Dynamics and thermalization in isolated quantum systems

Marcos Rigol

Department of Physics The Pennsylvania State University

QCD Hadronization and the Statistical Model ECT* Trento, Italy October 6, 2014

> With comments by H.G. Evertz

Marcos Rigol (Penn State)

Dynamics in quantum systems

October 6, 2014 1 / 34

A (10) > A (10) > A (10)

Outline

Summary

Experiments with ultracold gases in 1D

Effective one-dimensional δ potential M. Olshanii, PRL **81**, 938 (1998).

 $U_{1D}(x) = g_{1D}\delta(x)$

where

$$g_{1D} = \frac{2\hbar a_s \omega_\perp}{1 - C a_s \sqrt{\frac{m\omega_\perp}{2\hbar}}}$$

Experiments with ultracold gases in 1D

Girardeau '60, Lieb and Liniger '63

- T. Kinoshita, T. Wenger, and D. S. Weiss, Science **305**, 1125 (2004).
- T. Kinoshita, T. Wenger, and D. S. Weiss, Phys. Rev. Lett. **95**, 190406 (2005).

$$\gamma_{\rm eff} = rac{mg_{1D}}{\hbar^2
ho}$$

Effective one-dimensional δ potential M. Olshanii, PRL **81**, 938 (1998).

$$U_{1D}(x) = g_{1D}\delta(x)$$

where

$$g_{1D} = \frac{2\hbar a_s \omega_\perp}{1 - C a_s \sqrt{\frac{m\omega_\perp}{2\hbar}}}$$

Marcos Rigol (Penn State)

MR, A. Muramatsu, and M. Olshanii, Phys. Rev. A 74, 053616 (2006).

T. Kinoshita, T. Wenger, and D. S. Weiss, Nature **440**, 900 (2006). MR, A. Muramatsu, and M. Olshanii, Phys. Rev. A **74**, 053616 (2006).

Marcos Rigol (Penn State)

Dynamics in quantum systems

T. Kinoshita, T. Wenger, and D. S. Weiss, Nature **440**, 900 (2006).

 $\gamma = \frac{mg_{1D}}{\hbar^2 \rho}$

 g_{1D} : Interaction strength ρ : One-dimensional density

If $\gamma \gg 1$ the system is in the strongly correlated Tonks-Girardeau regime

If $\gamma \ll 1$ the system is in the weakly interacting regime

Gring et al., Science 337, 1318 (2012).

Marcos Rigol (Penn State)

Outline

1

Introduction

- Experiments with ultracold gases
- Unitary evolution and thermalization

2 Generic (nonintegrable) systems

- Time evolution vs exact time average
- Statistical description after relaxation
- Eigenstate thermalization hypothesis
- Time fluctuations

Integrable systems

- Time evolution
- Generalized Gibbs ensemble

Summary

Classical physics:

Chaotic evolution --> ergodicity (uniform) --> thermal description (Exception: integrable systems: many conserved quantities --> orbits in phase space, not ergodic)

Quantum physics:

NOT ergodic ! (only a tiny part of Hilbert space is relevant) Is there thermalization of an isolated system? In what sense ?

Need to consider states, observables, matrix elements

・ロト ・四ト ・ヨト ・ヨト

(Integrable systems again do not thermalize)

Exact results from quantum mechanics

If the initial state is not an eigenstate of \widehat{H}

$$|\psi_0\rangle \neq |\alpha\rangle \quad \text{where} \quad \widehat{H}|\alpha\rangle = E_\alpha |\alpha\rangle \quad \text{and} \quad E_0 = \langle \psi_0 | \widehat{H} | \psi_0 \rangle,$$

then a generic observable O will evolve in time following

$$O(\tau) \equiv \langle \psi(\tau) | \widehat{O} | \psi(\tau) \rangle \quad \text{where} \quad |\psi(\tau)\rangle = e^{-i\widehat{H}\tau} |\psi_0\rangle.$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Exact results from quantum mechanics

If the initial state is not an eigenstate of \widehat{H}

$$|\psi_0\rangle \neq |\alpha\rangle \quad \text{where} \quad \widehat{H}|\alpha\rangle = E_\alpha |\alpha\rangle \quad \text{and} \quad E_0 = \langle \psi_0 | \widehat{H} | \psi_0 \rangle,$$

then a generic observable O will evolve in time following

$$O(\tau) \equiv \langle \psi(\tau) | \hat{O} | \psi(\tau) \rangle \quad \text{where} \quad |\psi(\tau)\rangle = e^{-i \hat{H} \tau} |\psi_0\rangle.$$

What is it that we call thermalization?

 $\overline{O(\tau)} = O(E_0) = O(T) = O(T, \mu).$

Thermal expectation value depends only on **a few parameters** !

