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a b s t r a c t

The density-matrix renormalization group method (DMRG) has
established itself over the last decade as the leading method for
the simulation of the statics and dynamics of one-dimensional
strongly correlated quantum lattice systems. In the further devel-
opment of the method, the realization that DMRG operates on a
highly interesting class of quantum states, so-called matrix prod-
uct states (MPS), has allowed a much deeper understanding of
the inner structure of the DMRG method, its further potential
and its limitations. In this paper, I want to give a detailed exposi-
tion of current DMRG thinking in the MPS language in order to
make the advisable implementation of the family of DMRG algo-
rithms in exclusively MPS terms transparent. I then move on to dis-
cuss some directions of potentially fruitful further algorithmic
development: while DMRG is a very mature method by now, I still
see potential for further improvements, as exemplified by a num-
ber of recently introduced algorithms.

� 2010 Published by Elsevier Inc.
1. Introduction

Strongly correlated quantum systems on low-dimensional lattices continue to pose some of the
most interesting challenges of modern quantum many-body physics. In condensed matter physics,
correlation effects dominate in quantum spin chains and ladders, in frustrated magnets in one and
two spatial dimensions, and in high-temperature superconductors, to name but a few physical
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systems of interest. More recently, the advent of highly controlled and tunable strongly interacting
ultracold atom gases in optical lattices has added an entirely new direction to this field [1].

Both analytically and numerically, these systems are hard to study: only in very few cases exact
analytical solutions, for example by the Bethe ansatz in one dimension, are available [2,3]. Perturba-
tion theory fails in the presence of strong interactions. Other approaches, such as field theoretical ap-
proaches, have given deep insights, for example regarding the Haldane gap physics of integer-spin
antiferromagnetic chains [4], but make potentially severe approximations that must ultimately be
controlled by numerical methods. Such algorithms include exact diagonalization, quantum Monte Car-
lo, series expansions or coupled cluster methods.

Since its invention in 1992 by White [5,6], the density-matrix renormalization group (DMRG) has
firmly established itself as the currently most powerful numerical method in the study of one-dimen-
sional quantum lattices [7,8]. After initial studies of the static properties (energy, order parameters, n-
point correlation functions) of low-lying eigenstates, in particular ground states, of strongly correlated
Hamiltonians such as the Heisenberg, t–J and Hubbard models, the method was extended to the study
of dynamic properties of eigenstates, such as dynamical structure functions or frequency-dependent
conductivities [9–12]. At the same time, its extension to the analysis of two-dimensional classical
[13] and one-dimensional quantum [14,15] transfer matrices has given access to highly precise fi-
nite-temperature information on classical two-dimensional and quantum one-dimensional systems;
more recently the transfer matrix variant of DMRG has also been extended to dynamics at finite tem-
perature [16]. It has even been extended to the numerically much more demanding study of non-Her-
mitian (pseudo-)Hamiltonians emerging in the analysis of the relaxation towards classical steady
states in one-dimensional systems far from equilibrium [17–20].

In many applications of DMRG, the accuracy of results is essentially limited only by machine pre-
cision, even for modest numerical resources used, quite independent of the detailed nature of the
Hamiltonian. It is therefore not surprising that, beyond the extension of the algorithm to more and
more problem classes, people wondered about the physical origins of the excellent performance of
DMRG and also whether the success story could be extended to the study of real-time dynamics or
of two-dimensional systems.

In fact, both questions are intimately related: as was realized quite soon, DMRG is only moderately
successful when applied to two-dimensional lattices: while relatively small systems can be studied
with high accuracy [21–28], the amount of numerical resources needed essentially increases exponen-
tially with system size, making large lattices inaccessible. The totally different behaviour of DMRG in
one and two dimensions is, as it turned out, closely related [29,30] to the different scaling of quantum
entanglement in many-body states in one and two dimensions, dictated by the so-called area laws (for
a recent review, see [31]).

In this paper, I will stay within the framework of one-dimensional physics; while the generaliza-
tions of DMRG to higher dimensions reduce naturally to DMRG in one dimension, the emerging struc-
tures are so much richer than in one dimension that they are beyond the scope of this work.

In an originally unrelated development, so-called matrix product states (MPS) were discovered as an
interesting class of quantum states for analytical studies. In fact, the structure is so simple but pow-
erful that it is no surprise that they have been introduced and used under a variety of names over the
last fifty or more years (most notably perhaps by Baxter [32]). In the present context, the most rele-
vant prehistory is arguably given by the exact expression of the seminal one-dimensional AKLT state
in this form [33–35], which gave rise to extensive studies of the translationally invariant subclass of
MPS known as finitely correlated states [36]. This form was then subsequently used in a variety of con-
texts for analytical variational calculations, e.g. for spin-1 Heisenberg antiferromagnets [37–40] and
ferrimagnets [41,42].

The connection between MPS and DMRG was made in two steps. In a first step, Ostlund and Rom-
mer [43] realized that the block-growth step of the so-called infinite-system DMRG could be ex-
pressed as a matrix in the form it takes in an MPS. As in homogeneous systems this block-growth
step leads to a fixed point in the thermodynamic limit, they took the fixed point matrix as building
block for a translationally invariant MPS. In a further step, it was recognized that the more important
finite-system DMRG leads to quantum states in MPS form, over which it variationally optimizes [44]. It
was also recognized that in traditional DMRG the state class over which is variationally optimized
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changes as the algorithm progresses, such that if one demands in some sense ‘‘perfect’’ variational
character, a small change to the algorithm is needed, which however was found to increase (solvable)
metastability problems [45,46].

It remains a curious historical fact that only a few of the DMRG practitioners took this development
very seriously up to about 2004, when Cirac, Verstraete, Vidal and coworkers started to explore the
power of MPS very systematically. While it was considered useful for conceptual purposes, surpris-
ingly little thought was given to rethinking and reexpressing real-life DMRG implementations purely
in the MPS language; arguably, because the overwhelming majority of conventional DMRG applica-
tions (i.e. ground states for quantum chains with open boundary conditions) hardly profits. What
was overlooked is that it easily opens up the way to powerful extensions to DMRG hard to see and
express in conventional DMRG language.

A non-exhaustive list of extensions would list real-time evolutions [47–54], also at finite temper-
ature [51,55], the efficient use of periodic boundary conditions [56,57], reliable single-site DMRG [46],
numerical renormalization group (NRG) applications [61], infinite-system algorithms [62–64], contin-
uous systems [65], not talking at all about progress made in higher dimensions starting with [66]
using a generalization of the MPS state class [67].

The goal of this paper cannot be to provide a full review of DMRG since 1992 as seen from the per-
spective of 2010, in particular given the review [7], which tries to provide a fairly extensive account of
DMRG as of summer 2004. I rather want to limit myself to more recent developments and phrase them
entirely in the language of matrix product states, focussing rather on the nuts and bolts of the methods
than showing a lot of applications. My hope would be that this review would allow newcomers to the
field to be able to produce their own codes quickly and get a firm grasp of the key building blocks of
MPS algorithms. It has overlaps with the introductions [68,69] in the key methods presented, but fo-
cuses on different extensions, some of which arose after these papers, and in many places tries to be
more explicit. It takes a different point of view than [70], the first comprehensive exposition of DMRG
in 1998, because at that time the connection to MPS (though known) and in particular to quantum
information was still in many ways unexploited, which is the focus here. Nevertheless, in a first ‘‘his-
torical’’ step, I want to remind readers of the original way of introducing DMRG, which does not make
use of the idea of matrix product states. This should make older literature easily accessible, but one
can jump to Section 4 right away, if one is not interested in that.

