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Main sources
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[1] François Chollet. Deep learning with Python (Pearson, 2017)
(developer of Keras)

•Machine learning for artists
https://ml4a.github.io/

• Keras blog
https://blog.keras.io/

• Kaggle (datasets, algorithms, challenges)
https://www.kaggle.com/

https://ml4a.github.io/ml4a/
https://blog.keras.io/
https://www.kaggle.com/


What is machine learning?
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•Machine learning algorithms find rules relating input and output data

Relation of Machine learning to programming, AI and artificial neural networks (after [1])
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Types of machine learning
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• Supervised learning
• Training with correct input/output pairs
• Classification
• Regression / interpolation

• Unsupervised learning: 
machine is “on its own“
• Correct output and rules unknown 
• Clustering

•Mixed forms exist
source: https://xkcd.com/1838/, license: https://xkcd.com/license.html

https://xkcd.com/1838/
https://xkcd.com/license.html


Some machine learning techniques
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• Classical interpolation and regression
• Linear regression, splines

• Stochastic methods including uncertainty
• Polynomial chaos expansion, Gaussian processes

• Decision trees
• Random forest, gradient boosting machine

• Clustering methods
• k-Means, EM algorithm

• Artificial neural networks
• Convolutional networks (recognition), LTSM (time series prediction), 

autoencoder (dimensionality reduction), and many more

Rule of thumb: the more
flexible a method, the
more difficult it is to
interpret its parameters.



Classification and regression
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• Take map !of input " ∈ $ to output % ∈ &

!:$ → &
" ↦ % = !(")

• Examples:
• Simulation with input parameters " ↦ result %
• Pixels " ∈ 1…16 0⋅2 of an image ↦ digits % ∈ {0…9}
• Microphone signal "(7) ↦ words % ∈ dictionary

•Machine learning: find an approximate map 8! ≈ !



Classification and regression
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•Machine learning: find an approximate map !"($;&) ≈ "($)
• Depends on parameters & (e.g. spline coefficients)
• Should be fast to evaluate
• Should provide insight into features

• Training (parameter estimation / fit)
• Based on given training data { $*, "($*) }
• Minimize ‖.( !" $*, & − " $* ,&)‖ w.r.t. & for some norm ‖ ⋅ ‖
• Loss function . may include weight-based regularisation to avoid overfitting

• Validation
• Check correctness on test data $1 ≠ $*
• Measures of goodness: ‖.‖ or classification accuracy in %



Artificial neural network
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• Neural network = graph
• Neurons = nodes
• Dendrites = edges towards nodes
• Activation function !
• Weights "
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Artificial neural network
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• Neural network = directed acyclic graph with summation rules
• Neurons = nodes that sum input
• Dendrites = edges carrying weights for node input summation
• Activation function !" = transformation to add nonlinearity (prescribed)
• Weights #"$ and bias %$ = (statistical) model parameters

Summation at each node, e.g. &' = !'(%' + &+#+' + &,#,')
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Layers and overall map
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•Map generated by the network, including bias ̅"# $ = "#('# + $):
*+ = ,-+ .;0 = ̅"+ ∘ 0+2 ̅"2 ∘ ⋯ ∘ 045 ̅"5 ∘ 054.4

. *Layers:

input hidden output hidden

depth



Example

25.09.18 Introduction to artificial neural networks, Christopher Albert <calbert@ipp.mpg.de>, NMPP, IPP Garching 11

• Let’s have a look on 
https://ml4a.github.io/ml4a/neural_networks/#regression

https://ml4a.github.io/ml4a/neural_networks/


Different activation functions
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Are artificial neural networks intelligent?
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• Artificial neural networks are not intelligent per se.

• Shared features with the brain:
• Neurons and dendrites
• Emergence: complex behavior based on simple constituents
• Convolutional networks model the way we think the brain filters information

• How the brain is different:
• Bigger. Human brain: 10s of billions of neurons with 1000s of inputs for each.
• More complex structure. Brain has feedback loops, ANNs usually feed-forward.



