Advanced Quantum Mechanics WS 2024/25, Problem set 5

Final version (minor changes in red)

We use $\hbar = 1$ in these exercises

5.1 Bosons in second quantization

Consider bosonic particles whose first quantisation Hamiltonian \hat{H}_{FQ} has eingenstates (levels) $|\varphi_k\rangle$ and eigenenergies $\varepsilon_k = \alpha \cdot (k-1)^2$, with $k = 0, 1, 2, \dots, \infty$ and α a positive constant.

- (a) Let b_k^{\dagger} , b_k be the creation and destruction operators for a particle in the level $|\varphi_k\rangle$.
- (a) Write down the corresponding Hamiltonian \hat{H} in second quantisation For a given (generic) value of the total number of particles N ($N \ge 2$)
- (b) write down the normalized ground state $|G_N\rangle$ of \hat{H} in second quantisation and determine its eigenenergy and degeneracy.
- (c) same as (b) for the first excited state(s) $|E_N\rangle$.
- (d) Same as (b) for the second excited state(s) $|S_N\rangle$.

Hint. (valid also for following exercises): To help visualize the states and to determine their eigenenergies you can use the same level diagrams that you have used for previous exercises (for bosons just pick one value of N in order to understand how it works). Also in this case the particles are noninteracting, therefore the total (eigen)energy of a many-particle state is simply the sum of the energies of each particle.

5.2 Two-level boson model

We consider bosonic particles on a two-level system described by creation and destruction operators b_k^{\dagger} and b_k associated to the two levels k=1,2. The second quantisation Hamiltonian for the system reads (in appropriate units)

$$\hat{H}_0 = 2 b_1^{\dagger} b_1 + 2 \left(b_1^{\dagger} b_2 + b_2^{\dagger} b_1 \right) - b_2^{\dagger} b_2 \tag{1}$$

Solve the hamiltonian in the following way:

Introduce two new creation $(d_A^{\dagger}, d_B^{\dagger})$ and destruction (d_A, d_B) operators

related to the b_k by the transformations

$$b_1 = \alpha (2d_A + \gamma d_B)$$
 $b_2 = \beta (d_A + 2d_B)$ $\alpha, \beta, \gamma = \text{real constants } (2)$

and their hermitian conjugates.

(a) Given that the d_x (x = A, B) obey the correct commutation relations

$$[d_x, d_y^{\dagger}] = \delta_{x,y} \tag{3}$$

determine for which values of the constants α , β , γ the b_k , b_k^{\dagger} obey correct commutation relations as well (one solution is sufficient).

(b) Show that in terms of the d_x the Hamiltonian becomes

$$\hat{H}_0 = p \ d_A^{\dagger} d_A - q \ d_B^{\dagger} d_B \qquad p, q > 0 \tag{4}$$

and determine the values of p and q.

(c) Write down the normalized ground state $|G_2\rangle$ with N=2 particles, as well as the corresponding first excited state $|E_2\rangle$ in second quantisation (use the appropriate creation operators!) and determine their eigenenergies and degeneracies.

(If you did not solve (b) you can do (c) by assuming unknown values of p,q>0)

5.3 Electrons in second quantisation

Consider the system of Ex. 5.1 for the case of electrons with spin and for $k = 1, 2, \dots, \infty$.

Let $c_{k,\sigma}^{\dagger}$, $c_{k,\sigma}$ be the annihilation and creation operators associated with the orbital level $|\varphi_k\rangle$ with spin index $\sigma = \pm 1$ (or $\sigma = \uparrow, \downarrow$).

- (a) write down the Hamiltonian \hat{H} in second quantisation
- (b) write down the normalized ground state(s) $|G_N\rangle$ of H with N=1,2,3 particles in second quantisation and determine their eigenenergies and degeneracies.
- (c) same as (b) for the first excited state(s) $|E_N\rangle$.
- (d) same as (b) for the second excited states $|S_N\rangle$.

5.4* Quantum vibrating string

Consider the quantum vibrating string discussed in class. Its Hamiltonian is

$$\hat{H} = \sum_{n=1}^{\infty} \omega_n \left(b_n^{\dagger} b_n + \frac{1}{2} \right) \qquad \omega_n = c k_n \qquad k_n = \frac{\pi n}{L} .$$

See lecture notes for the various parameters. Its ground state $|0\rangle$ is given by all oscillators (modes) being in their ground level:*

$$|0\rangle \equiv |N_1 = 0, N_2 = 0, N_3 = 0, \cdots\rangle$$

The energy of the ground state is infinite $E_0 = \sum_{n=1}^{\infty} \frac{\omega_n}{2}$. However, excitation energies, i.e. differences between energies of excited states and E_0 are typically finite. Therefore, below we assume energies in the form $E_i = E_0 + \Delta E_i$ and we are only interested in ΔE_i .

Excited states of the vibrating string can be written in two different ways, on the other hand in the form $|N_1, N_2, N_3, \cdots\rangle$ or by starting from the ground state and applying the ladder operators. For example:

$$|0,2,0,3,\cdots\rangle = \mathcal{N} \left(b_2^{\dagger}\right)^2 \left(b_4^{\dagger}\right)^3 |0\rangle$$
 (5)

is a state with the n=2 mode in its second excited level and the n=4 mode in its third excited level.

- (i) Determine the normalisation constant \mathcal{N} and the eigenenergy of the state (5)
- (ii) Write down the (normalized) first excited state(s) of \hat{H} in both forms (similar to the left and right hand side of (5)) and determine its eigenenergy and degeneracy.
- (iii) Same as (ii) for the second and third excited state(s).

^{*}in our convention, \cdots means that all the remaining modes have their $N_i = 0$.