In a second step, I will show that any quantum state can be written exactly in a very specific form
which is given by the matrix product states already alluded to. In fact, the restriction to one dimension
will come from the fact that only in this case MPS are numerically manageable. I will highlight special
canonical forms of MPS and establish their connection to the singular value decomposition (SVD) as a
mathematical tool and the Schmidt decomposition as a compact representation of quantum states. After
this I will explain how MPS are a natural framework for decimation schemes in one dimension as they
occur in schemes such as DMRG and Wilson’s NRG. As a simple, but non-trivial example, I will discuss
the AKLT state in its MPS form explicitly. We then move on to discuss explicitly operations with MPS:
overlaps, normalization, operator matrix elements, expectation values and MPS addition. These are
operations one would do with any quantum state; more MPS-specific are methods for bringing them into
the computationally convenient canonical forms and for approximating an MPS by another one of smal-
ler dimension. I conclude this exposition of MPS with discussing the relationship and the conversions be-
tween the MPS notation I favour here, an alternative notation due to Vidal, and the DMRG way of writing
states; this relatively technical section should serve to make the literature more accessible to the reader.

The MPS ideas generalize from states to the representation of operators, so I move on to discuss the
use of matrix product operators (MPO) [51,69,71–73]. As far as I can see, all operators of interest to us
(ranging from local operators through bond evolution operators to full Hamiltonians) find a very com-
pact and transparent formulation in terms of MPO. This leads to a much cleaner and sometimes even
numerically more accurate formulation of DMRG-related algorithms, but their usage is not yet very
widely spread.

Admittedly, at this point the patience of the reader may have been stretched quite a bit, as no real-
world algorithm, e.g. for ground state searches or time evolutions has been formulated in MPS lan-
guage yet; but it will become obvious that a lot of cumbersome numerical details of DMRG algorithms
have been hidden away neatly in the MPS and MPO structures.
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I will discuss ground state algorithms, discussing the equivalences and differences between DMRG
with one or two center sites and fully MPS-based algorithms, including improvements to avoid trap-
ping. I will focus on finite systems with open boundary conditions, where these methods excel.

After this, I move on to time-dependent methods for dynamics, for pure and mixed states. After a
discussion of the basic algorithms and their subtle differences, I will focus on the key problem of
extending the time-range of such simulations: The possibility to calculate highly accurate real-time
and imaginary-time evolutions of complex quantum many-body states has been particularly exciting
for many people, also because it arrived just in time for studying highly tunable ultracold atom sys-
tems. While this development has already led to numerous interesting insights and applications, it
was quickly realized that the time-range of time-dependent DMRG and related methods is limited
by entanglement growth in quantum states out of equilibrium, such that long-time physics is out
of reach. In this context, interesting progress in trying to go beyond has been achieved recently.

The review concludes with two further axes of development. I will start out by discussing the con-
nection between DMRG and Wilson’s NRG, showing how NRG can be expressed in a very concise fash-
ion as well as be improved in various directions. This closes an interesting historical loop, as the utter
failure of NRG for homogeneous one-dimensional quantum lattices as opposed to quantum impurity
models mapped to special non-homogeneous one-dimensional quantum lattices was at the starting
point of White’s invention of DMRG [74].

I continue by looking at infinite-size algorithms using MPS that work directly in the thermodynamic
limit, one based on time evolution (iTEBD) [62]. The other (iDMRG) [64] is an extension of infinite-system
DMRG algorithm, which has had an interesting history: in many early discussions of DMRG it was pre-
sented as the key aspect of DMRG, with finite-system DMRG as a practitioners’ add-on to further improve
numerical accuracy. Later, it was recognized that applying finite-system DMRG is essential even for qual-
itative correctness in many cases, and infinite-system DMRG was seen as just a warm-up procedure. Only
recently, McCulloch [64] pointed out a way how to turn infinite-system DMRG into a highly efficient tool
for producing thermodynamic limit states for homogeneous systems.

Last but not least, I will give an outlook on further applications of MPS that I could not cover here.

2. Density-matrix renormalization group (DMRG)

2.1. Infinite-system and finite-system algorithms

As a toy model, let us consider an (anisotropic) S ¼ 1
2 Heisenberg antiferromagnetic ðJ ¼ 1Þ spin

chain of length L in one spatial dimension with external magnetic field h,
Fig. 1.
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We consider open boundary conditions (Fig. 1), which is well worth emphasizing: analytically, periodic
boundary conditions are usually more convenient; many numerical methods do not really depend
strongly on boundary conditions, and some, like exact diagonalization, even become more efficient
for periodic boundary conditions. DMRG, on the other hand, prefers open boundary conditions.

It should also be emphasized that, DMRG being a variational method in a certain state class, it does
not suffer from anything like the fermionic sign problem, and can be applied to bosonic and fermionic
systems alike.
Our toy model: a chain of length L with open ends, where a spin-1
2 sits on each site and interacts with its nearest

ours.
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The starting point of DMRG is to ask for the ground state and ground state energy of bH. We can ask
this question for the thermodynamic limit L!1 or more modestly for finite L. In the first case, the
answer is provided by infinite-system DMRG albeit with quite limited precision; in the second case,
an answer can be read off from infinite-system DMRG, but it is more adequate to run a two-step pro-
cedure, starting with infinite-system DMRG and continuing with finite-system DMRG.

In any case, the numerical stumbling block is provided by the exponential growth of the Hilbert
space dimension, in our example as dL, where d ¼ 2 is the local state space dimension of a spin-1

2.

2.2. Infinite-system DMRG

Infinite-system DMRG deals with this problem by considering a chain of increasing length, usually
L ¼ 2;4;6; . . ., and discarding a sufficient number of states to keep Hilbert space size manageable. This
decimation procedure is key to the success of the algorithm: we assume that there exists a reduced
state space which can describe the relevant physics and that we can develop a procedure to identify
it. The first assumption is typical for all variational methods, and we will see that indeed we are lucky
in one dimension: for all short-ranged Hamiltonians in 1D there is such a reduced state space that con-
tains the relevant physics!

How is it found? In infinite-system DMRG (Fig. 2), the buildup is carried out as follows: we intro-
duce left and right blocks A and B, which in a first step may consist of one spin (or site) each, such that
total chain length is 2. Longer chains are now built iteratively from the left and right end, by inserting
pairs of spins between the blocks, such that the chain grows to length 4, 6, and so on; at each step,
previous spins are absorbed into the left and right blocks, such that block sizes grow as 1, 2, 3, and
so on, leading to exponential growth of the dimension of the full block state space as 2‘, where ‘ is
the current block size. Our chains then always have a block-site-site-block structure, A � �B.

Let us assume that our numerical resources are sufficient to deal with a reduced block state space
of dimension D, where in practice D will be of Oð100Þ to Oð1000Þ, and that for a block A of length ‘ we
have an effective description of block A in a D-dimensional reduced Hilbert space with orthonormal
basis fja‘iAg. For very small blocks, the basis dimension may be less than D, for larger blocks some
truncation must have occurred, which we take for granted at the moment. Let me mention right
now that in the literature, D – which will turn out to be a key number – comes under a variety of
names: in traditional DMRG literature, it is usually referred to as m (or M); more recent matrix product
state literature knows both D and v.

