Bound states and non-equilibrium time evolution in 1d strongly interacting lattice models

Hans Gerd Evertz, TU Graz

Martin Ganahl

Elias Rabel

Fabian Essler

Masud Haque

and R. Vlijm, D. Fioretto, M. Brockmann, J.-S. Caux

Outline

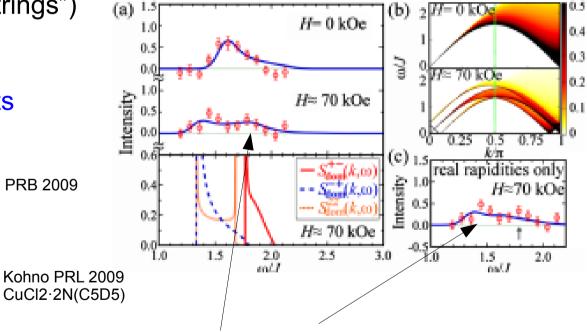
- Propagation of bound states in the XXZ chain
 - Ferromagnet
 - Antiferromagnet at finite magnetization
 - Nonintegrable models
- Scattering of bound states
 - XXZ
 - Bose-Hubbard
 - Hubbard

XXZ Heisenberg spin ½ chain

$$egin{aligned} H_{XXZ} &= \sum_i rac{J_{xy}}{2} \left(S_i^+ S_{i+1}^- + S_{i+1}^- S_i^+
ight) + J_z S_i^z S_{i+1}^z \,, \quad \Delta = rac{J_z}{J_{xy}} \ H_{sf} &= \sum_i t \left(c_i^\dagger c_{i+1} + c_{i+1}^\dagger c_i
ight) + V (n_i - rac{1}{2}) (n_{i+1} - rac{1}{2}) \;, \quad rac{V}{t} = 2 \Delta \end{aligned}$$

- There are bound states ("M-strings")
- Difficult to see in standard condensed matter experiments

Caux et al J Stat.Mech 2005 Pereira, White, Affleck PRL 2008, PRB 2009 Sashi et al, PRB 2011



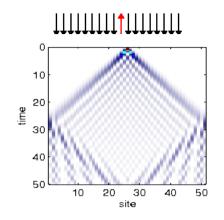
Spectra with and without bound state contributions

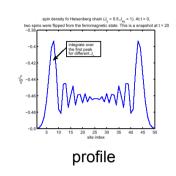
Here: study with Local Quantum Quench (ED, tebd, Bethe)

Single particle excitation: magnon

- Initial state: FM groundstate (empty lattice), with local quench at center site (inf. magn. field)
- Same as a single fermion (=> time evolution)

$$|\psi(t=0)
angle \ = \ c_{x=0}^\dagger |0
angle \ = \ \sum_k c_k^\dagger |0
angle$$



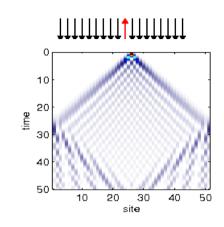


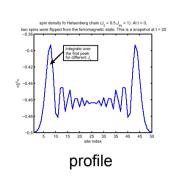
• Dispersion is $-J_X \cos k$, thus velocities $J_X \sin k$

Single particle excitation: magnon

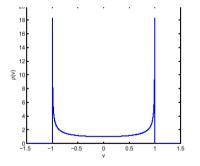
- Initial state: FM groundstate (empty lattice), with local quench at center site (inf. magn. field)
- Same as a single fermion (=> time evolution)

$$|\psi(t=0)
angle \ = \ c_{x=0}^\dagger |0
angle \ = \ \sum_k c_k^\dagger |0
angle$$





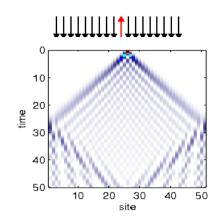
- Dispersion is $-J_X \cos k$, thus velocities $J_X \sin k$
- many k-modes, around $\pi/2$, with almost maximum velocity Jx

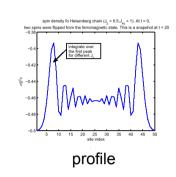


Single particle excitation: magnon

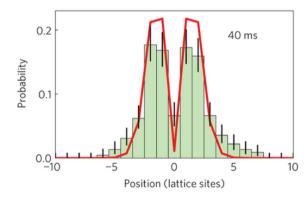
- Initial state: FM groundstate (empty lattice), with local quench at center site (inf. magn. field)
- Same as a single fermion (=> time evolution)

$$|\psi(t=0)
angle \;=\; c_{x=0}^\dagger |0
angle \;=\; \sum_k c_k^\dagger |0
angle$$





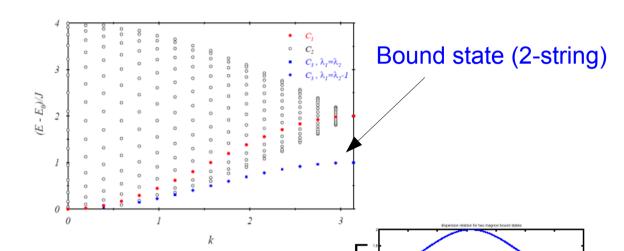
Recent cold atom lattice experiment
 Fukuhara et al. (Munich) Nature Physics 9, 235 (2013)



Bound states

$$\bullet \text{ Bethe ansatz: } \qquad |\psi\rangle_{L-r} = \sum_{1 \leq n_1 < \ldots < n_r \leq L} \ \sum_{\mathcal{P}} exp \left(i \sum_{j=1}^r k_{\mathcal{P}_j} n_j + \frac{i}{2} \sum_{l < j} \Theta_{\mathcal{P}_l \mathcal{P}_j} \right) \quad \left| n_1 \ldots n_r \right\rangle$$

