Problem 3.1-Űbungsblatt 3

Two particles with masses $m_{1}=m$ and $m_{2}=3 m$ are moving in 3D space and interact through the potential

$$
U(r)=\left\{\begin{array}{cl}
-V, r \leqslant R & V, R>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

The energy E and the angular momentum l are given in the reference system of the relative coordinate, r.

1) For which valves of E are tevere bounded orbits?
2) Are there valves of E for which both bounded and unbound d orbits are possible?
3) Compute the minimum $\left(\rho_{1}\right)$ and maximum $\left(p_{2}\right)$ distances between the particles and only ρ_{1} are open.
4) Determine the angle $\Delta \varphi$ by which the orbit notates between two points in time at which the particles are at the maximum distance from each other. In which case does the orbit close: always, never, sometimes?
5) Assuming that a particle is at rest at the beginning and that the other is at a distance $\mathrm{R} / 2$. from the first and is moving with veloaty v perpendicular to the
connecting axis, at which values of v are bound orbits? Values of E and P are to be determined now.

Solution

Reference frame of the relative coordinate ρ
\Rightarrow center of mass moves with constant velocity \vec{v}

surale
We work in the relative coordinates, there we have to use the reduced mass
We compute the reduced mass μ, i.e.

$$
\begin{aligned}
& \mu \stackrel{\text { def }}{=} \frac{m_{1} m_{2}}{m_{1}+m_{2}}=\frac{3 m^{2}}{4 m}=\frac{3}{4} m \\
& m_{1}=m \\
& m_{2}=3 \mathrm{~m} \\
& U(p)=\left\{\begin{array}{cc}
-V & p \leqslant R \\
0 & \text { otherwise }
\end{array}=-V \theta(R-p)\right. \\
& \operatorname{Veff}(p)=\frac{l^{2}}{2 \mu p^{2}}-V(\text { if } p \leqslant R) \quad \operatorname{Veff}(p)=\frac{l^{2}}{2 \mu p^{2}}, p>R
\end{aligned}
$$

With this we can now compute the inversion point, ie.

$$
E-U_{\text {eff }}(p)=0
$$

For $p \leqslant R^{(*)}$

$$
\begin{gathered}
E+V-\frac{e^{2}}{2 \mu p^{2}}=0 \\
\frac{2 \mu(E+V)}{l^{2}}=\frac{1}{p^{2}} \Rightarrow p_{1}=\frac{l}{[2 \mu(E+V)]^{1 / 2}}
\end{gathered}
$$

So we the condition (*) can be further restricted to being : $\rho_{1}=\frac{l}{\sqrt{2 \mu(E+V)}}<R$

$$
\begin{aligned}
\Rightarrow E> & \underbrace{\frac{l^{2}}{2 \mu R^{2}}-V}_{E \min =} \\
& \forall \varepsilon>0 \text { (arbitrarily small) }(\rho=R-\varepsilon)
\end{aligned}
$$

but stile it has to be $E<E_{\max }=\frac{e^{2}}{2 \mu R^{2}}=V_{\text {eff }}(R+\varepsilon)$
So for bound orbits it must be

$$
\begin{aligned}
& \frac{l^{2}}{2 \mu R^{2}}-V<E<\frac{l^{2}}{2 \mu R^{2}} \\
& E_{\min }<E<E_{\max }
\end{aligned}
$$

$$
F O R \quad O<E<E M A X \quad \text { THERE CNN BE }
$$

BOTH BOUND AS WELL AS UNBOUND ORBITS DEPENDING ON INITAL CONDITIONS $F O R E P$ MAX ONLY UNBOUND ORBITS

Computing the angle ΔP :

$$
\Delta \varphi=2 \int_{p_{1}}^{R} \frac{d p}{\sqrt{\tilde{F}(p)}}
$$

Where we use the formula:

$$
\begin{aligned}
\tilde{F}(p) & =\frac{\mu^{2} p^{4}}{l^{2}}\left[\frac{2}{\mu}\left(E+V-\frac{e^{2}}{2 \mu \rho^{2}}\right)\right]= \\
& =\frac{2 \mu p^{4}}{l^{2}}(E+V)-p^{2}
\end{aligned}
$$

