the ϕ-integral (trivial) and the θ-integral (as in the
lecture). You will have a remaining integral over r with a factor sin(rq)
in the integrand. Use sin(rq) = −1/r d/dq cos(rq) and write the cosine
as the sum of e±iqr/2. For the eiqr part of the integral perform the
change of variables r → −r and combine the resulting integral with
the e−iqr part to an integral of the form (2). Solve this integral with
(2). Perform the derivative d/dq and you will again find the result (1).

With different levels of complication all 3 methods lead to the same result.
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Problem 4.2

In the lecture we went through a quick reminder for the properties of the
angular momentum. The components L̂k of the angular momentum operator
are given by

L̂k = εklm x̂l p̂m 7→ −i h̄ εklm xl
∂

∂xm
. (3)

The operator ~̂L
2

and the ladder operators L̂± are defined as
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Show the following relations
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Problem 4.3

For the addition of angular momenta we will need to solve the following
counting problem: We consider two angular momenta j1 and j2, where wi-
thout loss of generality j1 ≥ j2 > 0. The corresponding z-components are
labelled by the quantum numbers mi ∈ {−ji,−ji+1, ...... ji−1, ji}, i = 1, 2.
The z-component m of the total angular momentum is given by

m = m1 + m2 . (9)

When m1 and m2 are varied independently, obviously m assumes values in
the range between −(j1 + j2) and +(j1 + j2). However, the values of m may
be degenerate.

• For each value of m determine the corresponding degeneracy.

• Compute the sum of all degeneracies and use this sum to check whether
your result is plausible.
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