 Two-magnon excitation spectrum: (Karbach, Müller '97)



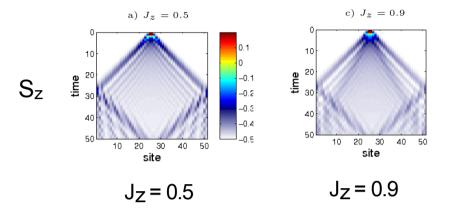
• Dispersion relation of M-string:

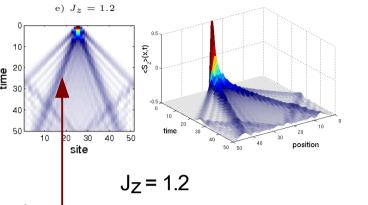
$$E = rac{\sin
u}{\sin M
u} \underbrace{\cos M
u - \cos k}_{>0}, \quad J_z = \cos
u$$

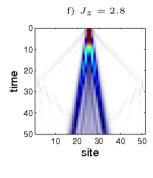
- Requires $J_z>\cos rac{\pi}{M}$

• Momentum constrained; $k=rac{\pi}{2}$ with \max velocity $rac{\sin
u}{\sin M
u}$ present when $J_z>\cos rac{\pi}{2M}$

Two-spin excitation in FM

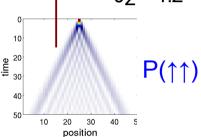




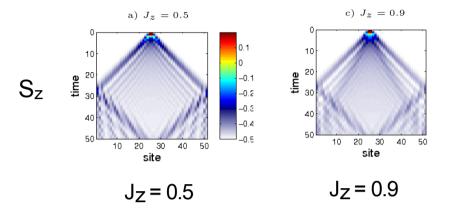


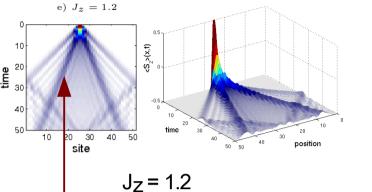
 $J_z = 2.8$

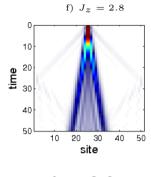
- Two distinct branches beyond $J_z = 0.7$
- New lower branch is bound state



Two-spin excitation in FM

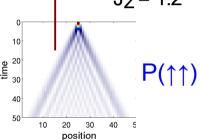






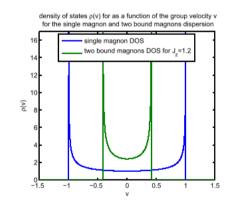
 $J_Z = 2.8$

- Two distinct branches beyond $J_z = 0.7$
- New lower branch is bound state

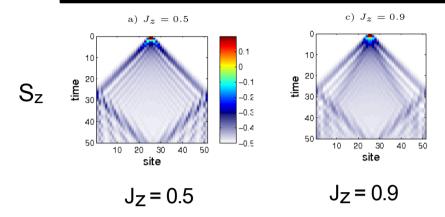


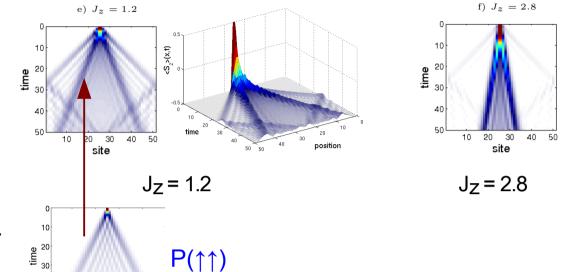
• Bethe: 2-string: linear dispersion appears at $J_z>rac{1}{\sqrt{2}}$

Maximum velocity =
$$\frac{1}{2J_z}$$

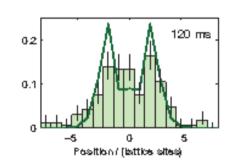


Two-spin excitation in FM

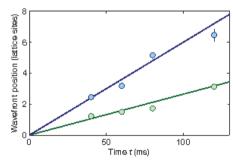




- Two distinct branches beyond $J_z = 0.7$
- New lower branch is bound state
- Observed in cold atom experiment (following our proposal)
 Fukuhara et al. (Munich) Nature 502, 76 (2013)



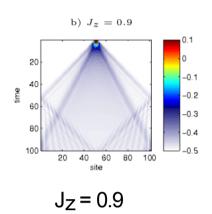
position



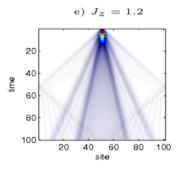
• Note: the sign of H and J_Z does not matter for time evolution *from a given initial state!* U. Schneider et al., Nature Physics 8, 213 (2012) (supplement, for Hubbard model)

Bound states of 3 spins

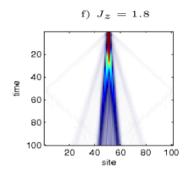
 S_{z}



 $J_z = 1.0$



 $J_Z = 1.2$

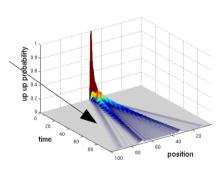


 $J_Z = 1.8$

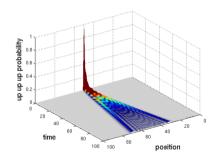
• Three propagating branches, of 1, 2, and 3 particles:



J_z= 1.2: S_z



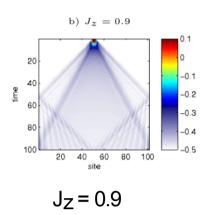
P(↑↑)



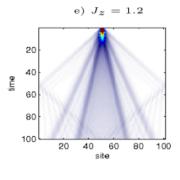
P(↑↑↑)