For $p<R$ we have

$$
\begin{aligned}
& \tilde{F}(p)=C^{2} p^{4}-p^{2} \text { with } C^{2}:=\frac{2 \mu(E+V)}{l^{2}} \equiv \frac{1}{p_{1}^{2}} \\
& \Delta \varphi=2 \int_{\rho_{1}}^{R} d \rho \frac{1}{\sqrt{\frac{p^{4}-p^{2}}{2}}}= \\
& \text { from our previous } \\
& \text { calculations } \\
& =2 \int_{p_{1}}^{R} \frac{d p}{p} \frac{1}{\sqrt{\left(p / p_{1}\right)^{2}-1}} \stackrel{\downarrow}{=} \int_{1}^{R / p_{1}} \frac{d x}{x \sqrt{x^{2}-1}} \\
& =2 \cos ^{-1}\left(P_{1} / R\right)
\end{aligned}
$$

$$
\Delta \varphi=2 \cos ^{-1}\left(\rho_{1} / R\right)
$$

In order for the orbit to close $\Delta \varphi$ must be some rational number times 2π

$$
i \cdot l \cdot \Delta \varphi=2 \pi \cdot \frac{m}{m}
$$

$$
\text { FOR EXAMPLE FOR } O_{1}=\frac{R}{2} \Rightarrow \Delta \alpha=\pi / 6 \text { CLOSES }
$$

$$
\text { ALSO } Q_{1}=\frac{1}{\sqrt{2}} R \Rightarrow \alpha=\frac{\pi}{4} \quad \operatorname{coses}
$$

IN GENERAL IT DOES NAT CLOSE

The energy i in the relative coordinates is given by

$$
E_{r}=\frac{\mu}{2} v^{2}-V(\text { since } p<R)
$$

(thay're closer than R)
the angular momentum

$$
\begin{aligned}
l_{r} & =\mu \frac{R}{2} v \\
\frac{l_{r}^{2}}{2 \mu R^{2}} & =\mu^{x} \frac{R^{2}}{4} v^{2} \frac{1}{2 \mu R^{2}}=\frac{\mu v^{2}}{8}
\end{aligned}
$$

The condition for bound orbits then reads

$$
\begin{gathered}
\left(E_{\min }=\frac{l_{r}^{2}}{2 \mu R^{2}}-V<E_{r}<\frac{l_{r}^{2}}{2 \mu R^{2}}=E_{\max }\right) \\
\Rightarrow \quad \frac{\mu v^{2}}{8}-V<E_{r}<\frac{\mu v^{2}}{8} \\
\uparrow \\
E_{r}+V=\frac{\mu v^{2}}{2}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\mu v^{2}}{8}-V<\frac{\mu v^{2}}{2}-V<\frac{\mu v^{2}}{8} \\
& \mu_{\frac{\mu v^{2}}{8}}< \underbrace{\frac{\mu v^{2}}{2}<\frac{\mu v^{2}}{8}+V} \\
& \begin{aligned}
& \frac{\mu v^{2}}{2}<\frac{\mu v^{2}}{8}+V \\
& \frac{\mu v^{2}}{2}\left(1-\frac{1}{4}\right)<V
\end{aligned} \\
& \begin{aligned}
3 \frac{\mu v^{2}}{8} & <V \Rightarrow \frac{3}{8} \frac{3}{4} m v^{2}<V \Rightarrow \frac{9}{16} m v^{2}<V \\
& \mu=\frac{3}{4} m
\end{aligned} \\
& v<\frac{4}{3} \sqrt{\frac{2 V}{m}} \quad \text { Condition for bound orbits }
\end{aligned}
$$

3.2

$$
\begin{array}{ll}
r_{1}=(d, 0,0) & m_{1}=m \\
r_{2}=(-d, 0,0) & m_{2}=m \\
r_{3}=(0,2 d, 0) & m_{3}=2 m
\end{array}
$$

KRAFT VON i AUE

$$
\begin{aligned}
\vec{F}_{i j}= & \alpha\left|\vec{r}_{i j}\right|^{2} \vec{r}_{i j} \\
& r_{i j}=\vec{r}_{i}-\vec{r}_{j}
\end{aligned}
$$