"diagonal ensemble" =? microcan. =? canonical =? grand canonical ensemble (in therm.dyn. limit)

Exact results from quantum mechanics

If the initial state is not an eigenstate of H

$$|\psi_0\rangle \neq |\alpha\rangle \quad \text{where} \quad \widehat{H}|\alpha\rangle = E_\alpha |\alpha\rangle \quad \text{and} \quad E_0 = \langle \psi_0 | \widehat{H} | \psi_0 \rangle,$$

then a generic observable O will evolve in time following

$$O(\tau) \equiv \langle \psi(\tau) | \hat{O} | \psi(\tau) \rangle \quad \text{where} \quad |\psi(\tau)\rangle = e^{-i\hat{H}\tau} |\psi_0\rangle.$$

What is it that we call thermalization?

Thermal expectation value depends only on a few parameters $\overline{O(\tau)} = O(E_0) = O(T) = O(T, \mu).$

"diagonal ensemble" =? microcan. =? canonical =? grand canonical ensemble (in therm.dyn. limit) One can rewrite

$$O(\tau) = \sum_{\alpha',\alpha} C^{\star}_{\alpha'} C_{\alpha} e^{i(E_{\alpha'} - E_{\alpha})\tau} O_{\alpha'\alpha} \quad \text{where} \quad |\psi_0\rangle = \sum_{\alpha} C_{\alpha} |\alpha\rangle,$$

and taking the infinite time average (diagonal ensemble) (=definition(!) of "diag. ensemble")

$$\overline{O(\tau)} = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} d\tau' \langle \Psi(\tau') | \hat{O} | \Psi(\tau') \rangle = \sum_{\alpha \atop \alpha \in \tau} |C_{\alpha}|^2 O_{\alpha\alpha} \equiv \langle \hat{O} \rangle_{\text{diag}}$$
(since all oscillating terms vanish

which depends on the initial conditions through $C_{\alpha} = \langle \alpha | \psi_0 \rangle$.

Many parameters !

Marcos Rigol (Penn State)

after integral)

Width of the energy density after a sudden quench

Initial state $|\psi_0\rangle = \sum_{\alpha} C_{\alpha} |\alpha\rangle$ is an eigenstate of \hat{H}_0 . At $\tau = 0$ (Example)

"Global quench"

$$\widehat{H}_0 o \widehat{H} = \widehat{H}_0 + \widehat{W}$$
 with $\widehat{W} = \sum_j \hat{w}(j)$ and $\widehat{H}|\alpha\rangle = E_{\alpha}|\alpha\rangle$

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

Marcos Rigol (Penn State)

э

Width of the energy density after a sudden quench

Initial state $|\psi_0\rangle = \sum_{\alpha} C_{\alpha} |\alpha\rangle$ is an eigenstate of \hat{H}_0 . At $\tau = 0$ (Example)

$$\widehat{H}_0 \to \widehat{H} = \widehat{H}_0 + \widehat{W}$$
 with $\widehat{W} = \sum_j \hat{w}(j)$ and $\widehat{H}|\alpha\rangle = E_{\alpha}|\alpha\rangle$.

The width of the weighted energy density ΔE is then Delta E = sqrt(<H^2> - <H>^2) =

$$\Delta E = \sqrt{\sum_{\alpha} E_{\alpha}^2 |C_{\alpha}|^2 - (\sum_{\alpha} E_{\alpha} |C_{\alpha}|^2)^2} = \sqrt{\langle \psi_0 |\widehat{W}^2 | \psi_0 \rangle - \langle \psi_0 |\widehat{W} | \psi_0 \rangle^2},$$

or

$$\Delta E = \sqrt{\sum_{j_1, j_2 \in \sigma} \left[\langle \psi_0 | \hat{w}(j_1) \hat{w}(j_2) | \psi_0 \rangle - \langle \psi_0 | \hat{w}(j_1) | \psi_0 \rangle \langle \psi_0 | \hat{w}(j_2) | \psi_0 \rangle \right]} \overset{N \to \infty}{\propto} \sqrt{N},$$
(unless terms in the sum are highly correlated!)

where N is the total number of lattice sites.

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

Marcos Rigol (Penn State)

Width of the energy density after a sudden quench

Initial state $|\psi_0\rangle = \sum_{\alpha} C_{\alpha} |\alpha\rangle$ is an eigenstate of \widehat{H}_0 . At $\tau = 0$

$$\widehat{H}_0 \to \widehat{H} = \widehat{H}_0 + \widehat{W}$$
 with $\widehat{W} = \sum_j \hat{w}(j)$ and $\widehat{H}|\alpha\rangle = E_{\alpha}|\alpha\rangle$.