Bound states of 3 spins

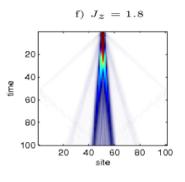
 S_{z}



 $J_Z = 1.0$



 $J_z = 1.2$

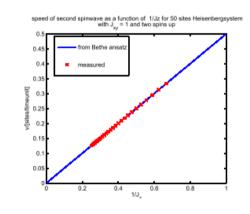


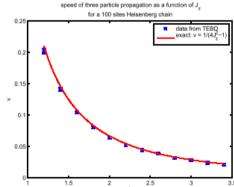
 $J_Z = 1.8$

• Velocities of branches agree with Bethe ansatz

$$v_{max} = \frac{\sin \nu}{\sin M\nu}$$

(M=2, M=3)





Bipartite Entanglement (x,t) between Left and Right of site x

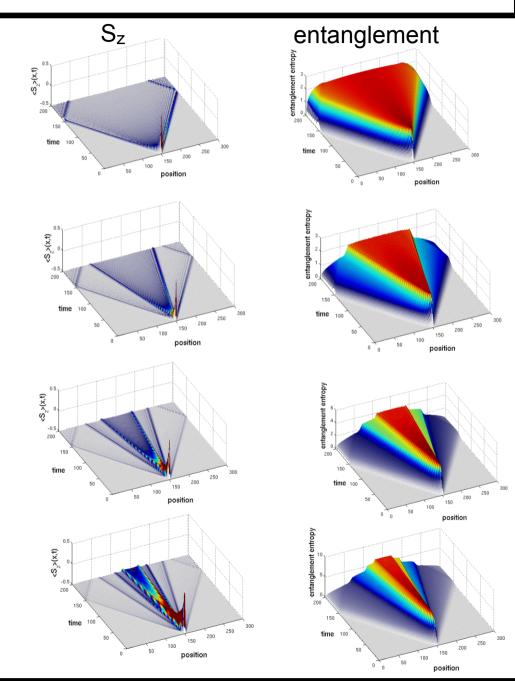
• 2 particles, J_Z = 0.5 (no bound state)

• 2 particles, $J_Z = 1.2$:

Entanglement saturates, with a step structure

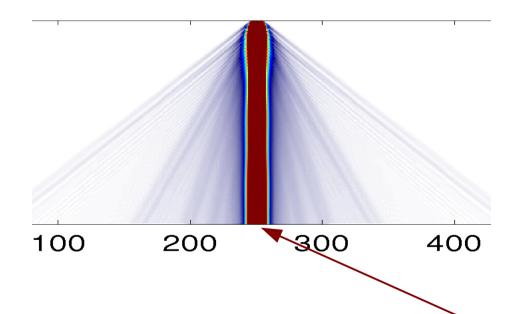
• 3 particles

4 particles



Initial block of 10 spins at $J_Z = 1.1$

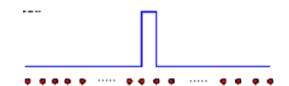
 Block of spins is not an eigenstate, decays into substrings ("evaporative cooling")



• Eigenstates have exponentially decaying spatial wave function (wide at $J_Z = 1.1$)

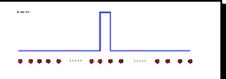
Local quench in the **AF** groundstate at non-zero magnetization

 Prepare ground state with a local infinite magnetic field, then switch field off



- AF at nonzero magnetization is in the Luttinger liquid phase for any Jz
- Highly entangled ground state. Spinon excitations.
- Do bound "string-states" remain visible ?
- Accessible in cold atom experiments

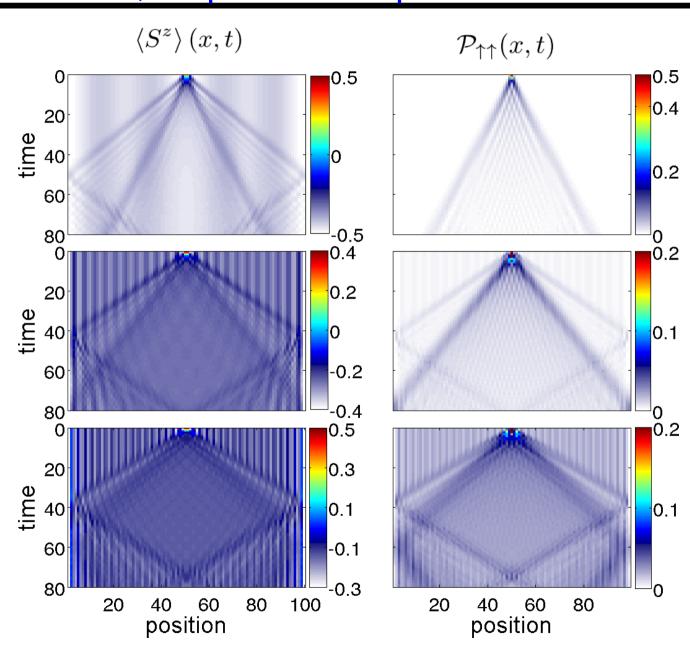
Evolution from AF groundstate at $J_z=1.2$, finite magnetization, 2 spins fixed up



 Low filling 6% (=large magnetization): like magnons and bound magnons

Larger filling 24%
 Larger velocity

 Filling 36%: fewer momenta contribute to bound state
 → washed out

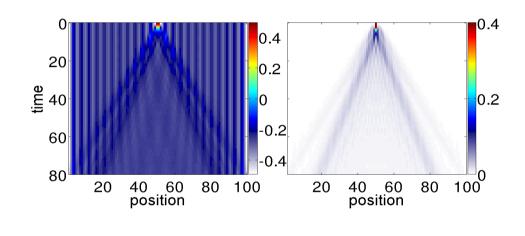


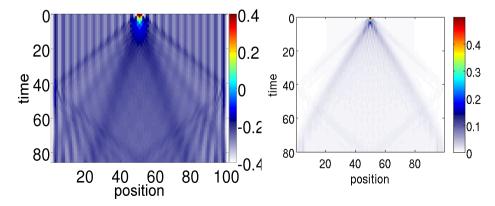
Non-integrable models

- Experiments may not precisely reproduce the XXZ model
- Bound states remain visible

 Next-nearest neighbor coupling J/10

 Chain in parabolic field ("optical trap")





Scattering of bound states

(or: What do Bethe phase shifts do ?)