Zeije in Pä̈chhng i: Mrachiv

$$
r_{12}=2 \mathrm{~d} l_{x}
$$

$$
\vec{r}_{13}=d \vec{l}_{x}-2 d l_{y}
$$

$$
r_{23}=-d l_{x}-2 d l_{3}
$$

$$
\begin{aligned}
& \propto \vec{r}_{i y} \rightarrow 2 \operatorname{minal} \\
& \infty \vec{l}_{i j} f\left(\left|\vec{r}_{i y}\right|\right) \rightarrow 150 \operatorname{Rop} \\
& \overrightarrow{F_{n}}=-\alpha d^{3}\left(8 l_{x}+5 \cdot\left(l_{x}-2 l_{y}\right)\right) \\
& =-\alpha d^{3}\left(13 l_{x}-10 l_{y}\right)
\end{aligned}
$$

Podentialenergio Enerst herechne die Potentialenergie Uis zwirchen Teilahen i und I
es gill $\overrightarrow{F_{i j}}=-\vec{\nabla}_{r_{y}} U\left(\vec{r}_{y}-\vec{r}_{i}\right)$
serre $\vec{r}=\vec{r}_{j}-\vec{r}_{i} \Rightarrow \vec{\nabla}_{r_{y}}=\vec{\nabla}$

$$
\begin{aligned}
& F_{i j}=-\alpha r^{2} \vec{r}=-\nabla U(\vec{r}) \\
& K \text { weil im Aurdrucn saehl } \vec{r}_{i}-\vec{r}_{y}=-r \\
& =-\alpha r^{3} \frac{\vec{r}}{r}=-\alpha r^{3} \overrightarrow{l_{r}} \quad F=f(\vec{r}) \overrightarrow{l_{r}} \\
& \rightarrow U(|\pi|) \\
& -\nabla U(r)=-\frac{\partial U}{\partial r} \vec{l}_{r} \Rightarrow U(r)=\frac{\alpha r^{4}}{4}+U_{0} L_{=0} \text { wall } V_{r=0} \text { wem } \\
& U_{G E S}=U\left(r_{1}-r_{2} \mid\right)+U\left(\left|r_{1}-r_{3}\right|\right)+U\left(\left|r_{2}-r_{3}\right|\right)=\frac{\alpha}{4} d^{4}\left(4^{2}+5^{2}+5^{2}\right)=\frac{\alpha}{4} d^{4} .66 \\
& =\frac{33}{2} \alpha d^{4}
\end{aligned}
$$

$$
\begin{align*}
& \dot{r}_{1}=\mu l_{y}=\dot{r}_{2} \quad \dot{r}_{3}=-\mu l_{y}+2 \mu l_{x} \\
& \overrightarrow{L_{1}}=m d \mu \vec{l}_{x} \times \vec{l}_{y}=m d \mu \vec{l}_{2} \\
& \overrightarrow{L_{2}}=-m d \mu \vec{l}_{2} \\
& \overrightarrow{L_{3}}=2 m d \mu\left(2 \vec{l}_{y}\right) \times\left(-l_{y}+2 l_{x}\right)=-8 m d \mu \hat{l}_{2} \\
& \vec{L}=-8 m d \mu \vec{l}_{2} \\
& T=\frac{1}{2} m \mu^{2}(1+1)+\frac{1}{2} 2 m \mu^{2}(5) \\
& =m \mu^{2}(1+5)=6 m \mu^{2} \\
& U
\end{align*}
$$