Within this framework, we may now ask (i) what is the ground state of the current chain of length
2‘þ 2, also referred to as superblock, and (ii) how can we find the reduced Hilbert space of dimension
D for the new blocks A� and �B.
superblock

block B

2 sites

block A

subsystem A  subsystem B

new block A new block B

block B2 sitesblock A

block B
growth

block A
growth

end of infinite
DMRG

block A size
minimal

end of finite
DMRG

(retrieved)

(retrieved)

(repeated sw
eeps)

Fig. 2. The left and right half of the figure present the iterations taken in the infinite-system and finite-system DMRG
procedures respectively. In both cases, new blocks are formed from integrating a site into a block, with a state space truncation
according to the density-matrix prescription of DMRG. Whereas in the infinite-system version this growth happens on both
sides of the chain, leading to chain growth, in the finite-system algorithm it happens only for one side at the expense of the
other, leading to constant chain length.
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Any state of the superblock A � �B can be described by
jwi ¼
X

aArArBaB

waArArBaB
jaiAjriAjriBjaiB �

X
iA jB

wiA jB
jiiAjjiB; ð2Þ
where the states of the site next to A are in the set fjriAg of local state space dimension d, and anal-
ogously those of the site next to B. By numerical diagonalization we find the jwi that minimizes the
energy
E ¼ hwj
bHA��Bjwi
hwjwi ð3Þ
with respect to the Hamiltonian of the superblock, answering (i). To this purpose, we need some iter-
ative sparse matrix eigensolver such as provided by the Lanczos or Jacobi–Davidson methods. Given
that our Hamiltonian [Eq. (1)] is available in the full tensor product space, this minimization of course
assumes that it can be expressed readily in the superblock basis. Let us postpone this question, as it is
intimately related to growing blocks and decimating their state space. As the matrix dimension is
d2D2, for typical D the eigenproblem is too large for direct solution, even assuming the use of quantum
symmetries. As most matrix elements of short-ranged Hamiltonians are zero, the matrix is sparse,
such that the basic matrix–vector multiplication of iterative sparse matrix eigensolvers can be imple-
mented very efficiently. We will discuss this question also further below.

If we now take states fjiiAg as the basis of the next larger left block A�, the basis dimension grows to
dD. To avoid exponential growth, we truncate this basis back to D states, using the following procedure
for block A� and similarly for �B: we consider the reduced density operator for A�, namely
q̂A� ¼ Tr�Bjwihwj qA�ð Þii0 ¼
X

j

wijw
�
i0 j: ð4Þ
The eigensystem of q̂A� is determined by exact diagonalization; the choice is to retain as reduced basis
those D orthonormal eigenstates that have the largest associated eigenvalues w. If we call them jbiA,
the vector entries are simply the expansion coefficients in the previous block-site basis, AharjbiA.

After an (approximate) transformation of all desired operators on A� into the new basis, the system
size can be increased again, until the final desired size is reached. B is grown at the same time, for
reflection-symmetric systems by simple mirroring.

The motivation of the truncation procedure is twofold. The first one, which is on a weaker basis, is
that we are interested in the states of A� contributing most to the ground state for A� embedded in the
final, much larger, even infinitely large system. We approximate this final system ground state, which
we do not know yet, to the best of our knowledge by that of A��B, the largest superblock we can effi-
ciently form. In that sense, we are bootstrapping, and the finite-system DMRG will, as we will see, take
care of the large approximations this possibly incurs. Let me remark right now that in the MPS formu-
lation of infinite-system DMRG a much clearer picture will emerge. The second motivation for the
choice of states is on much firmer foundation: the above prescription follows both from statistical
physics arguments or from demanding that the 2-norm distance kjwi � jwitrunck2 between the current
ground state jwi and its projection onto truncated block bases of dimension D; jwitrunc, is minimal. The
most transparent proof follows from a singular value decomposition of the matrix W with matrix ele-
ments WðaArAÞ;ðrBaBÞ formed from the wave function coefficients waArArBaB

. The overall success of DMRG
rests on the observation that even for moderate D (often only a few 100) the total weight of the trun-
cated eigenvalues, given by the truncation error � ¼ 1�

P
a>Dwa if we assume descending order of the

wa, is extremely close to 0, say 10�10 or less.
Algorithmically, we may of course also fix a (small) � we are willing to accept and at each trunca-

tion choose D sufficiently large as to meet this requirement. Computational resources are used more
efficiently (typically, we will have a somewhat smaller D towards the ends of chains because of re-
duced quantum fluctuations), the programming effort to obtain this flexibility is of course somewhat
higher.

An important aspect of improving the performance of any quantum algorithm is the exploitation of
quantum symmetries, ranging from discrete symmetries like a Z2 mirror symmetry if the Hamiltonian
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is invariant under mirroring from left to right through Abelian symmetries like the Uð1Þ symmetry of
particle number (‘‘charge’’) or magnetization conservation to non-Abelian symmetries like the SU(2)
symmetry of rotational invariance [69,75–78]. A huge range of these symmetries have been used suc-
cessfully in numerous applications, with the most common ones being the two Uð1Þ symmetries of
charge and magnetization conservation, but also SU(2) symmetries [79–82]. Let us focus on magneti-
zation and assume that the total magnetization, bM ¼Pi

bSz
i , commutes with the Hamiltonian,

½bH; bM� ¼ 0, such that eigenstates of bH can be chosen to be eigenstates of bM . Let us assume in particular
that the good quantum number of the ground state is M ¼ 0. If the block and site states are eigenstates
of magnetization, then waArArBaB

– 0 only if M jaiAð Þ þM jriAð Þ þM jriBð Þ þM jaiBð Þ ¼ 0; M is a short-
hand for the magnetization of the respective blocks and sites, assuming that the states have magne-
tization as a good quantum number. This constraint allows to exclude a large number of coefficients
from the calculation, leading to a huge speedup of the calculation and (less important) savings in
memory.

The decisive point is that if the states jaiA and jriA are eigenstates of magnetization, so will be the
eigenstates of the reduced density operator q̂A�, which in turn will be the states jaiA of the enlarged
block. As the local site states can be chosen to be such eigenstates and as the first block in the growth
process consists of one local site, the eigenstate property then propagates through the entire algo-
rithm. To prove the claim, we consider qA�ð Þii0 ¼

P
jwijw

�
i0 j. The states jiiA and jjiB are eigenstates of mag-

netization by construction, hence M jiiAð Þ þM jjiBð Þ ¼ 0 ¼ Mðji0iAÞ þM jjiBð Þ or M jiiAð Þ ¼ M ji0iA
� �

. The
density matrix therefore decomposes into blocks that are formed from states of equal magnetization
and can be diagonalized block by block within these sets, such that its eigenstates are also eigenstates
of magnetization.

In practical implementations, the use of such good quantum numbers will be done by arranging
matrix representations of operators into block structures labelled by good quantum numbers, which
are then combined to satisfy local and global constraints. While this is conceptually easy, the coding
becomes more complex and will not be laid out here explicitly; hints will be given in the MPS
sections.