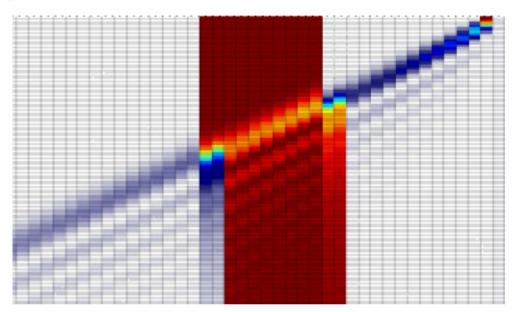
Scattering of magnon and bound state

Magnon hits a "stable" wall of bound particles (almost string eigenstate)

$$\Delta = 10 \quad \left(v \sim \frac{1}{\Delta^{M-1}} \right)$$

Scattering of magnon and bound state

Magnon hits a "stable" wall of bound particles (almost string eigenstate)

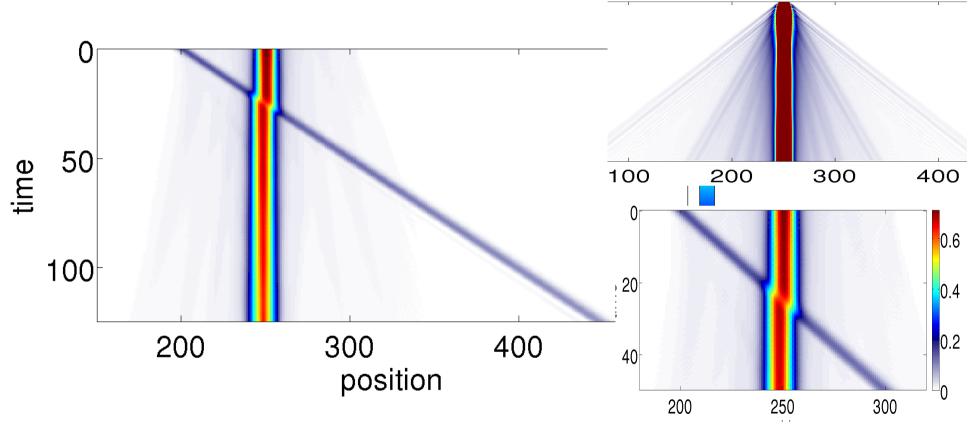


$$\Delta = 10 \left(v \sim \frac{1}{\Delta^{M-1}} \right)$$

- Integrable model: no diffraction, no backward scattering
- A hole moves through the wall
- Resembles one pass of Newtons Cradle, but wall moves by two lattice sites

Not an effect of large couplings

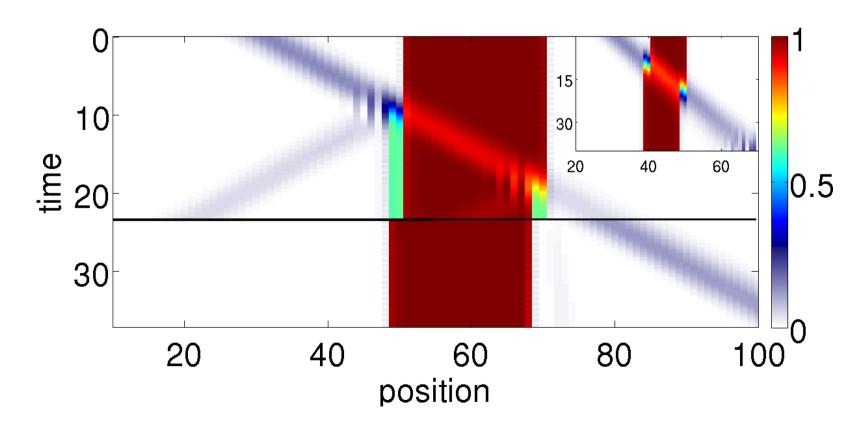
• Phenomena remain the same at small coupling: Here $\Delta = 1.1$



- Wall stabilized before scattering by evaporative cooling
- At small Δ , the M-particle eigenstate (wall) is much wider than M sites
- Incoming Gaussian superposition of magnons exits wall apparently unchanged

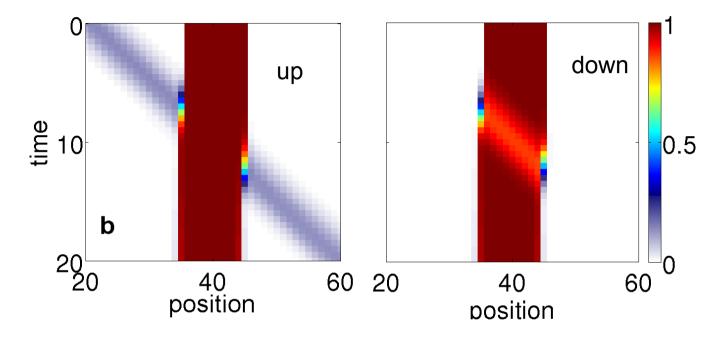
Role of integrability

- XXZ with nnn coupling: non-integrable: backscattering
- Inset: different nnn coupling, integrable: no backscattering



