An introduction to artificial neural networks and how to use them

Christopher Albert

Max-Planck-Institut für Plasmaphysik, 85748 Garching

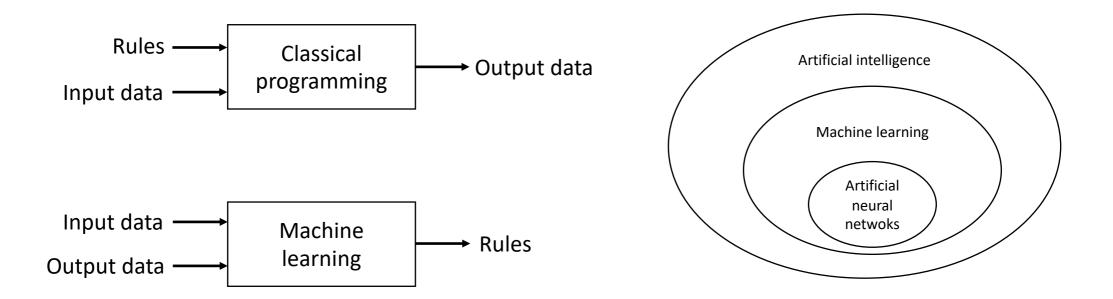
NMPP Seminar, 25.09.2018

[1] François Chollet. *Deep learning with Python* (Pearson, 2017) (developer of Keras)

- Machine learning for artists https://ml4a.github.io/
- Keras blog <u>https://blog.keras.io/</u>
- Kaggle (datasets, algorithms, challenges) https://www.kaggle.com/

What is machine learning?

• Machine learning algorithms find rules relating input and output data



Relation of Machine learning to programming, AI and artificial neural networks (after [1])

Types of machine learning

Supervised learning

- Training with correct input/output pairs
- Classification
- Regression / interpolation
- Unsupervised learning: machine is "on its own"
 - Correct output and rules unknown
 - Clustering
- Mixed forms exist

source: https://xkcd.com/1838/, license: https://xkcd.com/license.html

Some machine learning techniques

- Classical interpolation and regression
 - Linear regression, splines
- Stochastic methods including uncertainty
 - Polynomial chaos expansion, Gaussian processes
- Decision trees
 - Random forest, gradient boosting machine
- Clustering methods
 - k-Means, EM algorithm
- Artificial neural networks
 - Convolutional networks (recognition), LTSM (time series prediction), autoencoder (dimensionality reduction), and many more

Rule of thumb: the more flexible a method, the more difficult it is to interpret its parameters.

• Take map F of input $u \in U$ to output $v \in V$

 $F: U \to V$ $u \mapsto v = F(u)$

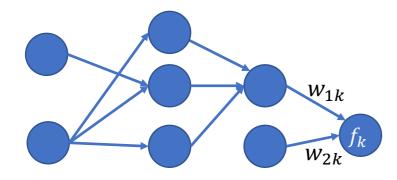
- Examples:
 - Simulation with input parameters $u \mapsto \text{result } v$
 - Pixels $u \in \{1 \dots 16\}^{L \cdot W}$ of an image \mapsto digits $v \in \{0 \dots 9\}$
 - Microphone signal $u(t) \mapsto$ words $v \in$ dictionary
- Machine learning: find an approximate map $\tilde{F} \approx F$

