Advanced Quantum Mechanics WS 2024/25, Problem set 3 ¹

We use $\hbar = 1$ in these exercises

3.1 Addition of angular momentum

Two interacting particles i=1,2 with spin $s_1=1$ and $s_2=2$, respectively are described by the hamiltonian

$$\hat{H} = \lambda \; \hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2$$
 (scalar product),

where $\hat{\mathbf{S}}_i$ is the spin operator of particle i, and λ a positive constant. The spatial part of the wavefunction is neglected.

- (a) Let $\hat{\mathbf{J}} = \hat{\mathbf{S}}_1 + \hat{\mathbf{S}}_2$ be the total spin What are the possible (eigen)values of $\hat{\mathbf{J}}^2$ and of the associated quantum number j?
- (b) Determine the eigenvalues of \hat{H} as well as their degeneracies (consider what was discussed in class: scalar product and $\hat{\mathbf{J}}^2$ have common eigenstates). How many eigenstates are there in total?
- (c) 2 The basis states of the two-spins system can be expressed, on the one hand, as tensor products

$$|m_1\rangle |m_2\rangle$$
 . (1)

Or, as discussed in the lecture, as $|j,m\rangle$, i.e. eigenstates of $\hat{\mathbf{J}}^2$ and \hat{J}_z . Express the states $|j=3,m=3\rangle$ and $|j=3,m=-3\rangle$ in terms of the product states (1).

(d) Verify that the total number of basis states in the product state (1) and in the $|j, m\rangle$ representation (cf. (b)) is the same.

3.2 Cont. ²

Unless explicitly requested, it is not necessary to normalize the states.

- (a) Express the state $|j=3,m=2\rangle$ in terms of the product states (1). For this use the recipe given in the lecture, i.e. apply $\hat{J}^- = \hat{S}_1^- + \hat{S}_2^-$.
- (b) Express the state $|j=2,m=2\rangle$ in terms of the product states (1). This is the state orthogonal to $|j=3,m=2\rangle$ in the m=2 subspace. Normalize this state.
- (c) Evaluate the expectation value of \hat{S}_{1z} in the state $|j=2,m=2\rangle$.
- (d) What is the probability that a measurement of \hat{S}_{2z} in this state gives +1?

3.3 cont.: Clebsch-Gordan coefficients

For this exercise you should use the table of Clebsch-Gordan coefficients.

- (a) Express the state $|j=1, m=0\rangle$ in terms of the product states (1).
- (b) Express the product state $|m_1 = 0\rangle |m_2 = 1\rangle$ in terms of total angular momentum states $|j, m\rangle$.

¹Final version

²For this exercise you should **not** use the table of Clebsch-Gordan coefficients

(c) Evaluate the expectation value of \hat{S}_2^z in the state $|j=1,m=0\rangle$. What is the probability that a measure of \hat{S}_1^z in this state gives 0?

3.4 Wigner-Eckart's theorem

Consider a hydrogen atom in a state $|n, \ell, m\rangle$, where n=7 and ℓ, m are the usual angular momentum quantum numbers.

For which values of (ℓ, m) are the following matrix elements nonzero? [Indicate explicitly the pairs (ℓ, m) , example: (2, 1), (3, 0), (5, -2)].

- (a) $\langle n, \ell, m | \hat{z} | n, 2, -2 \rangle$
- (b) $\langle n, \ell, m | \hat{y} | n, 3, -2 \rangle$
- (c) $\langle n, \ell, m | \hat{y} i \hat{x} | n, 4, 0 \rangle$ (d) $\langle n, \ell, m | (\hat{x}^2 + \hat{y}^2 + \hat{z}^2 + 2 \hat{\mathbf{r}} \cdot \hat{\mathbf{p}}) | n, 3, -1 \rangle$

3.5 cont. ³

Given the matrix element

$$\langle n, 1, 1 | \hat{z} | n, 2, 1 \rangle = \alpha$$

determine the following matrix elements in terms of α :

- (a) $\langle n, 1, m | \hat{z} | n, 2, 0 \rangle$
- (b) $\langle n, 1, 1 | \hat{y} | n, 2, m \rangle$
- (c) $\langle n, 1, 0 | \hat{x} i \hat{y} | n, 2, m \rangle$

3.6* Optional

Two (distingushable) spin- $\frac{1}{2}$ particles are bound in a $\ell = 1$ orbital state. Their hamiltonian is

$$\hat{H} = 2B \,\hat{\mathbf{L}} \cdot (\hat{\mathbf{S}}_1 + \hat{\mathbf{S}}_2) + 2A \,\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2$$

where $\hat{\mathbf{S}}_i$ are the (vector) operators for the spins of the two particles i=1,2and L is the orbital angular momentum operator. A and B are constants.

- (a) Determine the eigenvalues of H and their degeneracies (for generic A, B).
- (b) Identify the ground state(s) for B > A > 0. Argue why the expectation value of (all components of) $\hat{\mathbf{L}}$ and $\hat{\mathbf{S}}_1$ in this ground state is zero.

Hint.: to solve this problem one should first combine the two spins into a state of given total spin quantum number s = 0 or s = 1. Then combine each of these states with the orbital angular momentum. Generalize the discussion about the scalar product carried out in the lecture notes. For the last question use Wigner-Eckart theorem

³We recommend you to use a Clebsch-Gordan table here