Fermi Hubbard model

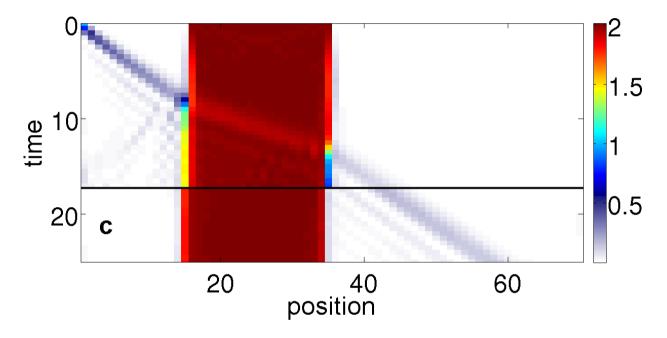
Wall of doubly occupied sites, U=100



- Integrable: no backscattering. Particle-hole transmutation
- Incoming up-spin particle is transmitted as a down-spin hole
- Wall moves by one doubly-occupied site

Bose Hubbard model

• Wall of doubly occupied sites, U=30, incoming single magnon

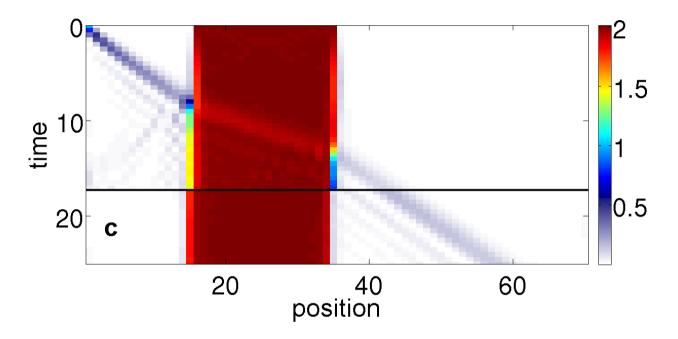


• Not integrable: partial reflection, partial particle-hole transmutation

•

Bose Hubbard model

Wall of doubly occupied sites, U=30, incoming single magnon



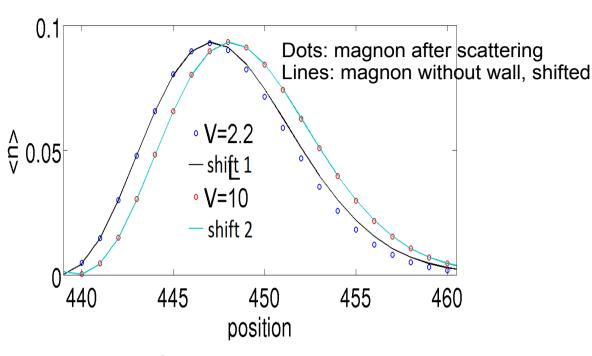
- Not integrable: partial reflection, partial particle-hole transmutation
- Bottom part: **projection** onto cases in which a particle is present on the right
- Then the complete wall moves by one doubly-occupied site
- Effects also visible at smaller U

Semiclassical picture (large coupling)

- Incoming particle cannot touch wall because of energy conservation
- Energy current has to continue
- A particle from inside the wall has to move left → hole propagates
- Picture implies that transmitted particle should jump forward by 2 sites!

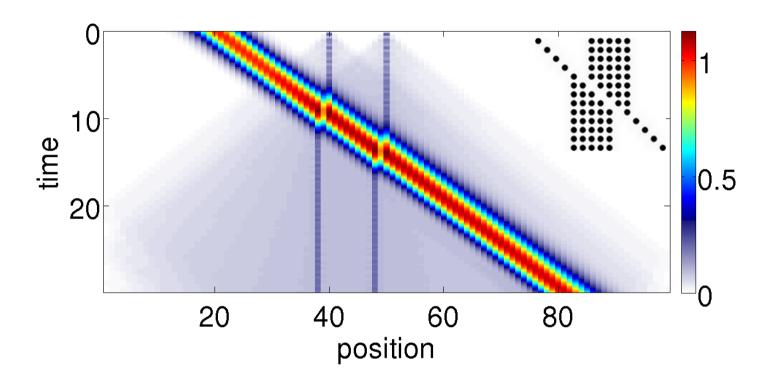
Semiclassical picture





- Incoming particle cannot touch wall because of energy conservation
- Energy current has to continue
- A particle from inside the wall has to move left → hole propagates
- Picture implies that transmitted particle should jump forward by 2 sites
- At large V, an incoming Gaussian is indeed transmitted unchanged, with shift 2 (i.e. momentum-independent phase shift)

Bipartite entanglement entropy



- Incoming Gaussian is entangled internally
- Jumps visible
- Almost no additional entanglement between wall and outgoing particle:
 Product state, no diffraction