$$
\begin{aligned}
& 3.4 \\
& \text { SCHWERPUNUTSYSTEM } \\
& \vec{R}=\frac{d}{4 m} m\left(l_{x}-l_{x}+2 \cdot 2 \overrightarrow{l_{y}}\right)=d \overrightarrow{l_{y}} \\
& \overrightarrow{r_{n}^{B S}}=d\left(\overrightarrow{l_{x}}-\vec{l}_{y}\right) \\
& \vec{M}_{2}^{B S}=d\left(-\overrightarrow{l_{x}}-\overrightarrow{l_{b}}\right) \\
& \Gamma_{3}^{B S}=d \overrightarrow{l_{3}} \\
& \vec{R}=\frac{\mu}{4 m} m\left(\overrightarrow{l_{y}}+\overrightarrow{l_{y}}-2 \overrightarrow{l_{y}}+4 \overrightarrow{l_{x}}\right)=\mu \overrightarrow{l_{x}} \\
& \dot{\vec{M}} B=\mu\left(\overrightarrow{l_{y}}-\vec{l}_{x}\right)=\vec{r}_{2}^{s} \\
& \vec{r}_{3}^{B S}=\mu\left(\overrightarrow{e_{x}}-\overrightarrow{l_{y}}\right) \\
& T^{B S}=\frac{1}{2} m \mu^{2}(2+2+2 \cdot 2)=4 m \mu^{2} \\
& T_{2}=\frac{1}{2} 4 m \mu^{2} \cdot 1=2 m \mu^{2} \\
& T=T^{B S}+T_{2}=6 \mathrm{~mm}^{2} \\
& V=U^{B S} \text { DA ABSTÏNDE COLEICU BLEEBE゙N } \\
& \Rightarrow E=\underbrace{T^{B S}+U^{B S}}_{E^{B S}}+T_{N}
\end{aligned}
$$

(3.5) DRENIMPVLS IM BS

$$
\begin{aligned}
& \vec{L}_{1}^{s}=m d n\left(\overrightarrow{l_{x}}-\vec{l}_{y}\right) \times\left(\overrightarrow{l_{y}}-\vec{l}_{x}\right)=0 \\
& \vec{L}_{2}^{s}=m d n\left(-\vec{l}_{x}-\vec{l}_{y}\right) \times\left(\overrightarrow{l_{y}}-\vec{l}_{x}\right)=\operatorname{mdn}\left(-2 \vec{l}_{z}\right) \\
& \vec{L}_{3}^{s}=m d \mu 2 \vec{l}_{y} \times\left(\overrightarrow{l_{x}}-\vec{l}_{y}\right)=m d n\left(-2 \vec{l}_{2}\right) \\
& \vec{L}^{s}=-4 \vec{l}_{2} m d m
\end{aligned}
$$

$$
\vec{L}_{2}=4 m \vec{R} \times \vec{R}=4 m \mu d \vec{l}_{y} \times \vec{l}_{x}=-4 l_{2} m \mu d
$$

$$
\vec{L}^{s}+\vec{L}_{2}=-8 \vec{l}_{2} m d u=\vec{L}
$$

Problem 3.6 - Übungsblatt 3.

A body on Earth is thrown with the initial velocity $\vec{v}_{0}=\left(v_{0 x}, 0, v_{0 z}\right)$ from the origin $\vec{r}=\overrightarrow{0}$, where \hat{e}_{x} points towards the north and \hat{e}_{z} towards the top.

With no apparent forces this body will move along a parabola in the $x z$-plane.
Determine the denation of this body from the $x z$-plane at the end of the flight.

Note: the centrifugal force should be neglected.
The equations of motion therefore contain the Coriolis force only,

$$
\begin{equation*}
\text { i.e. } \quad \vec{v}^{\prime}=-2 \vec{a} \times \vec{v}+\vec{g} \text {. } \tag{t}
\end{equation*}
$$ $\omega \rightarrow 0$ in equation (*).

Interpret qualitatively the sign of the defection (east/west) from the point of view of an inertial reference frame.

Solution

$$
\begin{aligned}
& \vec{v}_{0}=\left(v_{0 x}, 0, v_{0 z}\right) \quad \vec{g}=(0,0,-q) \\
& \vec{\omega}=(\omega \times, 0, \omega z)=\omega(\cos v, 0, \sin v)
\end{aligned}
$$

$$
\vec{\omega} \wedge \hat{e}_{x}
$$

the equations of motion read

$$
\vec{v}^{\prime}=\vec{g}-2 \vec{w} \times \vec{v} \quad(*)
$$

For x, z we can take $\omega \rightarrow 0$ and solve the unperturbed motion, i.e.

$$
\begin{aligned}
& v_{x}^{\prime}=0 \Rightarrow v_{x}(t)=v_{o x} \\
& v_{z}^{\prime}=-g \Rightarrow v_{z}(t)=v_{o z}-g t
\end{aligned}
$$