Where to use artificial neural networks?
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•Why Google, Facebook, Apple (Big Data) love neural networks
• Have huge amounts of unstructured data for free
• Need fast evaluation (mobile devices, real-time search, etc.) 
• Can do training in big datacenters

• Experiment and modelling at IPP
• Data often structured and expensive to produce
• Fast evaluation e.g. for real-time control, optimisation, parameter studies 
• Can do training in big datacenters

• It depends on the specific problem to solve which tools to use



What is TensorFlow?
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• Dataflow programming framework developed by Google (C++, Python)
• High level frontend: Keras (now included)
• Runs fast on parallel GPU/TPU architectures

• Included analysis tool: TensorBoard



How to build networks yourself
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• Install Python environment
• NumPy/SciPy/Matplotlib for Matlab-like functionality
• TensorFlow (Alternative: Theano) with Keras frontend

for high performance artificial neural networks
• scikit-learn for different machine-learning methods and tools

• Anaconda Python distribution already includes most of it,
use conda install -c conda-forge tensorflow
• Spyder is a good editor similar for Matlab
• Jupyter Notebook for Mathematica-like notebooks
• Look at examples, e.g. from https://blog.keras.io/

https://blog.keras.io/


Example: Autoencoder
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•We would like to build a tool for dimensionality reduction
•Map from !-D to !-D data, but only " < ! dimensions relevant
• Introduce „bottleneck“ layer of order " in neural network

• Let‘s start our own environment on 
http://localhost:8888/tree/Dropbox/ipp/neuralnet/jupyter
• Diagnostics (TensorBoard) on http://localhost:6006/

http://localhost:8888/tree/Dropbox/ipp/neuralnet/jupyter
http://localhost:6006/


Examples for machine learning and neural networks at IPP
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• Projects at TOK
• Daniel Schäfer: MSc thesis (Zohm) with TU Eindhoven, 

Fast neural network surrogate model for QuaLiKiz (turbulence)

• [AI-at-IPP], meetings organised by Lennart Bock

• Expertise at TUM
• Tobias Neckel: Uncertainty quantification

• Nils Thuerey: Neural networks, computer graphics

• Projects at NMPP
• Helmholtz project: reduced complexity models (Albert, Tyranowski, v.Toussaint)

• TODO: Coster, Hoenen, Luk, Preuss, v.Toussaint

• Dirk Nille: PhD thesis, high-res/smooth divertor IR thermography via Bayes

• Tell me if you know more!



Initial ideas on symplectic neural networks
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• A linear transformation stays linear with the right network…
• Criterion: linearity of layers via linear activation functions

• … (non-linear) symplectic transform stays symplectic if done correctly!
• Criterion: symplecticity of (combination of) layers
• Interpolate mechanical system. Input: initial conditions, Output: final conditions

• Idea based on symplectic Euler integrator for canonical ! = ($, &)

!(()*) = !(() + ℎ -.∇0($
( , & ()* ) (Variant 1)

.∇0($ ()* , & ( ) (Variant 2)

• Must be explicit (separable Hamiltonian 0) for forward network

see Deco&Brauer, Neural Networks 8, 525 (1995) with focus on entropy



Initial ideas on symplectic neural networks
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• Approximate real Hamiltonian map by many simple ones

• Activation function due to Hamiltonian !" in each node,
# = −&!"&' , ) = −&!"&* , (Euler: 2⋅4= 1,2⋅6 = ℎ)

• First guess: harmonic oscillator, but yields linear map
• Second guess: pendulum, “half-harmonic” oscillator, or “quendulum”

!" =
*9
2 − cos ' , !" =

*9
2 + '

9

2 Θ('), !" = − cos * − cos '



Example: image recognition with convolutional net

25.09.18 Introduction to artificial neural networks, Christopher Albert <calbert@ipp.mpg.de>, NMPP, IPP Garching 21

https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
(”very little data” means 1000s of
images artificially blown up to
10s of 1000s of training pairs)

Keras offers convolutional layers
to detect features on pictures 
in a translationally invariant way

Also videos: Methods exist
to recognize if someone is 
packing or un-packing the 
trunk of a car

https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html


Conclusion
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• Choice of machine-learning method is highly problem-specific
• Current boom has made a lot of user-friendly tools available
• Extending methods still requires low-level work

• Artificial neural networks for classification and regression
• Working on unstructured data
• Involve hard optimisation problem while training
• Once trained, extremely fast to evaluate (in parallel)

• The machine is only clever if you are

Thank you for your attention!

Talk available on https://itp.tugraz.at/~ert/teaching

https://itp.tugraz.at/~ert/teaching