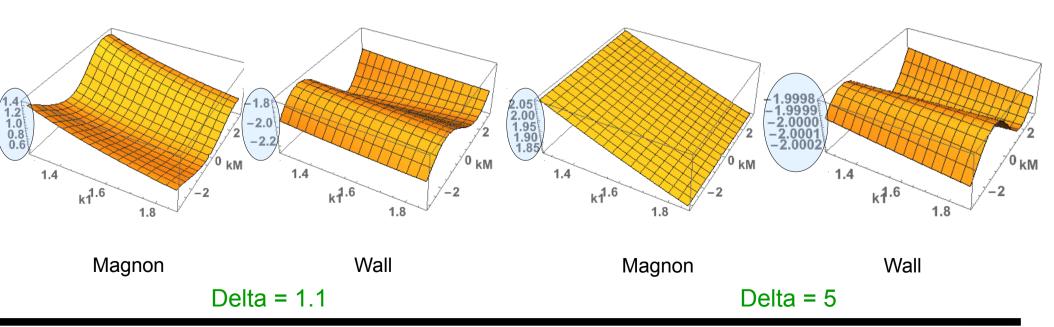
Scattering phase shifts from Bethe ansatz

$$\Theta_{nm}(x) \equiv \begin{cases} \theta_{|n-m|}(x) + 2\theta_{|n-m|+2}(x) + \dots + 2\theta_{n+m-2}(x) + \theta_{n+m}(x) \\ \text{for } n \neq m, \end{cases}$$

$$2\theta_{2}(x) + 2\theta_{4}(x) + \dots + 2\theta_{2n-2}(x) + \theta_{2n}(x) \quad \text{for } n = m.$$

$$\theta_{n}(x) = 2 \tan^{-1} \left(\frac{\tan \frac{x\phi}{2}}{\tanh \frac{n\phi}{2}} \right) + 2\pi \left[\frac{\phi x + \pi}{2\pi} \right] \qquad x = \alpha_{n} - \alpha_{m}$$

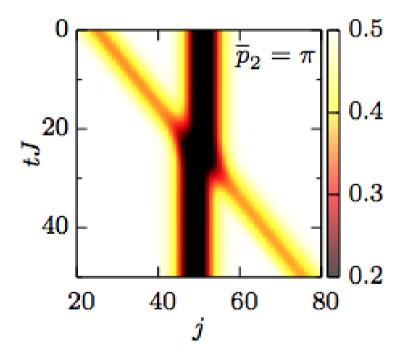
- Slope of Theta → displacement
- Example: Displacements vs momenta (Magnon scattered by M=5 string):



Scattering of String Eigenstates, Bethe ansatz

R Vlijm, M. Ganahl, D. Fioretto, M. Brockmann, M. Haque, HGE, J.-S. Caux, arxiv:1507.08624

- Start from eigenstates (instead of sets of strings)
- Prepare Gaussian superpositions around desired momenta and locations
- Exact time evolution

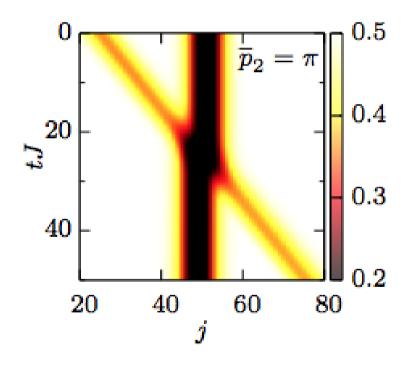


 Δ =2, 1-string on 3-string

Scattering of String Eigenstates, Bethe ansatz

R Vlijm, M. Ganahl, D. Fioretto, M. Brockmann, M. Haque, HGE, J.-S. Caux, arxiv:1507.08624

- Start from Eigenstates (instead of sets of strings)
- Prepare Gaussian superpositions around desired momenta and locations
- Exact time evolution



 Δ =2, 1-string on 3-string

Limits of displacements (analytical):

At large width M: (scatter 1-string off M-string)

Displacement =
$$2 + O(e^{-(M-1)\mathrm{a}\cosh\Delta})$$

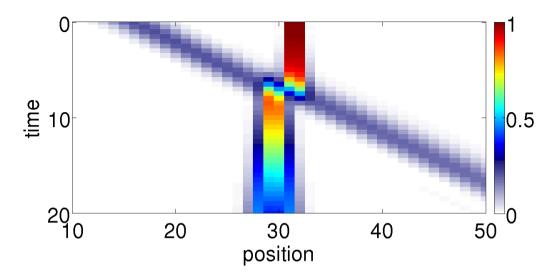
At large Δ : (scatter N-string off M-string)

Displacement =
$$2 \min(N, M) - \delta_{NM}$$

Different initial states

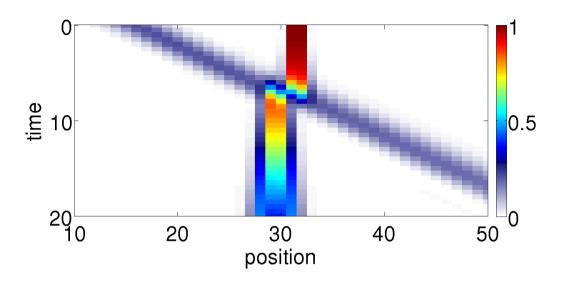
How many sites?

• Wall of 2 sites is enough

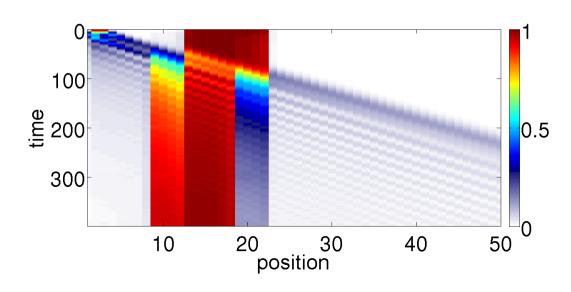


How many sites?