So far, we have postponed the question of expressing operators acting on blocks in the current
block bases, in order to construct the Hamiltonian and observables of interest. Let us consider an oper-
ator bO acting on site ‘, with matrix elements Or‘ ;r0‘ ¼ r‘jbO‘jr0‘

D E
. Without loss of generality, assume

that site ‘ is on the left-hand side and added into block A. Its construction is then initialized when
block A grows from ‘� 1! ‘, as
a‘jbOja0‘D E
¼

X
a‘�1 ;r‘ ;r0‘

a‘ja‘�1r‘h i r‘jbOjr0‘D E
a‘�1r0‘ja0‘
� �

: ð5Þ
Here, ja‘i and ja‘�1i are the effective basis states of blocks of length ‘ and ‘� 1 respectively. Of course,
updates are necessary during the further growth steps of block A, e.g.
a‘þ1jbOja0‘þ1

D E
¼

X
a‘;a0‘r‘þ1

a‘þ1ja‘r‘þ1h i a‘jbOja0‘D E
a0‘r‘þ1ja0‘þ1

� �
: ð6Þ
It is important to realize that the sum in Eq. (6) must be split as
X
a‘r‘þ1

a‘þ1ja‘r‘þ1h i
X

a0
‘

a‘jbOja0‘D E
a0‘r‘þ1ja0‘þ1

� �0@ 1A; ð7Þ
reducing the calculational load from OðD4dÞ to 2OðD3dÞ.
In Hamiltonians, operator products bObP occur. It is tempting, but due to the many truncation steps

highly imprecise, to insert the quantum mechanical one in the current block basis and to write
a‘jbObP ja0‘D E
¼
X

~a‘

a‘jbOj~a‘D E
~a‘jbP ja0‘D E

: NO! ð8Þ
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The correct way is to update the first operator (counting from the left for a left block A) until the site of
the second operator is reached, and to incorporate it as
a‘jbObPja0‘D E
¼

X
a‘�1 ;a0‘�1 ;r‘;r

0
‘

a‘ja‘�1r‘h i a‘�1jbOja0‘�1

D E
r‘jbPjr0‘D E

a0‘�1r
0
‘ja0‘

� �
: ð9Þ
The further updates are then as for single operators. Obviously, we are looking at a straightforward
sequence of (reduced) basis transformations, with a somewhat cumbersome notation, but it will be
interesting to see how much simpler these formulae will look in the MPS language, albeit identical
in content.

The ultimate evaluation of expectation values is given at the end of the growth procedure as
wjbOjwD E
¼

X
aAa0

A
rArBaB

wjaArArBaBh i aAjbOja0AD E
a0ArArBaBjw
� �

; ð10Þ
where suitable bracketing turns this into an operation of order OðD3d2Þ. An important special case is
given if we are looking for the expectation value of a local operator that acts on one of the free sites �
in the final block-site configuration. Then
wjbOjwD E
¼

X
aArAr0

A
rBaB

wjaArArBaBh i rAjbOjr0AD E
aAr0ArBaBjw
� �

; ð11Þ
which is an expression of order OðD2d3Þ (for many operators, even OðD2d2Þ). Given that D� d in all
practical applications, such evaluations are computationally highly advantageous.

Let me conclude these more technical remarks by observing that for an efficient construction of bH
from such operators, it is essential never to build it as a full matrix, but to make use of the specific
block-site-site-block structure. Assume, for example, a term which contains one operator acting on
A and one on B (this is in fact the most complicated case), ĥ ¼ bOA

bOB. Then
aArArBaBjĥjw
D E

¼
X

a0
A

aAjbOAja0A
D E X

a0B

aBjbOBja0B
D E

a0ArArBa0Bjw
� �0@ 1A; ð12Þ
which is a sequence of two OðD3d2Þ multiplications (instead of one naive OðD4d2Þ calculation) for all
coefficients haArArBaBjĥjwi and similarly for all other terms.

If we stop infinite-system DMRG at some superblock size L, we can interpret the final wave func-
tion in two ways. We can take it as an approximation to the exact state for the superblock of size L and
evaluate expectation values. The accuracy is limited not only by the truncations, but also by the fact
that the first truncations were carried out for extremely small superblocks: the choice of relevant
short block states is likely to be a not too good approximation to those one would have chosen for
these short blocks embedded in the final system of length L.

Alternatively, we may ignore these boundary effects and focus on the central sites as an approxi-
mation to the behaviour of an infinitely large system, provided L is large enough and careful extrap-
olations of results to L!1 are done. This is not so simple to do in a very controlled fashion, but as we
will see, infinite-system DMRG can be used to build highly controlled translationally invariant (mod-
ulo, say, a unit cell of length 2) thermodynamic limit states.

2.3. Finite-system DMRG

Once the desired final system size is reached by infinite-system DMRG, it is important in all but the
most trivial applications to follow up on it by the so-called finite-system DMRG procedure. This will
not merely lead to some slight quantitative improvements of our results, but may change them com-
pletely: consider [83] for an example where even the central physical statement changes: for a t–J–V–
V 0 model on a ladder with moderate hole-doping d ¼ 0:1, an infinite-system DMRG calculation indi-
cates the existence of alternately circulating currents on plaquettes that are triggered by an infinites-
imal current at the left end of the ladder, a signal of a so-called d-density wave state. Only after
applying the finite-system algorithm it becomes obvious that this current is in fact exponentially
decaying into the bulk, excluding this type of order (Fig. 3).
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Fig. 3. Plaquette current on a t–J–V–V 0-ladder, J ¼ 0:4t;V ¼ 3t;V 0 ¼ t (V nearest, V 0 next-nearest neighbour interaction) at hole
doping d ¼ 0:1, system size 2� 60, as induced by a finite boundary current on rung 1. The absolute current strength is shown;
whereas infinite-system DMRG and the first sweep indicate the generation of a long-ranged pattern, a fully converged
calculation (here after 6–7 sweeps) reveals an exponential decay into the bulk. Taken from Ref. [83].
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The finite-system algorithm corrects the choices made for reduced bases in the context of a super-
block that was not the system of interest (of final length L), but some sort of smaller proxy for it.

What the finite-system algorithm does is the following (Fig. 2): it continues the growth process of
(say) block B following the same prescription as before: finding the ground state of the superblock sys-
tem, determining the reduced density operator, finding the eigensystem, retaining the D highest
weight eigenstates for the next larger block. But it does so at the expense of block A, which shrinks
(i.e. old shorter blocks A are reused). This is continued until A is so small as to have a complete Hilbert
space, i.e. of dimension not exceeding D (one may also continue until A is merely one site long; results
are not affected). Then the growth direction is reversed: A grows at the expense of B, including new
ground state determinations and basis choices for A, until B is small enough to have a complete Hilbert
space, which leads to yet another reversal of growth direction.

This sweeping through the system is continued until energy (or, more precisely, the wave function)
converges. The intuitive motivation for this (in practice highly successful) procedure is that after each
sweep, blocks A or B are determined in the presence of an ever improved embedding.

In practice, this algorithm involves a lot of book-keeping, as all the operators we need have to be
maintained in the current effective bases which will change from step to step. This means that the
truncated basis transformations determined have to be carried out after each step; operator represen-
tations in all bases have to be stored, as they will be needed again for the shrinking block.