Taking the y-component of (*) returns

$$
\begin{aligned}
& v_{y}^{\prime}=-2(\vec{\omega} \times \vec{v})_{y}=-2\left(\omega_{z} v_{x}-\omega_{x} v_{z}\right) \\
& \vec{\omega} \times \vec{v}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\omega_{x} & 0 & \omega_{z} \\
-v_{x} & v_{y} & v_{z}
\end{array}\right|=\left(\begin{array}{c}
-\omega_{z} v_{y} \\
\omega_{z} v_{x}-\omega_{x} v_{z} \\
\omega_{x} v_{y}
\end{array}\right) \\
& v_{y}^{\prime}=-2\left(\omega_{z} v_{x}(t)-\omega_{x} v_{z}(t)\right)= \\
& \hat{\imath} \\
& v_{x}(t)=v_{0 x} \\
& v_{z}(t)=v_{0 z}-g t
\end{aligned}
$$

$$
\begin{aligned}
& v_{y}^{\prime}=-\underbrace{2\left(\omega_{z} v_{0 x}-\omega_{x} v_{0 z}\right.}_{\text {constant }})-2 \omega_{x} g t \\
& v_{y}(t)=-2\left(\omega_{z} v_{0 x}-\omega_{x} v_{0 z}\right) t-\frac{2}{2} \omega_{x} g t^{2}
\end{aligned}
$$

initial condition $v_{0 y}=0$ (see text)

$$
\begin{aligned}
& \vec{r}=(x, y, z) \equiv \vec{r}(t) \\
& x(t)=\int_{0}^{t} d t^{\prime} v_{x}\left(t^{\prime}\right)=v_{0 x} t \\
& y(t)=\int_{0}^{t} d t^{\prime} \sqrt{y}\left(t^{\prime}\right)=-\left(\omega_{z} \sqrt[v]{0 x}-\omega_{x} \sqrt[v]{0 z}\right) t^{2}-\omega_{x} \frac{t^{3}}{3} \\
& z(t)=\int_{0}^{t} d t^{\prime} \sqrt{z}\left(t^{\prime}\right)=\sqrt[v 0 z t]{ }-\frac{g t^{2}}{2}
\end{aligned}
$$

with the initial condition $\vec{r}_{0}=\vec{r}(0)=(0,0,0)$

Feight-.time, T_{F}
$Z\left(t=T_{F}\right) \equiv 0$ to find where it lands

$$
\begin{gathered}
0=v_{o z} T_{F}-\frac{g}{2} T_{F}^{2} \Rightarrow-\frac{2 \sqrt[v]{0 z}}{g} T_{F}+T_{F}^{2}=0 \\
T_{F}\left(T_{F}-\frac{2 \sqrt{0 z}}{g}\right)=0 \\
T_{F}=0 \text { to be discarded } \\
T_{F}=2 \sqrt{0 z} / g
\end{gathered}
$$

$$
\begin{gathered}
y\left(t=T_{F}\right)=-\left(\omega_{z z} v_{0 x}-\omega_{x} v_{0 z}\right) T_{F}^{2}-\frac{\omega_{x} g}{3} T_{F}^{3}= \\
=-\left(\omega_{z} v_{0 x}-\omega_{x} v_{0 z}\right) \frac{4 v_{0 z}^{2}}{g^{2}}-\frac{\omega_{x} g}{3}\left(\frac{8 v_{0 z}^{3}}{g^{3}}\right)= \\
=\left(\frac{2 v_{0 z}}{g}\right)^{2}[\frac{v_{0 z} \omega_{x}}{3}-\underbrace{v_{0 x} \omega B}_{\text {east }}] \\
A \equiv \text { west }
\end{gathered}
$$

$\omega_{z}>0$ for the upper ensphere
$\omega_{z}<0$ for the Cower emisphere
\hat{e}_{y} is in direction "west" since

$$
\hat{e}_{x} \times \hat{e}_{z}=\left|\begin{array}{ccc}
i & j & k \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right|=\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right)=-\hat{e}_{y}
$$

A given the info we have from the text

e_{y} points west
Interpretation

the mass starts in P_{2}, with a velocity $v_{P_{1, y}}=\omega R_{1}$ then lands in P_{2} with $R_{2}<R_{1}$ So $v_{p_{2}, y}=\omega R_{2}<v_{p_{1}, y}$ Deviation is towards EAST

Contrib. A:

Earth seen from the top (above the NORTH pole)
$d=\omega R \cdot T_{F}$
Deviation towards WEST