Wall of 2 sites is enough

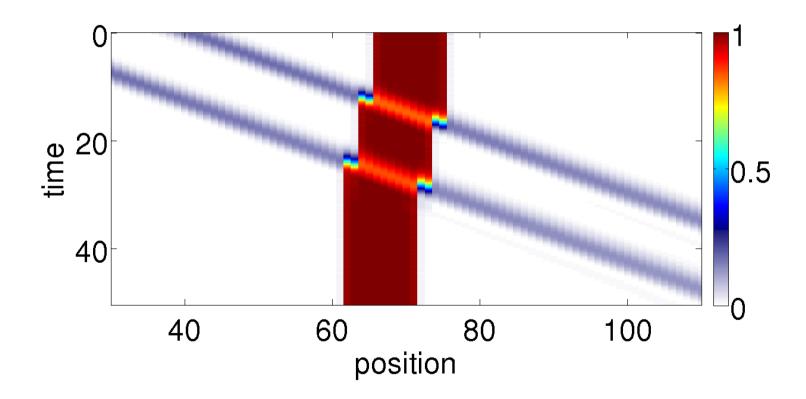


• Incoming two-magnon state. Wall shifts by 4 sites.



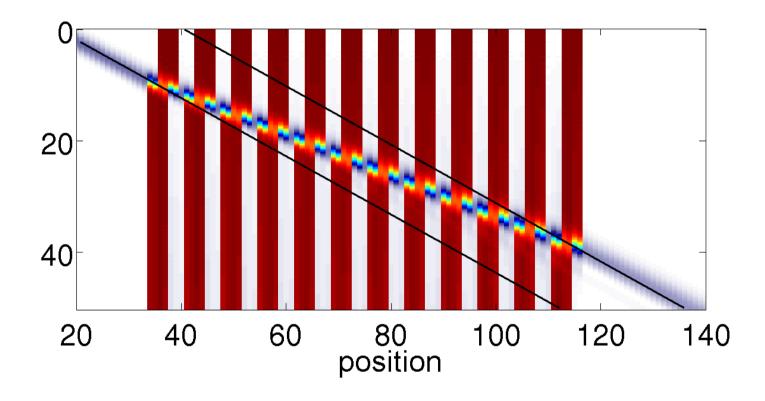
"Shift register"

• Shifts wall coherently; counts passing particles



Metamaterial with "supersonic" mode

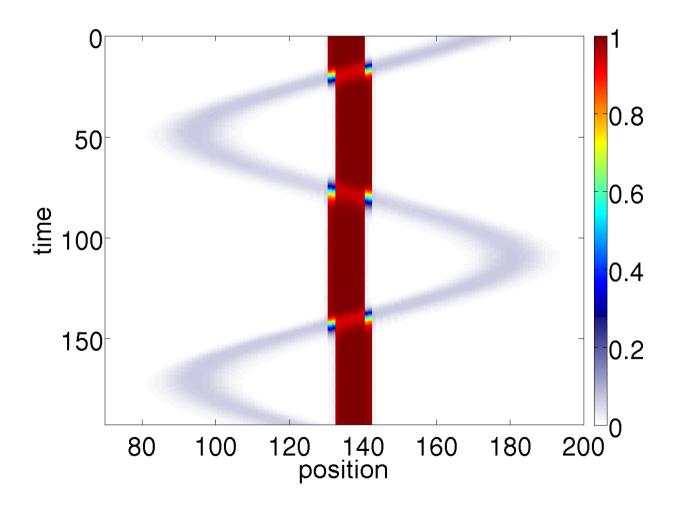
Set up a superlattice of many walls



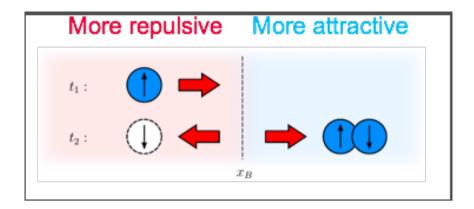
- At each wall, a passing particle jumps forward by 2 sites
 - → Average velocity larger than on empty lattice

Lattice Quantum Newton's Cradle

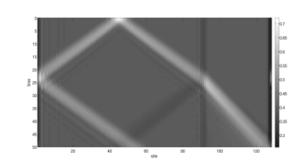
• Place system into a field \rightarrow Bloch oscillations



Andreev-like reflection

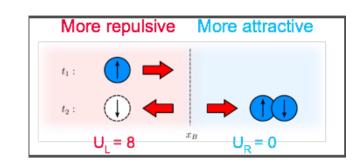


- Left and Right regions, with different couplings
- Luttinger liquid, small excitation: Andreev-like reflection when $\gamma = \frac{K_L K_R}{K_L + K_R}$ is negative i.e. when right side is more attractive (or less repulsive) than left (Safi & Schulz 1996, hydrodynamic approximation)
- Simplest case: spinless fermions (no pairing)
 V_L=0, V_R= -1
 (cf. Daley et al, 2008)

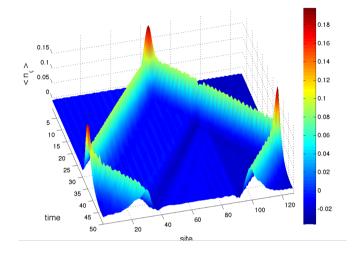


Andreev-like reflection

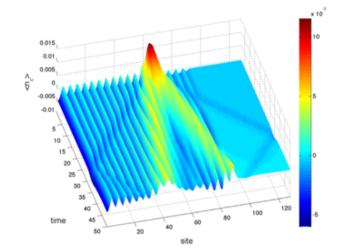
Hubbard chain (quarter filling, $U_L = 8$, $U_R = 0$)



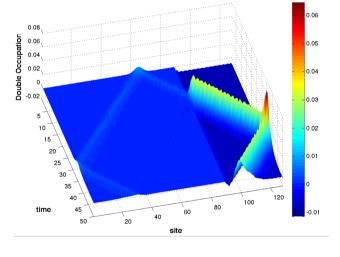
Charge:



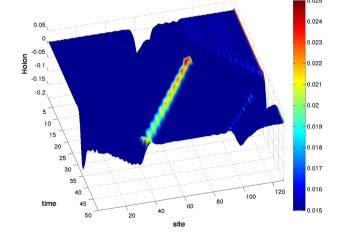
Spin: (eventual normal reflection)



