
Chapter 3

Renormalization Group

3.1 Introduction
We discuss the basic ideas of the renormalization group (RNG) approach in
terms of the 1d Ising model

H = �J
NX

i=1

sisi+1 � h0
X

i

si , (3.1)

as every step can be performed analytically. We assume N = 2L, which allows
us to thin out every other spin repeatedly. In addition we assume periodic
boundary conditions (pbc), i.e. sN+1 = s1. For the partition function we
need

H̃ := ��H := K
X

i

sisi+1 + h
X

i

si +NC , (3.2)

where we have added a constant energy NC, as it will become relevant in
the renormalization scheme. The pdf for a spin configuration {s} then reads

⇢N =
NY

i=1

eKsisi+1+
h
2 (si+si+1)+C (3.3)

For later use we have written the B-field term slightly differently. Next we
want to determine the reduced pdf for the even sites only, which is obtained
by the trace over the spins on the odd sites

⇢even =

✓ oddY

i

X

si=±1

◆
⇢N (3.4)

=

✓ evenY

i

ehsie2C
◆✓ oddY

i

X

si=±1

◆
eK(si�1si+sisi+1)+hsi . (3.5)
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This marginal pdf is required, if we want to calculate the spin-spin correlation
for spins on even sites only. In particular, it allows to compute the spin-spin
correlation

hs2is2(i+1)i . (3.6)

If we repeat the marginalization once more, we obtain a marginal pdf that
allows to compute

hs4is4(i+1)i . (3.7)

Hence, the repeated marginalization of half of the sites allows to determine
how spin spin-correlations behave on different length scales. Now we want
to really compute equation (3.4) [previous page] .

⇢even =

✓ evenY

i

ehsi+2C

◆✓ oddY

i

X

si=±1

esi
�
K(si�1+si+1)+h

�◆
(3.8)

=

✓ evenY

i

ehsi+2C

◆✓ oddY

i

2 cosh
�
K(si�1 + si+1) + h

�◆
(3.9)

=
evenY

i

ehsi+2C+ln(2) cosh
�
K(si + si+2) + h

�
(3.10)

=
N/2Y

i

e
h
2 (s2i+s2(i+1))+2C+ln(2) cosh

�
K(s2i + s2(i+1)) + h

�
. (3.11)

Next we define s(b)
i

= sbi and find in particular for b = 2

⇢even =

✓N/2Y

i

e
h
2 (s

(2)
i +s

(2)
i+1)+2C+ln(2) cosh

�
K(s(2)

i
+ s(2)

i+1) + h
�◆

. (3.12)

Finally, we want to express the marginal density formally identically to equa-
tion (3.3)

⇢even := ⇢N/2 =
N/2Y

i=1

eK
0
s
(2)
i s

(2)
i+1+

h0
2 (s

(2)
i +s

(2)
i+1)+C

0
, (3.13)

which is possible, since each factor

eK
0
s
(2)
i s

(2)
i+1+

h0
2 (s

(2)
i +s

(2)
i+1)+C

0
= e

h
2 (s

(2)
i +s

(2)
i+1)+2C+ln(2) cosh

�
K(s(2)

i
+ s(2)

i+1) + h
�
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only depends on s(2)
i

+ s(2)
i+1, and s(2)

i
s(2)
i+1, for which 3 different values are

possible each, which defines the 3 parameters K 0, h0, C 0. The corresponding
conditions are

s(2)
i

= s(2)
i+1 = 1 : eK

0+h
0+C

0
= eh+2C+ln(2) cosh(h+ 2K) (3.14a)

s(2)
i

= s(2)
i+1 = �1 : eK

0
�h

0+C
0
= e�h+2C+ln(2) cosh(h� 2K) (3.14b)

s(2)
i

= �s(2)
i+1 : e�K

0+C
0
= e2C+ln(2) cosh(h) (3.14c)

From equation (3.14c) we obgtain

eC
0
= eK

0+2C+ln(2) cosh(h) (3.15)

Insertion in the first two equations yields

e2K
0+h

0
cosh(h) = eh cosh(h+ 2K) (3.16a)

e2K
0
�h

0
cosh(h) = e�h cosh(h� 2K) . (3.16b)