The width of the weighted energy density ΔE is then

$$\Delta E = \sqrt{\sum_{\alpha} E_{\alpha}^2 |C_{\alpha}|^2 - (\sum_{\alpha} E_{\alpha} |C_{\alpha}|^2)^2} = \sqrt{\langle \psi_0 | \widehat{W}^2 | \psi_0 \rangle - \langle \psi_0 | \widehat{W} | \psi_0 \rangle^2},$$

or

$$\Delta E = \sqrt{\sum_{j_1, j_2 \in \sigma} \left[\langle \psi_0 | \hat{w}(j_1) \hat{w}(j_2) | \psi_0 \rangle - \langle \psi_0 | \hat{w}(j_1) | \psi_0 \rangle \langle \psi_0 | \hat{w}(j_2) | \psi_0 \rangle \right]^{N \stackrel{\rightarrow}{\propto} \infty} \sqrt{N},$$

where N is the total number of lattice sites. Since the width W of the full energy spectrum is $\propto N$

$$\Delta \epsilon = \frac{\Delta E}{W} \stackrel{N \to \infty}{\propto} \frac{1}{\sqrt{N}},$$

so, as in any thermal ensemble, $\Delta \epsilon$ vanishes in the thermodynamic limit.

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

Marcos Rigol (Penn State)

Outline

- Experiments with ultracold gases
- Unitary evolution and thermalization
- Generic (nonintegrable) systems
 - Time evolution vs exact time average
 - Statistical description after relaxation
 - Eigenstate thermalization hypothesis
 - Time fluctuations

Integrable systems

- Time evolution
- Generalized Gibbs ensemble

Summary

Hard-core boson Hamiltonian

(Equivalent to spin 1/2 Quantum Heisenberg model)

$$\widehat{H} = -J \sum_{\langle i,j \rangle} \left(\hat{b}_i^{\dagger} \hat{b}_j + \text{H.c.} \right) + U \sum_{\langle i,j \rangle} \hat{n}_i \hat{n}_j, \qquad \hat{b}_i^{\dagger 2} = \hat{b}_i^2 = 0$$

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

Hard-core boson Hamiltonian

(Equivalent to spin 1/2 Quantum Heisenberg model)

$$\label{eq:Hamiltonian} \hat{H} = -J\sum_{\langle i,j\rangle} \left(\hat{b}_i^\dagger \hat{b}_j + \text{H.c.} \right) + U\sum_{\langle i,j\rangle} \hat{n}_i \hat{n}_j, \qquad \hat{b}_i^{\dagger 2} = \hat{b}_i^2 = 0$$

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

Nonequilibrium dynamics in 2D

Weak n.n. U = 0.1J

 $N_b = 5$ bosons

N = 21 lattice sites

Hilbert space: D = 20349

All states are used!

Initial state: single occupation number state. During the time evolution, ALL occupation number states occur.

Hard-core boson Hamiltonian

$$\label{eq:Hamiltonian} \widehat{H} = -J\sum_{\langle i,j\rangle} \left(\hat{b}_i^\dagger \hat{b}_j + \text{H.c.} \right) + U\sum_{\langle i,j\rangle} \hat{n}_i \hat{n}_j, \qquad \hat{b}_i^{\dagger 2} = \hat{b}_i^2 = 0$$

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

"One can rewrite

(quote from page 8)

$$O(\tau) = \sum_{\alpha',\alpha} C^{\star}_{\alpha'} C_{\alpha} e^{i(E_{\alpha'} - E_{\alpha})\tau} O_{\alpha'\alpha} \quad \text{where} \quad |\psi_0\rangle = \sum_{\alpha} C_{\alpha} |\alpha\rangle,$$

and taking the infinite time average (diagonal ensemble)

$$\overline{O(\tau)} = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau d\tau' \langle \Psi(\tau') | \hat{O} | \Psi(\tau') \rangle = \sum_\alpha |C_\alpha|^2 O_{\alpha \alpha} \equiv \langle \hat{O} \rangle_{\rm diag},$$

which depends on the initial conditions through $C_{\alpha} = \langle \alpha | \psi_0 \rangle$."

Hard-core boson Hamiltonian

$$\label{eq:Hamiltonian} \hat{H} = -J\sum_{\langle i,j\rangle} \left(\hat{b}_i^\dagger \hat{b}_j + \text{H.c.} \right) + U\sum_{\langle i,j\rangle} \hat{n}_i \hat{n}_j, \qquad \hat{b}_i^{\dagger 2} = \hat{b}_i^2 = 0$$

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

A (1) > A (1) > A

Hard-core boson Hamiltonian

$$\label{eq:Hamiltonian} \hat{H} = -J\sum_{\langle i,j\rangle} \left(\hat{b}_i^\dagger \hat{b}_j + \text{H.c.} \right) + U\sum_{\langle i,j\rangle} \hat{n}_i \hat{n}_j, \qquad \hat{b}_i^{\dagger 2} = \hat{b}_i^2 = 0$$

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

Nonequilibrium dynamics in 2D

Marcos Rigol (Penn State)