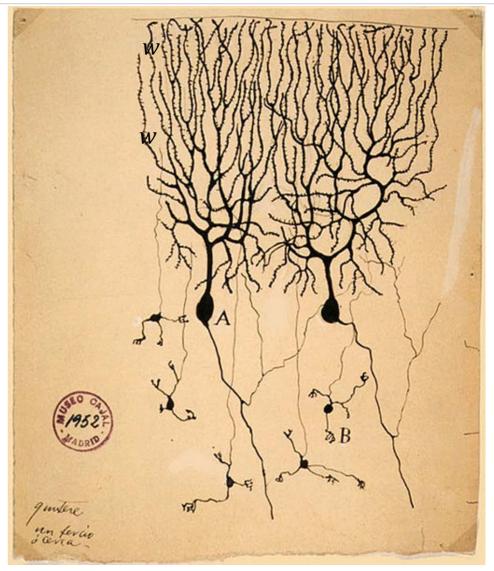
Classification and regression

- Machine learning: find an approximate map $\tilde{F}(u; w) \approx F(u)$
 - Depends on parameters w (e.g. spline coefficients)
 - Should be *fast* to evaluate
 - Should provide *insight* into features
- Training (parameter estimation / fit)
 - Based on given *training data* $\{(u_T, F(u_T))\}$
 - *Minimize* $||g(\tilde{F}(u_T, w) F(u_T), w)||$ w.r.t. w for some norm $|| \cdot ||$
 - Loss function g may include weight-based regularisation to avoid overfitting
- Validation
 - Check correctness on *test data* $u_V \neq u_T$
 - Measures of goodness: ||g|| or classification accuracy in %

Artificial neural network

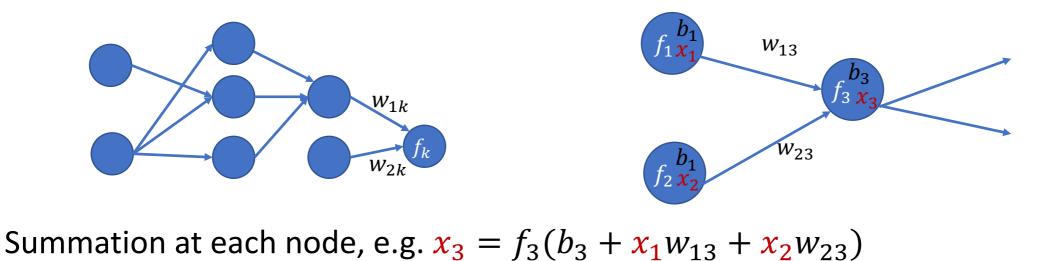
- Neural network = graph
 - Neurons = nodes
 - Dendrites = edges towards nodes
 - Activation function f
 - Weights w



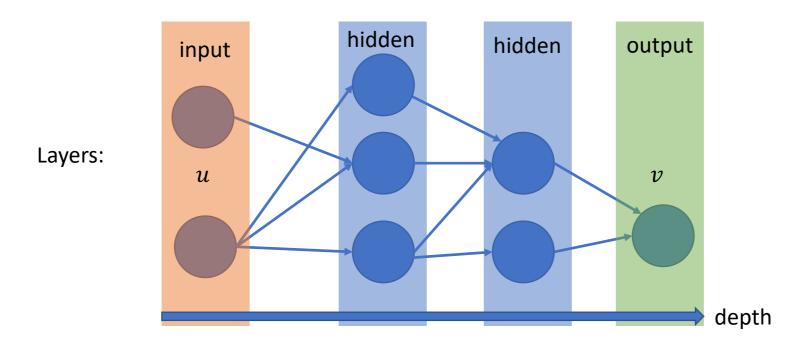


Artificial neural network

- Neural network = directed acyclic graph with summation rules
 - Neurons = nodes that sum input
 - Dendrites = edges carrying weights for node input summation
 - Activation function f_k = transformation to add nonlinearity (prescribed)
 - Weights w_{kl} and bias b_l = (statistical) model parameters



Layers and overall map



• Map generated by the network, including bias $\overline{f_i}(x) = f_i(b_i + x)$:

$$v_k = \tilde{F}_k(u; w) = \bar{f}_k \circ w_{kj} \bar{f}_j \circ \cdots \circ w_{ab} \bar{f}_b \circ w_{ba} u_a$$

• Let's have a look on <u>https://ml4a.github.io/ml4a/neural_networks/#regression</u>