Multiplication of these equations yields

e4K
0
=

cosh(h+ 2K) cosh(h� 2K)

cosh2(h)
, (3.17)

and division of these equations yields

e2h
0
= e2h

cosh(h+ 2K)

cosh(h� 2K)
. (3.18)

equation (3.15) can be written as

e4C
0
= e4K

0
e8C+4 ln(2) cosh4(h) (3.19)

Along with equation (3.17) this yields

e4C
0
= cosh(h+ 2K) cosh(h� 2K)e8C+4 ln(2) cosh2(h) (3.20)

The equations 3.17, 3.18, and 3.20 uniquely define the values of h0, K 0, C 0,
which we now denote as h(2), K(2), C(2). The key finding is that the reduced
density matrix is formally identical to the original one with modified param-
eters and due to the translational invariance it is actually the same for the
even and odd sites. Therefore we denote it simply by ⇢(2). Now we can re-
peat this procedure and obtain ⇢(3), which is the reduced density if only every
fourth site is retained. The corresponding parameters are h(3), K(3), C(3) are



3.1. INTRODUCTION 51

related to the parameters h(2), K(2), C(2) of the previous iteration via equa-
tion (3.17) , equation (3.18) , and equation (3.20) . In general we obtain the
iteration scheme

e4K
(n+1)

=
cosh

�
hn) + 2K(n)

�
cosh

�
hn)

� 2K(n)
�

cosh2(hn))
(3.21a)

e2h
(n+1)

= e2h
(n) cosh

�
h(n) + 2K(n)

�

cosh(h(n) � 2K(n))
(3.21b)

e4C
(n+1)

= cosh
�
h(n) + 2K(n)

�
cosh

�
h(n)

� 2K(n)
�
e8C

(n)+4 ln(2) cosh2(h(n)) .
(3.21c)

The iteration starts with K(1) = K, h(1) = h, and C(1) = C. For a first
discussion, we consider the case h = 0, i.e. no external magnetic field. Then
the first iteration yields for h

e2h
(2)

=
cosh

�
2K(1)

�

cosh(2K(1))
= 1 , (3.22a)

i.e. h(2) = 0. Hence, h(n) = 0 for all iteration steps. For the parameter K we
then obtain the recursion relation

e4K
(n+1)

= cosh2(2K(n)) =
1

4

✓
e2K

(n)
+ e�2K(n)

◆2

(3.23)

e�4K(n+1)
=

4
�
e2K(n) + e�2K(n)

�2 =
4e�4K(n)

�
1 + e�4K(n)

�2 (3.24)

We introduce the definition x(n) = e�4K(n) for which we obtain

x(n+1) = f(x(n))

f(x) :=
4x

�
1 + x

�2

The figure illustrates that if we start the recursion with any value 0 < x(1)


1, i.e. 0  K < 1, which corresponds to the parameter of the original
physical system, the iteration ends at the fixed point x(1) = 1. This means
that the physical feature (e.g. spin-spin correlation) for very long distances
is equivalent to that of an Ising model with x = 1, which corresponds to
K = 0. This fixed point is called high temperature fixed point, as x = 1, or
rather K = 0 is also obtained for T ! 1 (� ! 0). The 1d Ising model
considered at very long length scales looks like an infinite temperature or
non-interacting solution, which means it is disordered (no long range order).
This fixed point is stable or attractive.
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Figure 3.1: Recursion relation for x in the 1d Ising model. Starting

with an arbitrary x(1)
2 (0, 1] the fixed point is x(1) = 1. Only for

x(1) = 0 the other fixed point x(1) = 0 is relevant.

The other fixed point x⇤ = 0 is the non-trivial critical fixed point. It cor-
responds to K = 1, i.e. T = 0. In this case, starting with the physical
parameter x = 0, i.e. T = 0, the system stays at x = 0 and has therefore
long-range order. Here it is the trivial case, without thermal fluctuations,
there is long range order, since there are no quantum fluctuations, in contrast
to the case of the spin-1/2 Heisenberg model.
Next we study the energy parameter C for the case h = 0. Then we have

C(n+1) = 2C(n) +
1

2
ln

✓
cosh

�
2K(n)

�◆
+ ln(2) . (3.25)

As the recursion for K(n) was independent of that for C(n), we can insert the
previous result for K(n). Hence for n ! 1 (very long length scale),we have
K(n)

! 0 and we find

e4C
(n+1)

= e4(2C
(n)+ln(2))

C(n+1) = 2C(n) + ln(2) .