Outline

Canonical calculation

$$O = \operatorname{Tr} \left\{ \hat{O} \hat{\rho} \right\}$$
$$\hat{\rho} = Z^{-1} \exp\left(-\hat{H}/k_B T\right)$$
$$Z = \operatorname{Tr} \left\{ \exp\left(-\hat{H}/k_B T\right) \right\}$$
$$E_{\text{gf}} = \operatorname{Tr} \left\{ \hat{H} \hat{\rho} \right\} \quad \begin{array}{c} T = 1.9J\\ \text{(T: best match)} \end{array}$$

Canonical calculation

$$O = \operatorname{Tr} \left\{ \hat{O} \hat{\rho} \right\}$$
$$\hat{\rho} = Z^{-1} \exp\left(-\hat{H}/k_B T\right)$$
$$Z = \operatorname{Tr} \left\{ \exp\left(-\hat{H}/k_B T\right) \right\}$$
$$E_{g} = \operatorname{Tr} \left\{ \hat{H} \hat{\rho} \right\} \quad T = 1.9J$$

Microcanonical calculation

with $E_0 - \Delta E < E_\alpha < E_0 + \Delta E$

 N_{states} : # of states in the window

E 0: energy of initial state ! Delta E: energy width of initial state (small!)

Marcos Rigol (Penn State)

Dynamics in quantum systems

October 6, 2014 13/34

Outline

- Experiments with ultracold gases
- Unitary evolution and thermalization

Generic (nonintegrable) systems

- Time evolution vs exact time average
- Statistical description after relaxation

• Eigenstate thermalization hypothesis

Time fluctuations

Integrable systems

- Time evolution
- Generalized Gibbs ensemble

Summary

Paradox?

$$\sum_{\alpha} \frac{|C_{\alpha}|^2}{|O_{\alpha\alpha}|^2} O_{\alpha\alpha} \stackrel{!?}{=} \langle O \rangle_{\text{microcan.}} (E_0) \equiv \frac{1}{N_{E_0,\Delta E}} \sum_{\substack{|E_0 - E_{\alpha}| < \Delta E}} O_{\alpha\alpha} \quad (1)$$

Left hand side: Depends on the initial conditions through $C_{\alpha} = \langle \Psi_{\alpha} | \psi_I \rangle$ Right hand side: Depends only on the initial energy

Paradox?

$$\sum_{\alpha} \frac{|C_{\alpha}|^2}{|O_{\alpha\alpha}|^2} O_{\alpha\alpha} = \langle O \rangle_{\text{microcan.}} (E_0) \equiv \frac{1}{N_{E_0,\Delta E}} \sum_{\substack{|E_0 - E_{\alpha}| < \Delta E}} O_{\alpha\alpha}$$

Left hand side: Depends on the initial conditions through $C_{\alpha} = \langle \Psi_{\alpha} | \psi_I \rangle$ Right hand side: Depends only on the initial energy

0) Usually required: C_alpha significant only in a small energy window around E_0 (or suitable cancellations, see e.g. page 16)

- i) For physically relevant initial conditions, $|C_{\alpha}|^2$ practically do not (not typically true, see next page) (in alpha)
- (with Oaa) ii) Large (and uncorrelated) fluctuations occur in both $Q_{\alpha\alpha}$ and $|C_{\alpha}|^2$. A physically relevant Then the initial state performs an unbiased sampling of $Q_{\alpha\alpha}$. MR and M. Srednicki, PRL **108**, 110601 (2012).
- or iii) The matrix elements O_aa of the observable are almost constant in the relevant energy range.

Then equality (1) is true AND also equal to exp. value <O> in a SINGLE eigenstate within the energy window !!

Paradox?

$$\sum_{\alpha} \frac{|C_{\alpha}|^2}{|O_{\alpha\alpha}|^2} O_{\alpha\alpha} = \langle O \rangle_{\text{microcan.}} (E_0) \equiv \frac{1}{N_{E_0,\Delta E}} \sum_{\substack{|E_0 - E_{\alpha}| < \Delta E}} O_{\alpha\alpha}$$

Left hand side: Depends on the initial conditions through $C_{\alpha} = \langle \Psi_{\alpha} | \psi_I \rangle$ Right hand side: Depends only on the initial energy

Paradox?

$$\sum_{\alpha} \frac{|C_{\alpha}|^2}{|O_{\alpha\alpha}|^2} O_{\alpha\alpha} = \langle O \rangle_{\text{microcan.}} (E_0) \equiv \frac{1}{N_{E_0,\Delta E}} \sum_{\substack{|E_0 - E_{\alpha}| < \Delta E}} O_{\alpha\alpha}$$

Left hand side: Depends on the initial conditions through $C_{\alpha} = \langle \Psi_{\alpha} | \psi_I \rangle$ Right hand side: Depends only on the initial energy