Another important feature is that for finding the ground state jwi for each A � �B configuration one
employs some iterative large sparse matrix eigensolver based on sequential applications of bH on some
initial starting vector. To speed up this most time-consuming part of the algorithm, it is highly desir-
able to have a good prediction for a starting vector, i.e. as close as possible to the ultimate solution.
This can be achieved by (approximately) transforming the result of the last step into the shifted
A � �B configuration [21] by applying two basis transformations: e.g. A� ! A and B! �B for a sweep
to the right. The explicit formulae (see [7,21]) can be derived by writing
jwi ¼
X

a‘r‘þ1r‘þ2b‘þ2

wa‘r‘þ1r‘þ2b‘þ2
ja‘iAjr‘þ1ijr‘þ2ijb‘þ2iB; ð13Þ
where ja‘iA and jb‘þ2iB are the block states for block A comprising sites 1 through ‘ and block B com-
prising sites ‘þ 3 through L (the label of the block states is taken from the label of the bond their ends
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cut; see Fig. 13), and inserting twice an approximate identity, namely bI ¼Pa‘þ1
ja‘þ1iA Aha‘þ1j andbI ¼Pr‘þ3b‘þ3

jr‘þ3ijb‘þ3iBBhb‘þ3jhr‘þ3j. One then obtains
jwi ¼
X

a‘þ1r‘þ2r‘þ3b‘þ3

wa‘þ1r‘þ2r‘þ3b‘þ3
ja‘þ1iAjr‘þ2ijr‘þ3ijb‘þ3iB ð14Þ
with
wa‘þ1r‘þ2r‘þ3b‘þ3
¼

X
a‘r‘þ1b‘þ2

wa‘r‘þ1r‘þ2b‘þ2
ha‘þ1ja‘r‘þ1ihb‘þ3r‘þ3jb‘þ2i: ð15Þ
The basis transformations required in the last equation are all available from previous steps in the
DMRG procedure. A similar operation can be carried out for a sweep to the left. As we will see, this
astute step, which led to drastic improvements in DMRG performance, is already implicit if one re-
writes DMRG in the MPS language, such that we will not discuss it here at length.

An important observation is that both the infinite-system and finite-system algorithm can also be
carried out by inserting only a single explicit site �, hence one would study superblocks of the form
A�B, with slightly adapted growth procedures. An advantage of this method would be a speedup by
roughly a factor d in the large sparse eigensolver; for example, the application of ĥ to a state in Eq.
(12) would then lead to OðD3dÞ operations. In the infinite-system algorithm an obvious disadvantage
would be that superblock lengths oscillate between odd and even; in the finite-system algorithm the
question of the relative merits is much more interesting and will be discussed at length in Section 6.4.

Obviously, for D!1, no truncations occur and DMRG becomes exact; increasing D reduces trun-
cation and therefore monotonically improves observables, which one extrapolates in D!1 (even
better, in the truncation error �! 0, for which local observables often show effectively linear error
dependence on �) for optimal results.

For more details on DMRG and its applications, I refer to [7].

3. DMRG and entanglement: why DMRG works and why it fails

The DMRG algorithm quite naturally leads to the consideration of bipartite quantum systems,
where the parts are A� and �B. For an arbitrary bipartition, jwi ¼

P
ijwijjiiAjjiB, where the states jiiA

and jjiB form orthonormal bases of dimensions NA and NB respectively. Thinking of the wij as entries
of a rectangular matrix W (dimension NA � NB), the reduced density matrices qA and qB take the form
qA ¼ WWy qB ¼ WyW: ð16Þ
If we assume that we know jwi exactly, but can approximate it in DMRG only with at most D states per
block, the optimal DMRG approximation is provided by retaining as block states the eigenstates
belonging to the D largest eigenvalues. If we happen to know the eigenspectra of reduced density
operators of jwi, we can easily assess the quality a DMRG approximation can have; it simply depends
on how quickly the eigenvalues wa decrease. In fact, such analyses have been carried out for some ex-
actly solved systems in one and two dimensions [84–88]. They reveal that in one dimension for gap-
ped systems eigenvalues wa generically decay exponentially fast (roughly as e�cln2a), which explains
the success of DMRG, but in two-dimensional stripe geometries of size L�W; L�W; c / 1=W , such
that with increasing width W (increasing two-dimensionality) the eigenspectrum decay is so slow as
to make DMRG inefficient.

Usually, we have no clear idea about the eigenvalue spectrum; but it turns out that in such cases
entanglement entropies can serve as ‘‘proxy’’ quantities, namely the von Neumann entanglement or
entanglement entropy. It is given by the non-vanishing part of the eigenvalue spectrum of qA (iden-
tical to that of qB, as we will discuss below) as
SAjB ¼ �TrqAlog2qA ¼ �
X

a
walog2wa: ð17Þ
It would seem as if we have gained nothing, as we do not know the wa, but general laws about entan-
glement scaling are available. If we consider a bipartitioning AjB where AB is in the thermodynamic
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limit and A of size LD, with D the spatial dimension, the so-called area laws [31,89–92] predict that for
ground states of short-ranged Hamiltonians with a gap to excitations entanglement entropy is not
extensive, but proportional to the surface, i.e. SðAjBÞ 	 LD�1, as opposed to thermal entropy. This im-
plies S 	 cst: in one dimension and S 	 L in two dimensions. At criticality, a much richer structure
emerges: in one dimension, S ¼ cþ�c

6 log2Lþ k, where c and �c are the (an)holonomic central charges from
conformal field theory [29,30]; in two dimensions, bosonic systems seem to be insensitive to critical-
ity (i.e. S / L) [90,93], whereas fermionic systems get a logarithmic correction S / Llog2L for a one-
dimensional Fermi surface (with a prefactor proportional to its size), but seem to grow only subloga-
rithmically if the Fermi surface consists of points [93,94]. It should be emphasized that these proper-
ties of ground states are highly unusual: in the thermodynamic limit, a random state out of Hilbert
space will indeed show extensive entanglement entropy with probability 1.

In a mathematically non-rigorous way one can now make contact between DMRG and the area
laws of quantum entanglement: between two D-dimensional state spaces for A and B, the maximal
entanglement is log2D in the case where all eigenvalues of qA are identical and D�1 (such that qA is
maximally mixed); meaning that one needs a state of dimension 2S and more to encode entanglement
S properly. This implies that for gapped systems in one dimension an increase in system size will not
lead to a strong increase in D; in two dimensions, D 	 2L, such that DMRG will fail even for relatively
small system sizes, as resources have to grow exponentially (this however does not exclude very pre-
cise results for small two-dimensional clusters or quite large stripes). Critical systems in one dimen-
sion are borderline cases: D 	 L

cþ�c
6 ; this means that the thermodynamic limit is not reachable, but the

growth of D is sufficiently slow (usually the power is weak, say 1/3 or 1/6, due to typical values for
central charges) such that large system sizes ðL 	 Oð103ÞÞ can be reached; this allows for very precise
finite-size extrapolations.

Obviously, this argument implicitly makes the cavalier assumption that the eigenvalue spectrum is
close to flat, which leads to maximal entanglement, such that an approximate estimation of D can be
made. In practice, the spectrum is dictated by the problem and indeed far from flat: as we have seen, it
is in fact usually exponentially decaying. But numerically, it turns out that for standard problems the
scaling of the resource D is predicted correctly on the qualitative level.

It even turns out that in a mathematically strict analysis, von Neumann entanglement does not al-
low a general prediction of resource usage: this is because one can construct artificial eigenvalue spec-
tra that allow or forbid efficient simulation, while their von Neumann entanglement would suggest
the opposite, following the above argument [95]. Typical many-body states of interest, however, do
not have such ‘‘pathological’’ spectra. In fact, Renyi entanglement entropies, a generalization of von
Neumann entanglement entropies, do allow mathematically rigourous connections [95], but usually
are hard to calculate, with criticality in one dimension as an exception due to conformal field theory.
4. Matrix product states (MPS)

If we consider our paradigmatic problem, the one-dimensional Heisenberg antiferromagnet, the
key problem is that Hilbert space seems to be exponentially big ðdL ¼ 2LÞ. Looking for the ground state
may therefore seem like looking for a needle in the haystack. The claim is that at least for local Ham-
iltonians with a gap between ground state and first excited state, the haystack is not very big, effec-
tively infinitesimally small compared to the size of the full Hilbert space, as we have already seen from
the very peculiar entanglement scaling properties. What is even more important, this relevant corner
of Hilbert space can be parametrized efficiently, i.e. with modest numerical resources, operated upon
efficiently, and efficient algorithms of the DMRG type to solve important questions of quantum phys-
ics do exist. This parametrization is provided by the matrix product states (MPS).