The factor 2 is obvious due to the decimation of the number of spins by the
factor 2. The recursion relation for the case h = 0 in equation (3.23) [previous
page] can also be written as

K(n+1) = g(Kn) (3.26)

g(K) = (
1

2
ln

✓
cosh(2K)

◆
, (3.27)
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wich for large K(n) becomes

K(n+1) =
1

2
ln

✓
e2K

(n)
(1 + e�4K(n)

)

2

◆

= K(n)
�

ln(2)

2
+ ln

✓
1 + e�4K(n)

◆
.

Hence we have for large K(n)

K(n+1)
⇡ K(n)

�
ln(2)

2
. (3.28)

If this relation applies, then

K(n)
⇡ K(n�1)

�
ln(2)

2

⇡ K(n�2)
�

ln(2)

2
�

ln(2)

2
· · ·

K(n)
⇡ K(0)

� n ·
ln(2)

2
. (3.29)

The renormalization group approach can also be used to study how the cor-
relation length depends on � or rather K. If there is no long range order,
the correlation length decreases exponentially as

hs0smi / em/⇠(K) .

The correlation length will depend on �J = K. In each renormalization step,
the unit cell increases by a factor of 2. In the original system we have

hs0s2miK(0) / e(2m)/⇠(K(0)) .

The same correlation function is equal to that of the renormalized system as
follows

hs0s2miK(0) = hs(2)0 s(2)
m
iK(1) / em/⇠(K(1)) .

Comparing the exponentials yields

⇠(K(0))

2
= ⇠(K(1)) = ⇠(g(K(0))) .

Repeating the renormalization m times we obtain the relation

⇠(K(0)) = 2m⇠(g(m)(K(0))) . (3.30)
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The left hand site is the quantity we are interested in for low temperature
or rather K � 1. In this case, according to equation (3.29) , after m RNG
steps we have

g(m)(K(0)) = K(m)
⇡ K(0)

�
m

2
ln(2) .

Remember we are interested in K � 1. Each iteration reduces K by
ln(2)/2 ⇡ 0.35. Then if we choose m sufficiently large, eventually, we will
reach K(m⇤) = g(m

⇤)(K(0)) ⇠ O(1). The required number of steps is

K(0)
�

m⇤

2
ln(2) = O(1)

m⇤ =
2
�
K(0)

�O(1)
�

ln(2)

m⇤
⇡

2K(0)

ln(2)
.

Along with equation (3.30) [previous page] we obtain

⇠(K) = 2m
⇤
⇠(g(m

⇤)(K)| {z }
=O(1)

) .

Now g(K = O(1)) is some unimportant constant C and we finally have

⇠(K) ⇠ 2m
⇤
= 2

2K
ln(2) = e

ln

✓
2

2K
ln(2)

◆

= e2K .

⇠(K) ⇠ e2K . (3.31)

So the bottom line is that the correlation length increases exponentially with
decreasing temperature and becomes infinite at T = 0.
Finally, we compute the free energy for h = 0. We start out from the partition
function for the original system and integrate out the spins on the odd sites
and use equation (3.13) [p. 49]

ZN(K,C) = tr
�
e��H

 
= tr

n
eK

P
hiji SiSj+NC

o
= ZN/2(K

0, C 0) ,

with K 0 given in equation (3.26) [p. 52] and C 0 given in equation (3.25) [p. 52]

K(1) =
1

2
ln

✓
cosh

�
2K(0)

�◆
(3.32)

C 0 = 2C +K(1) + ln(2) . (3.33)
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Next we express the partition function slightly different, by pulling C in front

ZN(K,C) = eNCZ(0)
N

(K) = e
N
2 C

0
Z(0)

N/2(K
0) . (3.34)

and taking the logarithm per lattice site (apart from kBT the free energy per
lattice site)

f(K(0), C(0)) =
ln
�
ZN(K(0), C(0))

�

N
= C(0) +

ln
�
Z(0)

N
(K(0))

�

N| {z }
:=f̃(K(0))

f(K(0), C(0)) = C(0) + f̃(K(0)) . (3.35)

On the other hand, based on equation (3.34) we obtain

f(K(0), C(0)) =
1

N

✓
N

2
C 0 + ln

�
Z(0)

N/2(K
(1))
�◆

=
1

2

 
C 0 +

ln
�
Z(0)

N/2(K
(1))
�

N/2

!

f(K(0), C(0)) =
1

2

✓
C 0 + f̃(K(1))

◆
.