Different activation functions

Name 🔶	Plot 💠	Equation \$	Derivative (with respect to <i>x</i>) \$	Range 🔶	0]
Identity		f(x) = x	f'(x) = 1	$(-\infty,\infty)$	BY-SA 4.0
Binary step		$f(x) = egin{cases} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$f'(x)=egin{cases} 0 & ext{for }x eq 0\ ? & ext{for }x=0 \end{cases}$	$\{0,1\}$	
Logistic (a.k.a. Sigmoid or Soft step)		$f(x)=\sigma(x)=rac{1}{1+e^{-x}}$ [1]	$f^\prime(x)=f(x)(1-f(x))$	(0, 1)	ss [CC
TanH		$f(x) = anh(x) = rac{(e^x - e^{-x})}{(e^x + e^{-x})}$	$f^\prime(x) = 1 - f(x)^2$	(-1, 1)	Laughsinthestocks
ArcTan	\square	$f(x)=\tan^{-1}(x)$	$f'(x)=\frac{1}{x^2+1}$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	the
Softsign ^{[7][8]}		$f(x)=\frac{x}{1+ x }$	$f'(x) = \frac{1}{(1+ x)^2}$	(-1, 1)	ghsir
Inverse square root unit (ISRU) ^[9]		$f(x)=rac{x}{\sqrt{1+lpha x^2}}$	$f'(x) = \left(rac{1}{\sqrt{1+lpha x^2}} ight)^3$	$\left(-\frac{1}{\sqrt{\alpha}},\frac{1}{\sqrt{\alpha}}\right)$	
Rectified linear unit (ReLU) ^[10]		$f(x) = egin{cases} 0 & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$	$f'(x) = egin{cases} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$[0,\infty)$	edia,
Leaky rectified linear unit (Leaky ReLU) ^[11]		$f(x) = egin{cases} 0.01x & ext{for } x < 0 \ x & ext{for } x \ge 0 \end{cases}$	$f'(x) = egin{cases} 0.01 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$(-\infty,\infty)$	/ikip
Parameteric rectified linear unit (PReLU) ^[12]		$f(lpha,x) = egin{cases} lpha x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$	$f'(lpha,x) = egin{cases} lpha & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$(-\infty,\infty)^{[2]}$	Se: V
Randomized leaky rectified linear unit (RReLU) ^[13]		$f(lpha,x) = egin{cases} lpha x & ext{for } x < 0_{\ [3]} \ x & ext{for } x \geq 0 \end{cases}$	$f'(lpha,x) = egin{cases} lpha & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$(-\infty,\infty)$	Source: Wikipedia,
Exponential linear unit (ELU) ^[14]		$f(lpha,x) = egin{cases} lpha(e^x-1) & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$	$f'(lpha,x) = egin{cases} f(lpha,x)+lpha & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$(-lpha,\infty)$	0,

Are artificial neural networks intelligent?

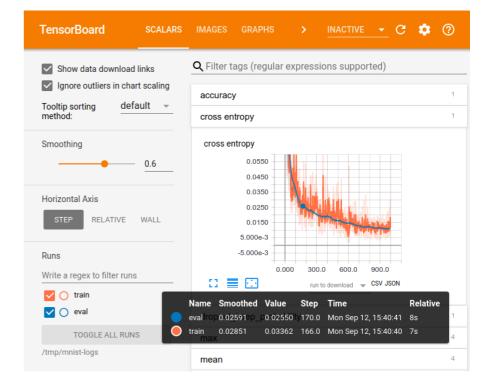
- Artificial neural networks are *not* intelligent per se.
- Shared features with the brain:
 - Neurons and dendrites
 - Emergence: complex behavior based on simple constituents
 - Convolutional networks model the way we think the brain filters information
- How the brain is different:
 - Bigger. Human brain: 10s of billions of neurons with 1000s of inputs for each.
 - More complex structure. Brain has feedback loops, ANNs usually feed-forward.

Where to use artificial neural networks?

- Why Google, Facebook, Apple (Big Data) love neural networks
 - Have huge amounts of unstructured data for free
 - Need fast evaluation (mobile devices, real-time search, etc.)
 - Can do training in big datacenters
- Experiment and modelling at IPP
 - Data often structured and expensive to produce
 - Fast evaluation e.g. for real-time control, optimisation, parameter studies
 - Can do training in big datacenters
- It depends on the specific problem to solve which tools to use

What is TensorFlow?

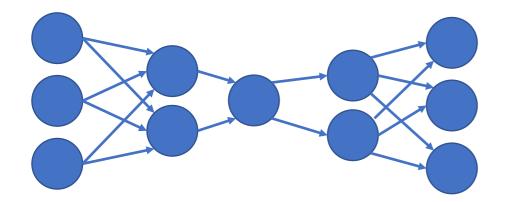
- Dataflow programming framework developed by Google (C++, Python)
- High level frontend: Keras (now included)
- Runs fast on parallel GPU/TPU architectures
- Included analysis tool: TensorBoard

