Problem 2.3 - Übungsblatt 2
Two bodies having masses m_{1} and m_{2} are moving under the inference of mutual gravitational attraction and in an additional constant gravitational field in the $-z$-direction.

- Determine the equation of motion in the center of gravity and the relative coordinates.
- In addition, calculate the total energy as function of the coordinates of the centre of gravity and the relative coordinate, and verify that this quantity can be divided into a centre of gravity part and a relative part.

Force from 2 -> 1,
(sorry, notation opposite with respect to lecture notes)
Solution

Equations of motion (EOMS) for the two masses
$\begin{array}{ll}\text { (I) } & m_{1} \vec{r}_{1}^{\prime \prime}=-m_{1} \vec{g}+\vec{F}(12) \\ \text { (II) } & m_{2} \vec{r}_{2}^{\prime \prime}=-m_{2} \vec{g}+\vec{F}_{21}\end{array} \quad \overrightarrow{{ }_{y}^{2}}=\left(\begin{array}{c}0 \\ 0 \\ -g\end{array}\right)$

Newton's 3rd law :

$$
\vec{F}_{21}=-\vec{F}_{12}
$$

-) Center of gravity coordinate

$$
M=m_{1}+m_{2} \quad \vec{R}=\frac{m_{1} \overrightarrow{r_{1}}+m_{2} \overrightarrow{r_{2}}}{M}
$$

We take eq.s (I) and (II) and add them, i.e.

$$
\left.m_{1} \vec{r}_{1}^{\prime \prime}+m_{2} \vec{r}_{2}^{\prime \prime}=M \vec{R}^{\prime \prime}=-M \vec{g}\right)
$$

So that the effect of \vec{F}_{21} balances \vec{F}_{12}

$$
M \vec{R}^{\prime \prime}=-M \vec{g} \Rightarrow \vec{R}^{\prime \prime}=-g
$$

(uniformly)
such an EOM describes the accelerated motion of a mass M.

- •)
relative coordinate

$$
\vec{F}=\overrightarrow{r_{1}}-\overrightarrow{r_{2}}
$$

We subtract $\frac{1 \text { (II) }}{m_{2}}$ from $\frac{1(I)}{m_{1}}$ and we get

$$
\begin{aligned}
& -1 m_{2} \vec{r}_{2}^{\prime \prime}+\frac{1}{m_{1}} \stackrel{\rightharpoonup}{r}^{\prime \prime}=-\vec{g}+\vec{g}+\frac{\vec{F}_{12}}{m_{1}}-\frac{\vec{F}_{21}}{m_{2}} \\
& \vec{r}^{\prime \prime}=\vec{F}_{12}\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right)=\vec{F}_{12}\left(\frac{m_{1}+m_{2}}{m_{1} m_{2}}\right)=\frac{M \vec{F}_{12}}{m_{1} m_{2}} \\
& \left(\frac{m_{1} m_{2}}{M} \vec{r}^{\prime \prime}=\vec{F}_{12} \Rightarrow \vec{r}^{\prime \prime}=\vec{F}_{12}\right.
\end{aligned}
$$

T reduced mass, $\mu:=\frac{M_{1} M_{2}}{M}$
Also $\vec{F}_{12}=-\gamma \frac{m_{1} m_{2}}{r^{3}} \hat{r}$ is the gravitational force between the two masses.