Comparison with equation (3.35) yields

f̃(K(0)) =
1

2

✓
C(1)

� 2C(0) + f̃(K(1))

◆

Inserting equation (3.32) [previous page] finally yields

f̃(K(0)) =
1

2

✓
K(1) + ln(2) + f̃(K(1))

◆
(3.36)

A second iteration yields obviously

f̃(K(1)) =
1

2

✓
K(2) + ln(2) + f̃(K(2))

◆
.

Inserting into equation (3.36) yields

f̃(K(0)) =
1

2

✓
K(1) + ln(2) +

1

2


K(2) + ln(2) + f̃(K2)

�◆

=
K(1) + ln(2)

21
+

K(2) + ln(2)

22
+

f̃(K(2))

22
.
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Clearly, this leads after m iterations to

f(K,C) =
mX

⌫=1

ln(2)

2⌫
+

mX

⌫=1

K(⌫)

2⌫
+

f̃(K(m))

2m

= ln(2)
mX

⌫=1

1

2⌫
+

mX

⌫=1

K(⌫)

2⌫
+

f̃(K(m))

2m

= ln(2)
mX

⌫=1

1

2⌫
+

mX

⌫=1

K(⌫)

2⌫
+

f̃(K(m))

2m

We have seen, that K(n)
! 0 for n ! 1. The partition function for K ! 0

can be obtained analytically as

ZN(K ! 0) = 2N ,

hence, according to the definition f̃ = ln(Z)/N , we obtain

f̃(K ! 0) =
ln(ZN)(K ! 0)

N
= ln(2)

So, if we perform an infinite number of renormalization steps, then

f̃(K(0)) = ln(2)

✓ 1X

⌫=0

�1
2

�⌫
� 1

◆

| {z }
=1

+
1X

⌫=1

K(⌫)

2⌫
+ lim

L!1

ln(2)

2L| {z }
=0

= ln(2) +
1X

⌫=1

K(⌫)

2⌫
.

We have seen before that the exact result is given by

ZN = dN1

f̃(K) = ln(d1)

d1 = 2 cosh
�
K0
�
,

Hence, since C(0) = 0

f(K(0), C(0)) = f̃(K(0)) = ln(2) + ln
�
cosh

�
K(0)

��
.

Numerical comparison shows that both results agree, i.e.
1X

⌫=1

K(⌫)

2⌫
= ln

�
cosh

�
K(0)

��
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with

K(n) =
1

2
ln

✓
cosh

�
2K(n�1)

�◆
.

In the 1D case, no approximations where necessary for the RNG procedure.

3.2 2D Ising
We decompose the sc-lattice into an A-B-lattice, i.e. sites belong either to
sub-lattice A (blue circles with even indices) or B (red crossed with odd
indices). All nearest neighbors of a point of sub-lattice A belong to sub-
lattice B and vice versa.
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Figure 3.2: Illustration of the RG schem for 2D Ising.

t

The goal is again to decimate the lattice by integrating out sublattice B, i.e.
to compute the reduced density matrix for sub-lattice A. The reduce density
matrix on sub-lattice A is

⇢A =
X

{Si}2B

e��H

We consider all terms of the hamiltonian that contain the spin on site 7,
which is part of sub-lattice B.

��H7 = a+ hS7 +KS
nn

7

S
nn

7 = S2 + S6 + S8 + S12 .
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Next we separate the contribution of this spin from the rest

⇢A =
X

{Si}2B/S7

e
��H

⇤7Z7

Z7 =
X

S7

e��H7

The trace over S7 yields

Z7 :=
X

S0

ea+S7

�
K S

nn
7 +L S

nnn
7 +h

�
= ea · 2 cosh

�
KS

nn

7 + h
�
. (3.37)

We want to express this function again as

e��H̃ .