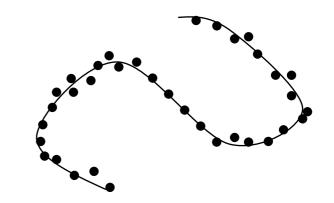


- Install Python environment
 - NumPy/SciPy/Matplotlib for Matlab-like functionality
 - *TensorFlow* (Alternative: *Theano*) with *Keras* frontend for high performance artificial neural networks
 - *scikit-learn* for different machine-learning methods and tools
- Anaconda Python distribution already includes most of it, use conda install -c conda-forge tensorflow
- Spyder is a good editor similar for Matlab
- Jupyter Notebook for Mathematica-like notebooks
- Look at examples, e.g. from https://blog.keras.io/

Example: Autoencoder

- We would like to build a tool for dimensionality reduction
- Map from N-D to N-D data, but only M < N dimensions relevant
- Introduce "bottleneck" layer of order M in neural network





- Let's start our own environment on <u>http://localhost:8888/tree/Dropbox/ipp/neuralnet/jupyter</u>
- Diagnostics (TensorBoard) on http://localhost:6006/

- Projects at TOK
 - Daniel Schäfer: MSc thesis (Zohm) with TU Eindhoven, Fast neural network surrogate model for QuaLiKiz (turbulence)
 - [AI-at-IPP], meetings organised by Lennart Bock
- Expertise at TUM
 - Tobias Neckel: Uncertainty quantification
 - Nils Thuerey: Neural networks, computer graphics
- Projects at NMPP
 - Helmholtz project: reduced complexity models (Albert, Tyranowski, v.Toussaint)
 - TODO: Coster, Hoenen, Luk, Preuss, v.Toussaint
 - Dirk Nille: PhD thesis, high-res/smooth divertor IR thermography via Bayes
- Tell me if you know more!

Initial ideas on symplectic neural networks

- A *linear* transformation stays *linear* with the right network...
 - Criterion: linearity of layers via linear activation functions
- ... (non-linear) *symplectic* transform stays *symplectic* if done correctly!
 - Criterion: symplecticity of (combination of) layers
 - Interpolate mechanical system. Input: initial conditions, Output: final conditions
- Idea based on symplectic Euler integrator for canonical z = (q, p)

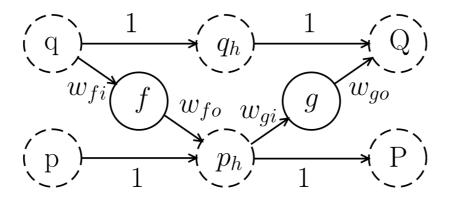
$$z^{(n+1)} = z^{(n)} + h \begin{cases} J \nabla H(q^{(n)}, p^{(n+1)}) & \text{(Variant 1)} \\ J \nabla H(q^{(n+1)}, p^{(n)}) & \text{(Variant 2)} \end{cases}$$

• Must be explicit (separable Hamiltonian *H*) for forward network

see Deco&Brauer, Neural Networks 8, 525 (1995) with focus on entropy

Initial ideas on symplectic neural networks

• Approximate real Hamiltonian map by many simple ones



• Activation function due to Hamiltonian H_n in each node,

$$f = -\frac{\partial H_n}{\partial q}$$
, $g = -\frac{\partial H_n}{\partial p}$, (Euler: $w_{\cdot i} = 1, w_{\cdot o} = h$)

- First guess: harmonic oscillator, but yields linear map
- Second guess: pendulum, "half-harmonic" oscillator, or "quendulum" $H_n = \frac{p^2}{2} - \cos q$, $H_n = \left(\frac{p^2}{2} + \frac{q^2}{2}\right)\Theta(q)$, $H_n = -\cos p - \cos q$

Example: image recognition with convolutional net

https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html

("very little data" means 1000s of images artificially blown up to 10s of 1000s of training pairs)

Keras offers convolutional layers to detect features on pictures in a translationally invariant way

Also videos: Methods exist to recognize if someone is packing or un-packing the trunk of a car

Conclusion

- Choice of machine-learning method is highly problem-specific
- Current boom has made a lot of user-friendly tools available
 - Extending methods still requires low-level work
- Artificial neural networks for classification and regression
 - Working on unstructured data
 - Involve hard optimisation problem while training
 - Once trained, extremely fast to evaluate (in parallel)
- The machine is only clever if you are

Thank you for your attention!

Talk available on https://itp.tugraz.at/~ert/teaching