Potential explanations:

- i) For physically relevant initial conditions, $|C_{\alpha}|^2$ practically do not fluctuate. (see p.15 for commented
- ii) Large (and uncorrelated) fluctuations occur in both O_{αα} and |C_α|². A physically relevant initial state performs an unbiased sampling of O_{αα}.
 MR and M. Srednicki, PRL **108**, 110601 (2012).

version)

Paradox?

$$\sum_{\alpha} \frac{|C_{\alpha}|^2}{|O_{\alpha\alpha}|^2} O_{\alpha\alpha} = \langle O \rangle_{\text{microcan.}} (E_0) \equiv \frac{1}{N_{E_0,\Delta E}} \sum_{\substack{|E_0 - E_{\alpha}| < \Delta E}} O_{\alpha\alpha}$$

Left hand side: Depends on the initial conditions through $C_{\alpha} = \langle \Psi_{\alpha} | \psi_I \rangle$ Right hand side: Depends only on the initial energy

Eigenstate thermalization hypothesis (ETH)

[J. M. Deutsch, PRA **43** 2046 (1991); M. Srednički, PRE **50**, 888 (1994); This is a consequence MR, V. Dunjko, and M. Olshanii, Nature **452**, 854 (2008).] of (iii) on page 15

iii) The expectation value $\langle \Psi_{\alpha} | \hat{O} | \Psi_{\alpha} \rangle$ of a few-body observable \widehat{O} in an eigenstate of the Hamiltonian $|\Psi_{\alpha}\rangle$, with energy E_{α} , of a large interacting many-body system equals the thermal average of \widehat{O} at the mean energy E_{α} :

$$\langle \Psi_{\alpha} | \hat{O} | \Psi_{\alpha} \rangle = \langle O \rangle_{\text{microcan.}} (E_{\alpha})$$

Marcos Rigol (Penn State)

October 6, 2014 16 / 34

One-dimensional integrable case

One-dimensional integrable case

Breakdown of eigenstate thermalization

Marcos Rigol (Penn State)

October 6, 2014 18 / 34

Integrable vs Nonintegrable cases

Correlations between n(k) and C_{α}

1D (integrable) case

2D (nonintegrable) case

Conservation laws play a role in integrable models.

Correlations are not relevant, and they are not present!

Transition between integrability and nonintegrability: MR, PRL **103**, 100403 (2009); PRA **80**, 053607 (2009).

Marcos Rigol (Penn State)

Dynamics in quantum systems

October 6, 2014 19 / 34

Outline

- Experiments with ultracold gases
- Unitary evolution and thermalization

Generic (nonintegrable) systems

- Time evolution vs exact time average
- Statistical description after relaxation
- Eigenstate thermalization hypothesis
- Time fluctuations

Integrable systems

- Time evolution
- Generalized Gibbs ensemble

Summary

Hard-core boson Hamiltonian

(not an integrable model)

$$\label{eq:hardenergy} \hat{H} = -J \sum_{\langle i,j\rangle} \left(\hat{b}_i^\dagger \hat{b}_j + \text{H.c.} \right) + U \sum_{\langle i,j\rangle} \hat{n}_i \hat{n}_j, \qquad \hat{b}_i^{\dagger 2} = \hat{b}_i^2 = 0$$

(Same slide as last part of "page 11")

(Equivalent to spin 1/2 Quantum Heisenberg model)

Nonequilibrium dynamics in 2D

Time fluctuations

Are they small because of dephasing?

$$\begin{split} \langle \hat{O}(t) \rangle - \overline{\langle \hat{O}(t) \rangle} &= \sum_{\substack{\alpha', \alpha \\ \alpha' \neq \alpha}} C_{\alpha'}^{\star} C_{\alpha} e^{i(E_{\alpha'} - E_{\alpha})t} O_{\alpha'\alpha} \sim \sum_{\substack{\alpha', \alpha \\ \alpha' \neq \alpha}} \frac{e^{i(E_{\alpha'} - E_{\alpha})t}}{N_{\text{states}}} O_{\alpha'\alpha} \\ &\sim \sum_{\substack{\alpha', \alpha \\ \alpha' \neq \alpha}} \frac{\sqrt{N_{\text{states}}^2}}{N_{\text{states}}} O_{\alpha'\alpha}^{\text{typical}} \sim O_{\alpha'\alpha}^{\text{typical}} \\ &\xrightarrow{N_{\text{states}}} O_{\alpha'\alpha'\alpha}^{\text{typical}} \\ &\xrightarrow{N_{\text{states}}} O_{\alpha'\alpha'\alpha}^{\text{typical}} \\ &\xrightarrow{N_{\text{states}}} O_{\alpha'\alpha'\alpha}^{\text{typical}} \\ &\xrightarrow{N_{\text{states}}} O_{\alpha'\alpha'\alpha'}^{\text{typical}} \\ &\xrightarrow{N_{\text{states}}} O_{\alpha'\alpha'\alpha'}^{\text{typical}} \\ &\xrightarrow{N_{$$