The most general exponential form for this expression, since S2
i
= 1, is given

by

Z7 = exp

✓
a0 + h0

S +K
0X

ij

SiSj + b
0X

ijk

SiSjSk + c S1S2S3S4

◆
. (3.38)

The indices in the sums are from the set Inn7 = {2, 6, 8, 12}, and the prims
indicate that no indices must occur twice and all the indices shall be ordered,
e.g. Si < Sj < Sk. We have used the symmetry that equation (??) [p. ??]
is invariant against interchange of any two indices i $ j. Otherwise , each
product of spins would have its own prefactor.
In the double sum there are also the products S6S8 and S2S12, which belong
to next-nearest neighbour sites on the decimated lattice, which only consists
of sub-lattice A (blue circles). I.e. starting from nn coupling the decimation
also introduces nnn coupling and also term with three and four spins. The
latter will turn out negligible but the nnn coupling is relevant. To obtain
the parameter mapping in an RG step, we include the nnn terms also in the
original hamiltonian, i.e.

��H7 = a+ hS7 +KS
nn

7 + LSnnn

7

S
nn

7 = S2 + S6 + S8 + S12

S
nnn

7 = S1 + S3 + S11 + S13 .

Again, we separate the contribution of this spin from the rest

⇢A =
X

{Si}2B/S7

e
��H

⇤7Z7

Z7 =
X

S7

e��H7
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The trace over S7 now yields

Z7 :=
X

S0

ea+S7

�
K S

nn
7 +L S

nnn
7

�
= ea · 2 cosh

�
KS

nn

7 + LSnnn

7 + h
�
. (3.39)

Here we have a problem, since S
nnn

7 contains spins of sublattice B (e.g. S13)
that need to be integrated out. It is contained in the residual hamiltonian
in the Ising from H�7, but in addition, we get the factor of equation (3.39) .
In this combination the sum over S13 is not as trivial as that over S7, which
we had before. Moreover, the complexity increases, as Z7 also contains other
spins of sub-lattice B (S1 say) and after the trace over S13 the expression
containing S1 is getting even more complicated, etc. Hence, to keep thing
manageable, we replace S

nnn

7 by its mean value, which is zero. Then we are
left with

Z7 :=
X

S0

ea+S7

�
K S

nn
7 +L S

nnn
7

�
= ea · 2 cosh

�
KS

nn

7 + h
�
. (3.40)

Aa we will see soon, that does not mean that the original nnn coupling has
no influence at all. We can use equation (3.38) [previous page] to express
Z7 in an exponential form

Z7 = exp

✓
a0 + h0

S +K
0X

ij

SiSj +
0X

ijk

SiSjSk + c S1S2S3S4

◆
.

As before, the indices in the sums are from the set Inn7 = {2, 6, 8, 12}, The
term with 3 spins can equivalently be written as

0X

ij

SiSjSk = S · S1S2S3S4

proof

0X

ij

SiSjSk = S1S2S3 + S1S2S4 + S1S3S4 + S2S3S4

= S1S2S3S
2
4 + S1S2S

2
2S4 + S1S

2
2S3S4 + S2

1S2S3S4

= S1S2S3S4

�
S4 + S3 + S2 + S1

�
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q.e.d. X

So we have the constraint

a+ ln

✓
2 cosh

⇥
KS + h

⇤◆
= a0 + h0

S +K
0X

ij

SiSj +

✓
bS + c

◆
S1S2S3S4

(3.41)

Now we consider the possible spin configurations. We begin with + + ++
which yields the condition

1) (+ + ++) : a+ ln

✓
2 cosh

⇥
4K + h

⇤◆
= a0 + 4h0 + 6K +

�
4b+ c

�
· 1

2) (+ + +�) : a+ ln

✓
2 cosh

⇥
2K + h

⇤◆
= a0 + 2h0 + 0K +

�
2b+ c

�
· (�1)

3) (+ +��) : a+ ln

✓
2 cosh

⇥
0K + h

⇤◆
= a0 + 0h0

� 2K +
�
0b+ c

�
· 1

Since the geometric position of the spins does not enter in equation (3.41)
we get the same equations if we permute the spins.