Maybe the two DMRG algorithms explained above seem to be very cumbersome to implement. But
it turns out that if we do quantum mechanics in the restricted state class provided by matrix product
states, DMRG and other methods almost force themselves on us. The manipulation of matrix product
states seems to be very complicated at first, but in fact can be formalized beautifully, together with a
graphical notation that allows to generate permitted operations almost automatically; as any good
formalism (such as bra and ket), it essentially enforces correctness.



U. Schollwöck / Annals of Physics 326 (2011) 96–192 107
4.1. Introduction of matrix product states

4.1.1. Singular value decomposition (SVD) and Schmidt decomposition
Throughout the rest of this paper, we will make extensive use of one of the most versatile tools of

linear algebra, the so-called singular value decomposition (SVD), which is at the basis of a very compact
representation of quantum states living in a bipartite universe AB, the Schmidt decomposition. Let us
briefly recall what they are about.

SVD guarantees for an arbitrary (rectangular) matrix M of dimensions NA � NBð Þ the existence of a
decomposition
Fig. 4.
can occ
M ¼ USV y; ð18Þ
where

� U is of dimension NA �min NA;NBð Þð Þ and has orthonormal columns (the left singular vectors), i.e.
UyU ¼ I; if NA 6 NB this implies that it is unitary, and also UUy ¼ I.
� S is of dimension min NA;NBð Þ �min NA;NBð Þð Þ, diagonal with non-negative entries Saa � sa. These

are the so-called singular values. The number r of non-zero singular values is the (Schmidt) rank
of M. In the following, we assume descending order: s1 P s2 P 
 
 
P sr > 0.
� V y is of dimension minðNA;NBÞ � NBð Þ and has orthonormal rows (the right singular vectors), i.e.

V yV ¼ I. If NA P NB this implies that it is unitary, and also VV y ¼ I.

This is schematically shown in Fig. 4. Singular values and vectors have many highly interesting
properties. One which is of practical importance in the following is the optimal approximation of M
(rank r) by a matrix M0 (with rank r0 < r) in the Frobenius norm kMk2

F ¼
P

ijjMijj2 induced by the inner
product hMjNi ¼ Tr MyN. It is given by
M0 ¼ US0V y S0 ¼ diagðs1; s2; . . . ; sr0 ;0; . . .Þ ð19Þ
i.e. one sets all but the first r0 singular values to be zero (and in numerical practice, will shrink the col-
umn dimension of U and the row dimension of V y accordingly to r0).

As a first application of the SVD, we use it to derive the Schmidt decomposition of a general quantum
state. Any pure state jwi on AB can be written as
jwi ¼
X

ij

WijjiiAjjiB; ð20Þ
where fjiiAg and fjjiBg are orthonormal bases of A and B with dimension NA and NB respectively; we
read the coefficients as entries of a matrix W. From this representation we can derive the reduced den-
sity operators q̂A ¼ TrBjwihwj and q̂B ¼ TrAjwihwj, which expressed with respect to the block bases take
the matrix form
qA ¼ WWy qB ¼ WyW: ð21Þ
If we carry out an SVD of matrix W in Eq. (20), we obtain
jwi ¼
X

ij

XminðNA ;NBÞ

a¼1

UiaSaaV�jajiiAjjiB ¼
XminðNA ;NBÞ

a¼1

X
i

UiajiiA

 !
sa

X
j

V�jajji
 !

¼
XminðNA ;NBÞ

a¼1

sajaiAjaiB:

ð22Þ
Resulting matrix shapes from a singular value decomposition (SVD), corresponding to the two rectangular shapes that
ur. The singular value diagonal serves as a reminder that in M ¼ USV y S is purely non-negative diagonal.
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Due to the orthonormality properties of U and V y, the sets fjaiAg and fjaiBg are orthonormal and can be
extended to be orthonormal bases of A and B. If we restrict the sum to run only over the
r 6 min NA;NBð Þ positive non-zero singular values, we obtain the Schmidt decomposition
jwi ¼
Xr

a¼1

sajaiAjaiB: ð23Þ
It is obvious that r ¼ 1 corresponds to (classical) product states and r > 1 to entangled (quantum)
states.

The Schmidt decomposition allows to read off the reduced density operators for A and B introduced
above very conveniently: carrying out the partial traces, one finds
q̂A ¼
Xr

a¼1

s2
a jaiA Ahaj; q̂B ¼

Xr

a¼1

s2
a jaiB Bhaj; ð24Þ
showing that they share the non-vanishing part of the spectrum, but not the eigenstates. The eigen-
values are the squares of the singular values, wa ¼ s2

a , the respective eigenvectors are the left and right
singular vectors. The von Neumann entropy of entanglement can therefore be read off directly from
the SVD,
SAjBðjwiÞ ¼ �Tr q̂Alog2q̂A ¼ �
Xr

a¼1

s2
alog2s2

a : ð25Þ
In view of the large size of Hilbert spaces, it is also natural to approximate jwi by some j~wi spanned
over state spaces of A and B that have dimension r0 only. This problem can be related to SVD, because
the 2-norm of jwi is identical to the Frobenius norm of the matrix W,
kjwik2
2 ¼

X
ij

jWijj2 ¼ kWk2
F ; ð26Þ
if and only if the sets fjiig and fjjig are orthonormal (which is the case here). The optimal approxima-
tion is therefore given in the 2-norm by the optimal approximation of W by ~W in the Frobenius norm,
where ~W is a matrix of rank r0. As discussed above, ~W ¼ US0V y, where S0 ¼ diag s1; . . . ; sr0 ;0; . . .ð Þ, con-
structed from the largest singular values of W. Therefore, the Schmidt decomposition of the approxi-
mate state reads
j~wi ¼
Xr0

a¼1

sajaiAjaiB; ð27Þ
where the sa must be rescaled if normalization is desired.

4.1.2. QR decomposition
While SVD will be seen to cover all our needs, sometimes it is an overkill: in many cases of the

expression M ¼ USV y, we are only interested in the property UyU ¼ I and the product SV y, for example
whenever the actual value of the singular values will not be used explicitly. Then there is a numeri-
cally cheaper technique, QR decomposition, which for an arbitrary matrix M of dimension ðNA � NBÞ
gives a decomposition
M ¼ QR; ð28Þ

hence the name, where Q is of dimension NA � NAð Þ and unitary, Q yQ ¼ I ¼ QQ y, and R is of dimension
ðNA � NBÞ and upper triangular, i.e. Rij ¼ 0 if i > j. This full QR decomposition can be reduced to a thin
QR decomposition: assume NA > NB: then the bottom NA � NB rows of R are zero, and we can write
M ¼ Q 

R1

0

� 	
¼ Q 1 Q2½ �

R1

0

� 	
¼ Q1R1; ð29Þ
where Q 1 is now of dimension ðNA � NBÞ;R1 of dimension ðNB � NBÞ, and while Q y1Q 1 ¼ I, in general
Q1Q y1 – I. Whenever I will refer to a QR decomposition in the following, I will imply the thin one. It
should also be clear that the matrices Q (or Q1) share properties with U from SVD, but are not the same
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in general; but as we will see that the MPS representation of states is not unique anyways, this does
not matter.