æ

・ロト ・四ト ・ヨト ・ヨト

Time fluctuations

Are they small because of dephasing?

$$\begin{split} \langle \hat{O}(t) \rangle - \overline{\langle \hat{O}(t) \rangle} &= \sum_{\substack{\alpha', \alpha \\ \alpha' \neq \alpha}} C_{\alpha'}^{\star} C_{\alpha} e^{i(E_{\alpha'} - E_{\alpha})t} O_{\alpha'\alpha} \sim \sum_{\substack{\alpha', \alpha \\ \alpha' \neq \alpha}} \frac{e^{i(E_{\alpha'} - E_{\alpha})t}}{N_{\text{states}}} O_{\alpha'\alpha} \\ &\sim \frac{\sqrt{N_{\text{states}}^2}}{N_{\text{states}}} O_{\alpha'\alpha}^{\text{typical}} \sim O_{\alpha'\alpha}^{\text{typical}} \end{split}$$

Time average of $\langle \hat{O} \rangle$

$$\begin{split} \overline{\langle \hat{O} \rangle} &= \sum_{\alpha} |C_{\alpha}|^2 O_{\alpha \alpha} \\ &\sim \sum_{\alpha} \frac{1}{N_{\text{states}}} O_{\alpha \alpha} \sim O_{\alpha \alpha}^{\text{typica}} \end{split}$$

Marcos Rigol (Penn State)

э

・ロト ・四ト ・ヨト ・ヨト

Time fluctuations

Are they small because of dephasing?

$$\langle \hat{O}(t) \rangle - \overline{\langle \hat{O}(t) \rangle} = \sum_{\substack{\alpha', \alpha \\ \alpha' \neq \alpha}} C_{\alpha}^{\star} C_{\alpha} e^{i(E_{\alpha'} - E_{\alpha})t} O_{\alpha'\alpha} \sim \sum_{\substack{\alpha', \alpha \\ \alpha' \neq \alpha}} \frac{e^{i(E_{\alpha'} - E_{\alpha})t}}{N_{\text{states}}} O_{\alpha'\alpha} \sim \sum_{\substack{\alpha', \alpha \\ \alpha' \neq \alpha}} \frac{e^{i(E_{\alpha'} - E_{\alpha})t}}{N_{\text{states}}} O_{\alpha'\alpha} \sim \sum_{\substack{\alpha', \alpha \\ \alpha' \neq \alpha}} \frac{e^{i(E_{\alpha'} - E_{\alpha})t}}{N_{\text{states}}} O_{\alpha'\alpha} \sim \sum_{\substack{\alpha', \alpha \\ \alpha' \neq \alpha}} \frac{e^{i(E_{\alpha'} - E_{\alpha})t}}{N_{\text{states}}} O_{\alpha'\alpha} \sim \sum_{\substack{\alpha', \alpha \\ \alpha' \neq \alpha}} \frac{e^{i(E_{\alpha'} - E_{\alpha})t}}{N_{\text{states}}} O_{\alpha'\alpha} \sim O_{\alpha'\alpha}^{\text{typical}} \sim O_{\alpha'\alpha}^{\text{t$$

Fluctuation-dissipation theorem (dipolar bosons)

Occupation in the center of the trap $(n_{j=L/2})$

Hamiltonian

$$\begin{split} \hat{H} &= -J\sum_{j=1}^{L-1} \left(\hat{b}_j^{\dagger} \hat{b}_{j+1} + \text{H.c.} \right) \\ &+ V\sum_{j < l} \frac{\hat{n}_j \hat{n}_l}{|j-l|^3} + g\sum_j \frac{x_j^2}{\text{trap}} \hat{n}_j \end{split}$$

magnetic atoms, polar molecules

Relaxation dynamics

$$O(t) = C(t)O(t=0)$$

where

$$C(t) = \frac{\overline{O(t+t')O(t')}}{\overline{(O(t'))^2}}$$

Srednicki, JPA 32, 1163 (1999).

E. Khatami, G. Pupillo, M. Srednicki, and MR, PRL 111, 050403 (2013).

Outline

Bose-Fermi mapping

Hard-core boson Hamiltonian in an external potential

$$\hat{H} = -J\sum_{i} \left(\hat{b}_{i}^{\dagger} \hat{b}_{i+1} + \text{H.c.} \right) + \sum_{i} v_{i} \ \hat{n}_{i}$$

Constraints on the bosonic operators

$$\hat{b}_i^{\dagger 2}=\hat{b}_i^2=0$$

Bose-Fermi mapping

Hard-core boson Hamiltonian in an external potential

$$\hat{H} = -J\sum_{i} \left(\hat{b}_{i}^{\dagger} \hat{b}_{i+1} + \text{H.c.} \right) + \sum_{i} v_{i} \hat{n}_{i}$$

Here: no density-density interaction !