The remaining spin configurations are obtained by the transformation Si !

�Si, which changes the sign in the terms with an odd number of spins. I.e.
3) is invariant, and for the other two we obtain

10) (����) : a+ ln

✓
2 cosh

⇥
� 4K + h

⇤◆
= a0 � 4h0 + 6K +

�
� 4b+ c

�
· 1

20) (���+) : a+ ln

✓
2 cosh

⇥
� 2K + h

⇤◆
= a0 � 2h0 + 0K +

�
� 2b+ c

�
· (�1)
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We simplify these equations a bit further

1) (+ + ++) : ln

✓
2 cosh

⇥
4K + h

⇤◆
= �a+ 4h0 + 6K + 4b+ c

10) (����) : ln

✓
2 cosh

⇥
� 4K + h

⇤◆
= �a� 4h0 + 6K � 4b+ c

2) (+ + +�) : ln

✓
2 cosh

⇥
2K + h

⇤◆
= �a+ 2h0

� 2b� c

20) (���+) : ln

✓
2 cosh

⇥
� 2K + h

⇤◆
= �a� 2h0 + 2b� c

3) (+ +��) : ln

✓
2 cosh

⇥
h
⇤◆

= �a� 2K + c ,

with �a = a0 � a.
When we add or subtract equation 1 and 1’ and likewise for 2 and 2’, we
obtain

a) : ln

✓
4 cosh

⇥
4K + h

⇤
cosh

⇥
4K � h

⇤◆
= 2

✓
�a+ 6K + c

◆

a0) : ln

✓
cosh

⇥
4K + h

⇤
/ cosh

⇥
4K � h

⇤◆
= 8
�
h0 + b

�

b) : 2 ln

✓
4 cosh

⇥
2K + h

⇤
cosh

⇥
2K � h

⇤◆
= 4

✓
�a� c

◆

b0) : 2 ln

✓
cosh

⇥
2K + h

⇤
/ cosh

⇥
2K � h

⇤◆
= 8

✓
h0

� b

◆
.

Equation 3) yields

c)�a+ c = ln

✓
2 cosh

⇥
h
⇤◆

+ 2K

Inserting c) into a) gives

ã) : ln

✓
4 cosh

⇥
4K + h

⇤
cosh

⇥
4K � h

⇤◆
= 2 ln

✓
2 cosh

⇥
h
⇤◆

+ 16K

16K = ln

✓
cosh

⇥
4K + h

⇤
cosh

⇥
4K � h

⇤

cos2([h]

◆

We see that K only depends on K and h If we add a’) and b’) we obtain

16h0 = ln

✓
cosh

⇥
4K + h

⇤
cosh2

⇥
2K + h

⇤

cosh
⇥
4K � h

⇤
cosh2

⇥
2K � h

⇤
◆

.
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Also h0 only depends on h and K. Especially for h = 0, we find h0 = 0. So
the renormalization does not introduce a B-field, when we start with B = 0.
In the following we will consider only the case h = 0. Then we obtain

K =
1

16
ln
�
cosh2[4K]

�
=

1

8
ln(cosh[4K]) .

First approximation, ignoring nnn interaction

K describes the nn coupling in the decimated lattice (e.g. for the spins S8 and
S12. Integrating out S13 also mediates a coupling between theses spins. AS
the contributions add up, we already have for the new nn coupling between
site 8 and 12

K 0 = 2K .

Moreover, the coupling for the new nn and nnn pairs is ferromagnet and
support the same orientation. As a first approximation, we can therefore
ignore the nnn coupling and increase the nn coupling by that constant. Hence

K 0 = 3K =
3

8
ln

✓
cosh(4K)

◆
.
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Figure 3.3: Flux of the renormalization iterations.

t

In figure 3.3 the mapping of the coupling parameter K during the renoirmal-
ization steps is depicted. We find two fixed points, K⇤

1 = 0 and K⇤

2 = 0.507.
The first one is stable, while the second one is unstable. If we start with
a physical parameter K > K⇤

2 the interaction leads to K = 1, while if we


