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Problem 5.1

As a further example for the addition of angular momenta we consider the
case of adding two angular momenta with j1 = j2 = 1. You need to de-
termine the states |j,m, 1, 1〉 that are eigenstates of the square of the total

angular momentum ( ~̂J )2 with quantum number j, of the z-component Ĵz
with quantum number m, as well as the squares of the individual angular

momenta squared ( ~̂J1)
2 and ( ~̂J2)

2 with quantum numbers j1 = 1 and j2 = 1.
These states are linear combinations of the product states |j1,m1〉|j2,m2〉.
As in the lecture we use the abbreviation |j,m〉 ≡ |j,m, 1, 1〉.

1. Similar to Problem 4.3 start with a list of all values the z-component
m = m1 +m2 of the total spin can have for our case of j1 = j2 = 1.

2. From the degeneracy of the values of m in your list determine which
multiplets |j,m〉 emerge, i.e., determine the expected values of j.

3. Determine the top state |jmax, jmax〉 for the multiplet with the largest
value jmax of j and construct all other states |jmax,m〉 by applying
the ladder operator Ĵ− as discussed in the lecture.

4. Determine the top state |jmax−1, jmax−1〉 of the second multiplet as
the state that is orthogonal to |jmax, jmax − 1〉 of the first multiplet.
Construct all other states |jmax − 1,m〉 in that multiplet by applying
the ladder operator Ĵ−.

5. Determine the top state |jmax − 2, jmax − 2〉 of the third multiplet as
the state that is orthogonal to the states |jmax, jmax − 2〉 and |jmax −
1, jmax−2〉 of the first and second multiplets. Construct all other states
|jmax − 2,m〉 in that multiplet by applying the ladder operator Ĵ−.

6. Iterate the procedure until you have expressed all multiplets for the
total spin j in terms of linear combinations of the product states
|j1,m1〉|j2,m2〉.

Check that the total number of states you constructed is correct. For all
multiplets discuss the symmetry properties of the |j,m〉 under interchange of

the two particles. Evaluate explicitly the eigenvalues of ( ~̂J )2 and of ~̂J1 · ~̂J2 =

[( ~̂J )2 − ( ~̂J1)
2 − ( ~̂J2)

2]/2 for at least one member in each multiplet.
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Problem 5.2

In this problem we directly calculate δ0(k), the scattering phase shift δl(k)
in the l = 0 channel for a simple spherically symmetrical potential given by

V (r) =

{
V0 for r ≤ a
0 for r > a

. (1)

In the lecture we expressed the general solution of the elastic scattering
problem in the form

ψ(~x ) =
∞∑
l=0

(2l + 1)Pl(cos θ)
il

kr
eiδl(k) sin(kr − lπ/2 + δl(k)) , (2)

where E = h̄2k2/2m. We can read off the contribution in the l = 0 channel:

ψ(~x )
∣∣∣
l=0

=
1

kr
eiδ0(k) sin(kr + δ0(k)) = A

1

r
sin(kr + δ0(k)) , (3)

where the r-independent factors were collected in the constant A.
We now directly solve the specific problem for the potential (1) and read

off δ0(k): As in the lecture we use the ansatz ψ(~x ) = Rl(r)Ylm(θ, ϕ), where
Ylm(θ, ϕ) are the spherical harmonics (for l = 0: Y00(θ, ϕ) = 1/

√
4π). Rl(r)

is a solution of the radial Schrödinger equation,(
− h̄2

2m

[
d2

dr2
+

2

r

d

dr
− 1

r2
l(l + 1)

]
+ V (r)

)
Rl(r) = ERl(r) . (4)

Use the ansatz Rl(r) = wl(r)/r for the radial equation at l = 0 and show[
d2

dr2
+ k2 − U(r)

]
w0(r) = 0 , (5)

where U(r) = V (r)2m/h̄2. Show that for k2 < U0 ≡ 2mV0/h̄
2 one finds

w0(r) = A sin(kr+δ0(k)) and w0(r) = A′ sinh(r
√
U0 − k2) as the solutions

for r > a and r ≤ a. Here A, A′ and δ0(k) are integration constants. What
happened to the second integration constant for the solution for r ≤ a?

Putting together the full solution R0(r)Y00(θ, ϕ) for r > a, one finds that
this indeed has the form of (3) and that the integration constant δ0(k) is
the scattering phase shift in the l = 0 channel.

The last step is to determine the integration constants (up to an overall
factor) by using the continuity of w0(r) and its derivative at r = a. Show
that this gives rise to the equation

1

k
tan(ka+ δ0(k)) =

1√
U0 − k2

tanh(a
√
U0 − k2) . (6)

Determine the scattering phase shift for the limits a→ 0 and V0 → 0.
We finally are also interested in the limit of k → 0. For this limit we

parameterize the scattering phase shift as δ0(k) ∼ a0 k, where a0 is the
so-called scattering length. Determine the scattering length a0.
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