Constraints on the bosonic operators

$$\hat{b}_i^2 = \begin{array}{l} \text{Since n_i} = b^{\Lambda} \text{dagger_i} \ b_i, \text{ this Hamiltonian is} \\ \text{bilinear in creation and annihilation operators and} \\ \hat{b}_i^2 = 0 \text{ the eigenstates are products of single particle states.} \\ \text{(Special case v_i=const: momentum space states)} \end{array}$$

Map to spins and then to fermions (Jordan-Wigner transformation)

 $\hat{b}_{i}^{\dagger 2} =$

$$\sigma_i^+ = \hat{f}_i^\dagger \prod_{\beta=1}^{i-1} e^{-i\pi \hat{f}_\beta^\dagger \hat{f}_\beta}, \quad \sigma_i^- = \prod_{\beta=1}^{i-1} e^{i\pi \hat{f}_\beta^\dagger \hat{f}_\beta} \hat{f}_i = (-1)^{\text{(number of fermions before site i)}} = -in 1 \text{d provides for anticommutation}$$

Mapping results in

11 Non-interacting fermion Hamiltonian Signs cancel as long as fermions cannot hop past each other !

$$\hat{H}_F = -J\sum_i \left(\hat{f}_i^\dagger \hat{f}_{i+1} + ext{H.c.}
ight) + \sum_i v_i \; \hat{n}_i^f$$

(This is an integrable model)

Marcos Rigol (Penn State)

One-particle density matrix

One-particle Green's function

 $\delta = 1 \sigma = 1$

Marcos Rigol (Penn State)

æ

・ロト ・四ト ・ヨト ・ヨト

One-particle density matrix

One-particle Green's function

$$G_{ij} = \langle \Psi_{HCB} | \boldsymbol{\sigma}_{i}^{-} \boldsymbol{\sigma}_{j}^{+} | \Psi_{HCB} \rangle = \langle \Psi_{F} | \prod_{\beta=1}^{i-1} e^{i\pi \hat{f}_{\beta}^{+} \hat{f}_{\beta}} \hat{f}_{i} \hat{f}_{j}^{+} \prod_{\gamma=1}^{j-1} e^{-i\pi \hat{f}_{\gamma}^{+} \hat{f}_{\gamma}} | \Psi_{F} \rangle$$
For non-neighboring sites i, j
each interchange of fermions
gives a sign -> cancelled
by e-factors
For non-neighboring sites i, j
each interchange of fermions
gives a sign -> cancelled
by e-factors
For non-neighboring sites i, j
each interchange of fermions
gives a sign -> cancelled
by e-factors
Fock state: prod_k (c^{dagger_k})^{(n_k)/0>} = prod_k sum_x e^{(i k x n_k)} c^{dagger_x /0>} = prod_n (sum_x e^{(i k x n_k)} c^{dagger_x /0>} = prod_n (sum_x e^{(i k n x)} c^{dagger_x /0>} = prod_n (sum_x P_{(k n x)} c^{dagger_x /0>} = prod_n sum_x P_{(k n x)} c^{dagg

MR and A. Muramatsu, PRL 93, 230404 (2004); PRL 94, 240403 (2005).

Marcos Rigol (Penn State)

rem whi

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Relaxation dynamics in an integrable system

MR, V. Dunjko, V. Yurovsky, and M. Olshanii, PRL 98, 050405 (2007).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Relaxation dynamics in an integrable system

MR, V. Dunjko, V. Yurovsky, and M. Olshanii, PRL 98, 050405 (2007).

Outline

Generalized Gibbs ensemble

Summary

Statistical description after relaxation (integrable system)

Thermal equilibrium

$$\hat{\rho} = Z^{-1} \exp\left[-\left(\hat{H} - \mu \hat{N}_b\right) / k_B T\right]$$
$$Z = \operatorname{Tr}\left\{\exp\left[-\left(\hat{H} - \mu \hat{N}_b\right) / k_B T\right]\right\}$$
$$E = \operatorname{Tr}\left\{\hat{H}\hat{\rho}\right\}, \quad N_b = \operatorname{Tr}\left\{\hat{N}_b\hat{\rho}\right\}$$

MR, PRA 72, 063607 (2005).

Thermal equilibrium $\hat{\rho} = Z^{-1} \exp \left[-\left(\hat{H} - \mu \hat{N}_b\right) / k_B T \right]$ $Z = \operatorname{Tr} \left\{ \exp \left[-\left(\hat{H} - \mu \hat{N}_b\right) / k_B T \right] \right\}$ $E = \operatorname{Tr} \left\{ \hat{H} \hat{\rho} \right\}, \quad N_b = \operatorname{Tr} \left\{ \hat{N}_b \hat{\rho} \right\}$ MR, PRA 72, 063607 (2005).