Double occupation:



Holes:



- Reflection coefficient agrees with prediction
- Also for repulsive \rightarrow less repulsive, or free \rightarrow attractive

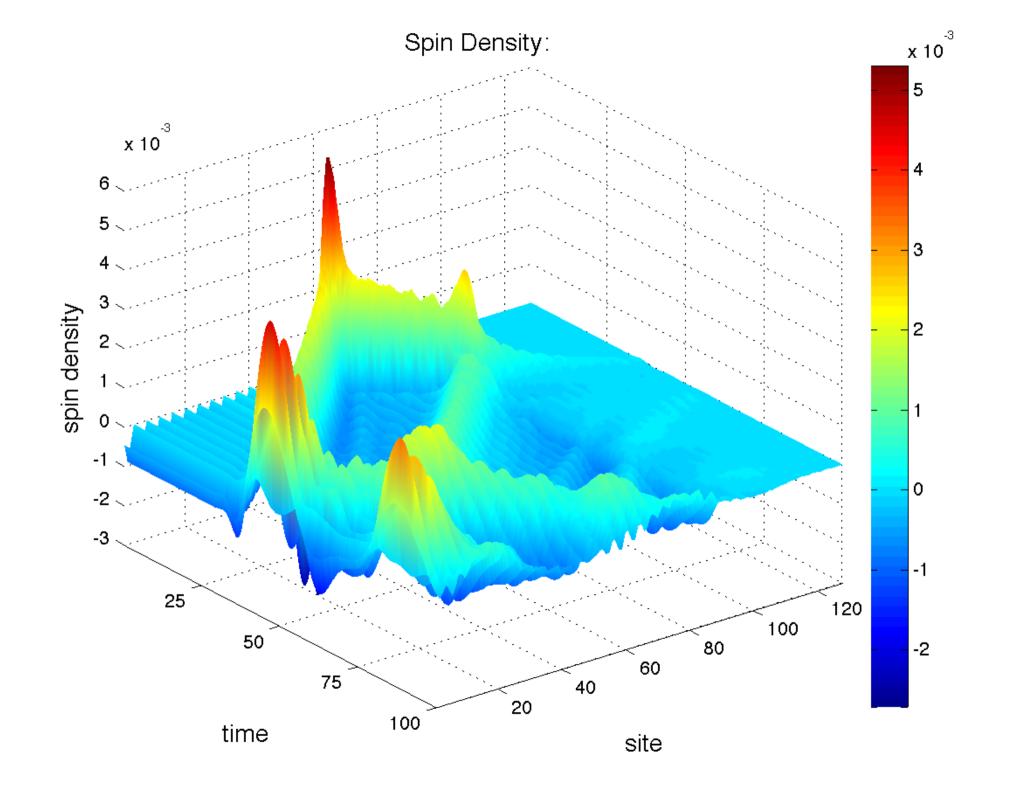
See also Al Hassanieh '15 (Mott)

Conclusions

- Local quantum quenches in the XXZ model
 - Bound string states appear prominently,
 both in the ferromagnet and in the antiferromagnet at finite magnetization
 Agree precisely with Bethe ansatz calculations
 - Accessible to experiment

- Scattering of bound states:
 - Particle-hole conversion, shift of wall by 2 sites, forward jump of signal

Andreev-like reflection



An unexplained identity

1) Tight binding fermions $H = -\sum_i c_i^\dagger c_{i+1} + c_{i+1}^\dagger c_i$

Initial state: domain wall: all sites n<n0 occupied

An unexplained identity

1) Tight binding fermions $H = -\sum_i c_i^\dagger c_{i+1} + c_{i+1}^\dagger c_i$

Initial state: domain wall: all sites n<n0 occupied

2) Transverse Field Ising: $\hat{H} = -\sum_n \hat{S}_n^x \hat{S}_{n+1}^x - h \sum_n \hat{S}_n^z$ (at h<h_c=0.5)

(Can be solved by Jordan-Wigner-Flip and Bogoliubov Transformation)

Initial state: prepare symm. broken ground state $|\Downarrow\rangle$ with $\langle S_n^x \rangle < 0$

Then apply a "Jordan-Wigner-Flip" $(c_{n_0}^\dagger + c_{n_0}) \ket{\Downarrow} = \prod_{n < n_0} (-2\hat{S}_n^z)(2\hat{S}_{n_0}^x) \ket{\Downarrow}$

(domain wall in x-direction, + spin flip in z at n_0)

An unexplained identity

1) Tight binding fermions $H = -\sum_i c_i^\dagger c_{i+1} + c_{i+1}^\dagger c_i$

Initial state: domain wall: all sites n<n0 occupied

2) Transverse Field Ising: $\hat{H} = -\sum_{n} \hat{S}_{n}^{x} \hat{S}_{n+1}^{x} - h \sum_{n} \hat{S}_{n}^{z}$ (at h<h_c=0.5) (Can be solved by Jordan-Wigner transformation and Bogoliubov transf.)

Initial state: prepare symm. broken ground state $|\Downarrow\rangle$ with $\langle S_n^x \rangle < 0$

Then apply a "Jordan-Wigner-Flip" $(c_{n_0}^\dagger + c_{n_0}) \ket{\Downarrow} = \prod_{n < n_0} (-2\hat{S}_n^z)(2\hat{S}_{n_0}^x) \ket{\Downarrow}$

(domain wall in x-direction, + spin flip in z at n_0)

3) Find $[S^x(n,t)-S^x_{\rm GS}]/|2S^x_{\rm GS}|=N_{\rm TB}(n,vt)$ (v=h) to 8 digit precision.

Why?

