
Fokker-Planck collision model and Monte Carlo method

The first part of the derivation follows closely the book Collisional transport in magnetized plasmas
of Helander, Sigmar (2002), pp.22-24. Extensive information on the topic of kinetic theory and its
various applications can be found in the book Stochastic processes in physics and chemistry of N.G.
Van Kampen (2007).
We look at collisional effects to the velocity dependency of the distribution function f(v, t). Since no
particles are created or destroyed by collisions, after a sufficiently short time-step ∆t the change in f
at a fixed point v of velocity space can be written as

f(v, t+∆t) =

∫
d∆v f(v −∆v, t)F (v −∆v,∆v). (1)

The function F (v−∆v,∆v) quantifies the probability with which a particle of velocity v−∆v will be
scattered to have velocity v, and f(v−∆v, t) measures the population at the velocity space point from
which scattering occurs. Integration corresponds to a summation over all possible distances ∆v from
v. The central assumption to obtain a Fokker-Planck collision operator is the sufficiently fast decay
of F with ∆v. Physically this means that most of the velocity changes by a single collision are small,
which is a good approximation for Coulomb collisions in plasmas or for Brownian motion in chemistry
(Kramers’ equation). An expansion up to second order around v in the first argument v −∆v yields

f(v, t+∆t) ≈
∫

d∆v

(
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)
. (2)

Since no particles can be lost, the integral over F (v,∆v) across the whole range of ∆v has to fulfil the
normalisation condition ∫

∆v F (v,∆v) = 1, (3)

which means that the first term can be integrated to yield just f(v, t). Moving this term to the left-
hand side and division by ∆t yields the partial time derivative of f due to collisions in the limit ∆t → 0
with (
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)
c
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f(v, t+∆t)− f(v, t)
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〈
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〉
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 , (4)

where we have defined

A(v) ≡ ⟨∆v⟩
∆t

, B(v) ≡
〈
∆v2

〉
∆t

containing the integral over d∆v as moment averages for powers of ∆v with weight F ,〈
∆vk

〉
=

∫
d∆v F (v,∆v)∆vk. (5)

If we furthermore assume A to be linear in v and B constant, we can write this collision term in the
so-called Ornstein-Uhlenbeck form(
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)
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= L̂cf = νc
∂
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(
v f + v2T

∂f

∂v

)
, (6)
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where we have expressed Fokker-Planck coefficients A and B via collision frequency νc and thermal
velocity vT to fulfil

A ≡ −vνc, (7)

B ≡ 2νcv
2
T , (8)

thus uniquely defining first and second moments ⟨∆v⟩ ,
〈
∆v2

〉
of ∆v with respect to F . The choice

of the name thermal velocity for vT stems from the convergence of f towards a stationary thermalised
state f∞ given by a Gaussian in v (Boltzmann distribution in E = mv2

2 for 1D or Maxwellian for 3D)
at t → ∞ with

f∞(v) =
1√
2πv2T

e
− v2

2v2
T . (9)

It can be easily checked that L̂cf∞ = 0, so a characterisation for the stationary f∞ is being an
eigenfunction of L̂c with eigenvalue 0.
To define a random process for a Monte Carlo method representing the Ornstein-Uhlenbeck operator,
we require a random distribution of ∆v whose first and second moment are given by Eqs. (7-8).
Effectively this means to sample from a model for the distribution function F (∆v). A straightforward
choice is a normal (Gaussian) distribution

F (∆v) =
1√
2πσ2

e
(∆v−µ)2

2σ2 (10)

with mean

µ = ⟨∆v⟩ = −νcv∆t (11)

and variance

σ2 =
〈
∆v2

〉
= 2νcv

2
T∆t. (12)

In each time-step we draw a random sample from this distribution by

∆v = −νcv∆t+
√
2νcv2TΘ

√
∆t , (13)

where Θ is a random number sampled from the standard normal distribution. As an alternative to
using the normal distribution as a model for F , it would also be possible to use equally uniformly
distributed random numbers centred around µ and with the correct scaling of the variance.
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