4.1.3. Decomposition of arbitrary quantum states into MPS
Consider a lattice of L sites with d-dimensional local state spaces frig on sites i ¼ 1; . . . ; L. In fact,

while we will be naturally thinking of a one-dimensional lattice, the following also holds for a lattice
of arbitrary dimension on which sites have been numbered; however, MPS generated from states on
higher-dimensional lattices will not be manageable in numerical practice. The most general pure
quantum state on the lattice reads
jwi ¼
X

r1 ;...;rL

cr1 ;...;rL jr1; . . . ;rLi; ð30Þ
where we have exponentially many coefficients cr1 ;...;rL with quite oblique content in typical quantum
many-body problems. Let us assume that it is normalized. Can we find a notation that gives a more
local notion of the state (while preserving the quantum non-locality of the state)? Indeed, SVD allows
us to do just that. The result may look quite forbidding, but will be shown to relate profoundly to
familiar concepts of quantum physics. There are three ways of doing this that are of relevance to us.

(i) Left-canonical matrix product state. In a first step, we reshape the state vector with dL components
into a matrix W of dimension ðd� dL�1Þ, where the coefficients are related as
Wr1 ;ðr2 ;...;rLÞ ¼ cr1 ;...;rL : ð31Þ
An SVD of W gives
cr1 ;...;rL ¼ Wr1 ;ðr2 ;...;rLÞ ¼
Xr1

a1

Ur1 ;a1 Sa1 ;a1 ðV
yÞa1 ;ðr2 ;...;rLÞ �

Xr1

a1

Ur1 ;a1 ca1r2 ;...;rL ; ð32Þ
where in the last equality S and V y have been multiplied and the resulting matrix has been reshaped
back into a vector. The rank is r1 6 d. We now decompose the matrix U into a collection of d row vec-
tors Ar1 with entries Ar1

a1
¼ Ur1 ;a1 . At the same time, we reshape ca1r2 ;...;rL into a matrix Wða1r2Þ;ðr3 ;...;rLÞ of

dimension ðr1d� dL�2Þ, to give
cr1 ;...;rL ¼
Xr1

a1

Ar1
a1

Wða1r2Þ;ðr3 ;...;rLÞ: ð33Þ
W is subjected to an SVD, and we have
cr1 ;...;rL ¼
Xr1

a1

Xr2

a2

Ar1
a1

Uða1r2Þ;a2 Sa2 ;a2 ðV
yÞa2 ;ðr3 ;...;rLÞ ¼

Xr1

a1

Xr2

a2

Ar1
a1

Ar2
a1 ;a2

Wða2r3Þ;ðr4 ;...;rLÞ; ð34Þ
where we have replaced U by a set of d matrices Ar2 of dimension ðr1 � r2Þ with entries
Ar2

a1 ;a2
¼ Uða1r2Þ;a2 and multiplied S and V y, to be reshaped into a matrix W of dimension ðr2d� dL�3Þ,

where r2 6 r1d 6 d2. Upon further SVDs, we obtain
cr1 ;...;rL ¼
X

a1 ;...;aL�1

Ar1
a1

Ar2
a1 ;a2

 
 
ArL1

aL�2 ;aL�1
ArL

aL�1
ð35Þ
or more compactly
cr1 ;...;rL ¼ Ar1 Ar2 
 
 
ArL�1 ArL ; ð36Þ
where we have recognized the sums over a1; a2 and so forth as matrix multiplications. The last set of
matrices ArL in fact consists of column vectors. If we wish, dummy indices 1 may be introduced in the
first and last A to turn them into matrices, too. In any case, the (arbitrary) quantum state is now rep-
resented exactly in the form of a matrix product state:
jwi ¼
X

r1 ;...;rL

Ar1 Ar2 
 
 
ArL�1 ArL jr1; . . . ;rLi: ð37Þ
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Let us study the properties of the A-matrices. The maximal dimensions of the matrices are reached
when for each SVD done the number of non-zero singular values is equal to the upper bound (the les-
ser of the dimensions of the matrix to be decomposed). Counting reveals that the dimensions may
maximally be ð1� dÞ; ðd� d2Þ; . . . ; ðdL=2�1 � dL=2Þ; ðdL=2 � dL=2�1Þ; . . . ; ðd2 � dÞ; ðd� 1Þ, going from the
first to the last site (I have assumed L even for simplicity here). This shows that in practical calcula-
tions it will usually be impossible to carry out this exact decomposition explicitly, as the matrix
dimensions blow up exponentially.

But there is more to it. Because at each SVD UyU ¼ I holds, the replacement of U by a set of Ar en-
tails the following relationship:
da‘ ;a0‘
¼
X

a‘�1r‘

ðUyÞa‘ ;ða‘�1r‘ÞUða‘�1r‘Þ;a0‘ ¼
X

a‘�1r‘

ðAr‘yÞa‘;a‘�1
Ar‘

a‘�1 ;a0‘
¼
X
r‘

ðAr‘yAr‘ Þa‘ ;a0‘
or, more succinctly,
X
r‘

Ar‘yAr‘ ¼ I: ð38Þ
Matrices that obey this condition we will refer to as left-normalized, matrix product states that consist
only of left-normalized matrices we will call left-canonical. In fact, a closer look reveals that on the last
site the condition may be technically violated, but as we will see once we calculate norms of MPS this
corresponds to the original state not being normalized to 1. Let us ignore this subtlety for the moment.

In view of the DMRG decomposition of the universe into blocks A and B it is instructive to split the
lattice into parts A and B, where A comprises sites 1 through ‘ and B sites ‘þ 1 through L. We may then
introduce states
ja‘iA ¼
X

r1 ;...;r‘

ðAr1 Ar2 
 
 
Ar‘ Þ1;a‘ jr1; . . . ;r‘i; ð39Þ

ja‘iB ¼
X

r‘þ1 ;...;rL

ðAr‘þ1 Ar‘þ2 
 
 
ArL Þa‘ ;1jr‘þ1; . . . ;rLi; ð40Þ
such that the MPS can be written as
jwi ¼
X

a‘

ja‘iAja‘iB: ð41Þ
This pairing of states looks tantalizingly close to a Schmidt decomposition of jwi, but this is not the
case. The reason for this is that while the fja‘iAg form an orthonormal set, the fja‘iBg in general do
not. This is an immediate consequence of the left-normality of the A-matrices. For part A we find
A a0‘ja‘
� �

A ¼
X

r1 ;...;r‘

ðAr1 
 
 
Ar‘ Þ�1;a0
‘
ðAr1 
 
 
Ar‘ Þ1;a‘ ¼

X
r1 ;...;r‘

ðAr1 
 
 
Ar‘ Þya0
‘
;1ðA

r1 
 
 
Ar‘ Þ1;a‘

¼
X

r1 ;...;r‘

ðAr‘y 
 
 
Ar1yAr1 
 
 
Ar‘ Þa0
‘
;a‘
¼ da0

‘
;a‘ ;
where we have iteratively carried out the sums over r1 through r‘ and used left-normality. On the
other hand, the same calculation for part B yields
Bha0‘ja‘iB ¼
X

r‘þ1 ;...;rL

ðAr‘þ1 
 
 
ArLÞ�a0
‘
;1ðA

r‘þ1 
 
 
ArL Þa‘ ;1 ¼
X

r‘þ1 ;...;rL

ðArLy 
 
 
Ar‘þ1yÞ1;a0
‘
ðAr‘þ1 
 
 
ArLÞa‘;1

¼
X

r‘þ1 ;...;rL

ðAr‘þ1 
 
 
ArL ArLy 
 
 
Ar‘þ1yÞa0
‘
;a‘
;

which cannot be simplified further because in general
P

rArAry – I.
The change of representation of the state coefficients can also be represented graphically (Fig. 5).