Marcos Rigol (Penn State)

Dynamics in quantum systems

Thermal equilibrium $\hat{\rho} = Z^{-1} \exp \left[-\left(\hat{H} - \mu \hat{N}_b\right) / k_B T \right]$ $Z = \operatorname{Tr} \left\{ \exp \left[-\left(\hat{H} - \mu \hat{N}_b\right) / k_B T \right] \right\}$ $E = \operatorname{Tr} \left\{ \hat{H} \hat{\rho} \right\}, \quad N_b = \operatorname{Tr} \left\{ \hat{N}_b \hat{\rho} \right\}$ MR, PRA 72, 063607 (2005).

Integrals of motion

(underlying noninteracting fermions)

$$\begin{split} \hat{H}_F \hat{\gamma}_m^{f\dagger} |0\rangle &= E_m \hat{\gamma}_m^{f\dagger} |0\rangle \\ \left\{ \hat{I}_m^f \right\} &= \left\{ \hat{\gamma}_m^{f\dagger} \hat{\gamma}_m^f \right\} & \text{Many local cor} \\ \text{quantities } I^{f}_{L^1} \end{split}$$

Marcos Rigol (Penn State)

October 6, 2014 30 / 34

October 6, 2014 31 / 34

æ

Why does the GGE work?

Generalized eigenstate thermalization:

A. C. Cassidy, C. W. Clark, and MR, Phys. Rev. Lett. 106, 140405 (2011).

K. He, L. F. Santos, T. M. Wright, and MR, Phys. Rev. A 87, 063637 (2013).

J.-S. Caux and F. H. L. Essler, Phys. Rev. Lett. 110, 257203 (2013).

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Thermalization occurs in generic isolated systems
 Finite size effects

æ

・ロト ・四ト ・ヨト ・ヨト

- Thermalization occurs in generic isolated systems
 Finite size effects
- Eigenstate thermalization hypothesis $\star \langle \Psi_{\alpha} | \hat{O} | \Psi_{\alpha} \rangle = \langle O \rangle_{\text{microcan.}} (E_{\alpha})$

A (10) + A (10) +

- Thermalization occurs in generic isolated systems
 Finite size effects
- Eigenstate thermalization hypothesis $\star \langle \Psi_{\alpha} | \hat{O} | \Psi_{\alpha} \rangle = \langle O \rangle_{\text{microcan.}} (E_{\alpha})$
- Thermalization and ETH break down close integrability (finite system)

 Quantum equivalent of KAM?

- Thermalization occurs in generic isolated systems
 Finite size effects
- Eigenstate thermalization hypothesis $\star \langle \Psi_{\alpha} | \hat{O} | \Psi_{\alpha} \rangle = \langle O \rangle_{\text{microcan.}} (E_{\alpha})$
- Thermalization and ETH break down close integrability (finite system)

 Quantum equivalent of KAM?
- Small time fluctuations ← smallness of off-diagonal elements

🗇 🕨 🖌 三 🕨 🧹 三

- Thermalization occurs in generic isolated systems
 Finite size effects
- Eigenstate thermalization hypothesis $\star \langle \Psi_{\alpha} | \hat{O} | \Psi_{\alpha} \rangle = \langle O \rangle_{\text{microcan.}} (E_{\alpha})$
- Thermalization and ETH break down close integrability (finite system)

 Quantum equivalent of KAM?
- Small time fluctuations ← smallness of off-diagonal elements
- Time plays only an auxiliary role

A (10) > A (10) > A (10)

- Thermalization occurs in generic isolated systems
 Finite size effects
- Eigenstate thermalization hypothesis $\star \langle \Psi_{\alpha} | \hat{O} | \Psi_{\alpha} \rangle = \langle O \rangle_{\text{microcan.}} (E_{\alpha})$
- Thermalization and ETH break down close integrability (finite system)

 Quantum equivalent of KAM?
- Small time fluctuations ← smallness of off-diagonal elements
- Time plays only an auxiliary role
- Integrable systems are different (Generalized Gibbs ensemble)

Image: A matrix and a matrix

Collaborators

- Vanja Dunjko (U Mass Boston)
- Alejandro Muramatsu (Stuttgart U)
- Maxim Olshanii (U Mass Boston)
- Lea F. Santos (Yeshiva U)
- Mark Srednicki (UC Santa Barbara)
- Former group members: Kai He, Ehsan Khatami

Supported by:

< 同 > < ∃ >

Information entropy (S_j = $-\sum_{k=1}^{D} |c_j^k|^2 \ln |c_j^k|^2$)

Marcos Rigol (Penn State)

October 6, 2014 34 / 34