- Now the total energy

From $\vec{R}=\frac{1}{M}\left(m_{1} \vec{r}_{1}+m_{2} \overrightarrow{r_{2}}\right)$ and $\vec{r}=\vec{r}_{1}-\vec{r}_{2}$
we can write $\left\{\begin{array}{l}\overrightarrow{F_{1}}=\vec{R}+\frac{m_{2}}{M} \vec{r} \\ \overrightarrow{r_{2}}=\vec{R}-\frac{m_{1}}{M} \vec{r}\end{array}\right.$

$$
\begin{aligned}
& E_{\text {tot }}=\frac{1}{2} m_{1}\left(\vec{r}_{1}^{\prime}\right)^{2}+\frac{1}{2} m_{2}\left(\vec{r}_{2}^{\prime}\right)^{2}+\underbrace{\left(m_{1} z_{1}+m_{2} z_{2}\right) g}_{\substack{\text { gravitational } \\
\text { potential }}}-\underbrace{\frac{m_{1} m_{2}}{r} \gamma}_{\text {potential }} \\
& \left.\left(\vec{r}_{1}^{\prime}\right)^{2}=\left(\vec{R}^{\prime}+\frac{m_{2}}{M} \vec{r}^{\prime}\right)^{2}=\left(\vec{R}^{\prime}\right)^{2}+\vec{p}_{2}^{\prime}+\frac{m_{2}}{M}\right)^{2}\left(\vec{r}^{\prime}\right)^{2}+\underbrace{2}_{1 \leftrightarrow 2} \\
& \left(\vec{r}_{2}^{\prime}\right)^{2}=\left(\vec{R}^{\prime} \vec{r}^{\prime}\right.
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\begin{array}{l}
\frac{1}{2} m_{1}\left(\vec{r}_{7}^{\prime}\right)^{2}+\frac{1}{2} m_{2}\left(\vec{r}_{2}^{\prime}\right)^{2}= \\
=\frac{1}{2}\left(m_{1}+m_{2}\right)\left(\vec{R}^{\prime}\right)^{2}+\frac{1}{2 M^{2}}\left(\vec{F}^{\prime}\right)^{2}\left(m_{1} m_{2}^{2}+m_{1}^{2} m_{2}\right)+\left(\begin{array}{c}
\text { mixed ed terms } \\
\text { script } \\
\text { cancel out }
\end{array}\right) \\
=\frac{1}{2} M(\vec{R})^{2}+\frac{1}{2 M^{2}} m_{1} m_{2}\left(m_{1}+m_{2}\right)\left(\vec{r}^{\prime}\right)^{2}= \\
=\frac{1}{2} M\left(\vec{R}^{\prime}\right)^{2}+\frac{1}{2} \mu\left(\vec{r}^{\prime}\right)^{2}
\end{array} \quad \begin{array}{r}
M \equiv m_{1}+m_{2} \\
=m \equiv m_{1} m_{2} / M
\end{array}
\end{array}\right.
$$

So the total energy reads

$$
E_{\text {tot }}=\frac{1}{2} M\left(\vec{R}^{\prime}\right)^{2}+\frac{1}{2} \mu\left(\vec{r}^{\prime}\right)^{2}+\left(m_{1} z_{1}+m_{2} z_{2}\right) g-\frac{\gamma m_{1} m_{2}}{r}
$$

given the definition

$$
\vec{R}=\frac{m_{1} \overrightarrow{r_{1}}+m_{2} \overrightarrow{r_{2}}}{M}
$$

we see that $(\vec{R})_{z} \equiv R z=\frac{m_{1} z_{1}+m_{2} z_{2}}{M}$

$$
\begin{aligned}
& E_{\text {tot }}=\frac{1}{2} M\left(\vec{R}^{\prime}\right)^{2}+\frac{1}{2} \mu\left(\vec{r}^{\prime}\right)^{2}+M R z g-\gamma \frac{m_{1} m_{2}}{r} \\
& =\underbrace{\frac{1}{2} M\left(\vec{R}^{\prime}\right)^{2}+M R z g}+\underbrace{\frac{1}{2} \mu\left(\vec{r}^{\prime}\right)^{2}-\frac{\gamma}{m_{1} m_{2}}} \\
& \text { Kin.t Pot energies } \mathrm{Kin}+\text { Pot. energies } \\
& \text { of the center of } \\
& \text { mass } \\
& \text { of the relative } \\
& \text { coordinate. }
\end{aligned}
$$

