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Problem Sheet 06 – due on January 31st

E. Arrigoni, R. Berger, C. Gattringer, T. Kamencek

Problem 6.1

In the lecture we have discussed how to write basis states in Fock space
with creation operators for both, bosons as well as fermions. However, for
the fermionic case the proof of some formulas is still missing.

Let â†k and âk be fermionic creation and annihilation operators. They
obey anti-commutation relations, where the only non-trivial anti-commutators
are {âk, â†l } = δkl. The Fock basis states are given by

|n1 n2 ...〉 = (â†1)
n1 (â†2)

n2 (â†3)
n3 ... |0〉 , (1)

with occupation number nk ∈ {0, 1}. Show the following relations:

〈n′1 n2′ ... | n1 n2 ...〉 = δn′
1,n1

δn′
2,n2

... , (2)

â†k |n1 n2 ...〉 = (1− nk) (−1)
∑

j<k
nj |n1 ... nk + 1 ... 〉 , (3)

âk |n1 n2 ...〉 = nk (−1)
∑

j<k
nj |n1 ... nk − 1 ... 〉 , (4)

n̂k |n1 n2 ...〉 = nk |n1 n2 ...〉 , (5)

where n̂k = â†k âk is the number operator.

Problem 6.2

In the lecture we introduced the Hubbard model. Its Hamilton operator
is given by

Ĥ = −t
∑
x

d∑
µ=1

∑
σ=±

[
â†x+µ̂,σ âx,σ + â†x,σ âx+µ̂,σ

]
+ U

∑
x

n̂x,+ n̂x,− , (6)

where â†x,σ and âx,σ are fermionic creation and annihilation operators for
electrons at a site x of the d-dimensional lattice with spin up (σ = +) and
spin down (σ = −) and n̂x,σ is the corresponding number operator. The
terms in the first sum describe hopping of the electrons to neighboring sites,
and the second term the Coulomb repulsion between electrons at the same
site (due to the Pauli principle they must have opposite spin).
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We now use the Hubbard model as a toy model for a H +
3 ion. The

protons are arranged at the corners of an equilateral triangle, and we label
the three corresponding sites x where the electron may sit with x = 1, 2, 3.
Thus we have 6 creation operators â†x,σ with x = 1, 2, 3 and σ = ± and the
corresponding annihilators âx,σ.

Since we describe a H +
3 ion, we only need to consider all states with

exactly two creation operators. For example a state |Φ1〉 with an electron
with spin up at site 1 and an electron with spin down at site 2 is given by

|Φ1〉 = â†1,+ â
†
2,− |0〉 , (7)

while a state |Φ2〉 with two electrons at site 3 is given by

|Φ2〉 = â†3,+ â
†
3,− |0〉 . (8)

Make a complete list of all basis states |Φi〉, i = 1, ... N that are possible for
our H +

3 ion. What is their number N?
Note that the basis states |Φi〉, i = 1, ... N are not the physical eigen-

states |Ψ〉 of the system. To determine these one needs to solve the time
independent Schrödinger equation Ĥ|Ψ〉 = E |Ψ〉. For this step we expand
the physical states |Ψ〉 in our basis states:

|Ψ〉 =
N∑
j=1

aj |Φj〉 , (9)

where the aj are the coefficients we need to determine. Insert this series in
the Schrödinger equation and multiply from left with a basis state 〈Φi| and
show that the coefficients aj obey the following eigenvalue problem

N∑
j=1

Hij aj = E ai , with Hij = 〈Φi|Ĥ|Φj〉 . (10)

In vector/matrix notation the eigenvalue problem has the form H~a = E~a.
Since the operator Ĥ is hermitian the N ×N matrix H is hermitian and the
eigenvalues E are real. Solving the eigenvalue problem gives rise to N eigen-
vectors ~a(n) , n = 1, ... N with eigenvalues E(n). The physical eigenstates
|Ψ(n)〉 with energy eigenvalues E(n) are then given by

|Ψ(n)〉 =
N∑
j=1

a
(n)
j |Φj〉 . (11)

The eigenvalue problem (10) is typically very large and has to be solved
numerically. However, the matrix elements have to be known in closed form.
Thus as last part of this problem determine all matrix elements Hij =
〈Φi|Ĥ|Φj〉 for your basis states |Φj〉. Use the fact that H is a hermitian
matrix – this essentially cuts the amount of work in half.
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Problem 6.3

In the lecture we discussed the Fock space representation for free bosons
in an L×L×L box with periodic boundary conditions. They are described
by bosonic annihilation and creation operators â~k and â†~k

which are labelled

by the wave vectors ~k = 2π
L (n1, n2, n3) with ni ∈ Z. The corresponding free

Hamilton operator is given by

Ĥ0 =
∑
~k

h̄2 ~k2

2m
n̂~k , (12)

where n̂~k = â†~k
â~k is the number operator.

Now we would like to construct a repulsion of the bosons at short distan-
ces (”hard core bosons”). A crude but simple way to model this interaction
is to add to the Hamiltonian Ĥ0 an interaction term of the form (U > 0),

ĤI = U

∫
V
d3x n̂~x (n̂~x − 1) , (13)

where n̂~x is the operator for the number of particles at position ~x. Obviously
the energy goes up when the occupation numbers n~x at a position ~x become
larger than 1.

Find the form of this interaction for the representation in terms of crea-
tion and annihilation operators â†~k

and â~k for quanta labelled with wave

vectors ~k.

Hint: Try to represent the number operator n̂~x through the n̂~k via inverse
Fourier transformation.
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