Let us represent the coefficient cr1 ;...;rL as a black box (with rounded edges), where the physical indices
r1 through rL stick out vertically. The result after the first decomposition we represent as in the sec-
ond line, where we have on the left hand site an object representing Ar1

a1
, on the right ca1r2 ;...;rL . The

auxiliary degrees of freedom ða1Þ are represented by horizontal lines, and the rule is that connected



Fig. 5. Graphical representation of an iterative construction of an exact MPS representation of an arbitrary quantum state by a
sequence of singular value decompositions.
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lines are summed over. The second step is then obvious, we have Ar1
a1

, then Ar2
a1 ;a2

and on the right
ca2r3 ;...;rL , with all connected lines summed over. In the end, we have arrived at L A-matrices multiplied
together and labelled by physical indices (last line of the figure).

The graphical rules for the A-matrices, that on the first and last site are row and column vectors
respectively, are summarized in Fig. 6: a site ‘ is represented by a solid circle, the physical index r‘

by a vertical line and the two matrix indices by horizontal lines.
Let me conclude this exposition by showing the generation of a left-canonical matrix product state

by a sequence of QR decompositions. We start as
Fig. 6.
vector
cr1 ;...;rL ¼ Wr1 ;ðr2 ;...;rLÞ ¼
X

a1

Qr1 ;a1
Ra1 ;ðr2 ;...;rLÞ ¼

X
a1

Ar1
1;a1

Wða1r2Þ;ðr3 ;...;rLÞ; ð42Þ
where we reshape Q ! A and R! W in analogy to the SVD procedure. The next QR decomposition
yields
cr1 ;...;rL ¼
X
a1 ;a2

Ar1
1;a1

Q ða1r2Þ;a2
Ra2 ;ðr3 ;...;rLÞ ¼

X
a1 ;a2

Ar1
1;a1

Ar2
a1 ;a2

Wða2r3Þ;ðr4 ;...;rLÞ ð43Þ
and so on (on the right half of the chain, thin QR is needed, as an analysis of the dimensions shows).
Q yQ ¼ I implies the desired left-normalization of the A-matrices. If numerically feasible, this is faster
than SVD. What we lose is that we do not see the spectrum of the singular values; unless we use more
advanced rank-revealing QR decompositions, we are also not able to determine the ranks r1; r2; . . ., un-
like in SVD. This means that this decomposition fully exploits the maximal A-matrix dimensions.
Graphical representation of A-matrices at the ends and in the bulk of chains: the left diagram represents Ar1
1;a1

, the row
at the left end, the right diagram represents ArL

aL ;1
, the column vector at the right end. In the center there is Ar‘

a‘�1 ;a‘
.
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(ii) Right-canonical matrix product state. Obviously, there was nothing specific in the decomposition
starting from the left, i.e. site 1. Similarly, we can start from the right in order to obtain
Fig. 7.
sequen
cr1 ;...;rL ¼ Wðr1 ;...;rL�1Þ;rL ¼
X
aL�1

Uðr1 ;...;rL�1Þ;aL�1 SaL�1 ;aL�1 ðV
yÞaL�1 ;rL

¼
X
aL�1

Wðr1 ;...;rL�2Þ;ðrL�1aL�1ÞB
rL
aL�1

¼
X

aL�2 ;aL�1

Uðr1 ;...;rL�2Þ;aL�2 SaL�2 ;aL�2 ðV
yÞaL�2 ;ðrL�1aL�1ÞB

rL
aL�1
¼

X
aL�2 ;aL�1

Wðr1 ;...;rL�3Þ;ðrL�2aL�2ÞB
rL�1
aL�2 ;aL�1

BrL
aL�1

¼ 
 
 
 ¼
X

a1 ;...;aL�1

Br1
a1

Br2
a1 ;a2

 
 
BrL�1

aL�2 ;aL�1
BrL

aL�1
:

Here, we have reshaped ðV yÞaL�1 ;rL
into d column vectors BrL

aL�1
; ðV yÞðaL�2rL�1Þ;aL�1

into d matrices
BrL�1

aL�2 ;aL�1
, and so on, as well as multiplied U and S before reshaping into W at each step. The obvious

graphical representation is given in Fig. 7. We do not distinguish in the graphical representation be-
tween the A- and B-matrices to keep notation simple.

We obtain an MPS of the form
jwi ¼
X

r1 ;...;rL

Br1 Br2 
 
 
BrL�1 BrL jr1; . . . ;rLi; ð44Þ
where the B-matrices can be shown to have the same matrix dimension bounds as the A matrices and
also, from V yV ¼ I, to obey
X

r‘

Br‘Br‘y ¼ I; ð45Þ
such that we refer to them as right-normalized matrices. An MPS entirely built from such matrices we
call right-canonical.

Again, we can split the lattice into parts A and B, sites 1 through ‘ and ‘þ 1 through L, and intro-
duce states
ja‘iA ¼
X

r1 ;...;r‘

ðBr1 Br2 
 
 
Br‘ Þ1;a‘ jr1; . . . ;r‘i; ð46Þ

ja‘iB ¼
X

r‘þ1 ;...;rL

ðBr‘þ1 Br‘þ2 
 
 
BrL Þa‘ ;1jr‘þ1; . . . ;rLi; ð47Þ
Graphical representation of an iterative construction of an exact MPS representation of an arbitrary quantum state by a
ce of singular value decompositions, now starting from the right.
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such that the MPS can be written as
Fig. 8.
and rig
right-n
jwi ¼
X

a‘

ja‘iAja‘iB: ð48Þ
This pairing of states looks again tantalizingly close to a Schmidt decomposition of jwi, but this is again
not the case. The reason for this is that while this time the ja‘iB


 �
form an orthonormal set, the fja‘iAg

in general do not, as can be shown from the right-normality of the B-matrices.
Again, the right-normalized form can be obtained by a sequence of QR decompositions. The differ-

ence to the left-normalized form is that we do not QR-decompose W ¼ QR, but Wy ¼ QR, such that
W ¼ RyQ y. This leads directly to the right-normalization properties of the B-matrices, if we form them
from Q y. Let me make the first two steps explicit; we start from
cr1 ;...;rL ¼ Wðr1 ;...;rL�1Þ;rL ¼
X
aL�1

Ryðr1 ;...;rL�1Þ;aL�1
Q yaL�1 ;rL

¼
X
aL�1

Wðr1 ;...;rL�2Þ;ðrL�1aL�1ÞB
rL
aL�1 ;1

; ð49Þ
reshaping Ry into W; Q y into B, and continue by a QR decomposition of Wy as
cr1 ;...;rL ¼
X

aL�1 ;aL�2

Ryðr1 ;...;rL�2Þ;aL�2
Q yaL�2 ;ðrL�1aL�1ÞB

rL
aL�1 ;1

¼
X

aL�1 ;aL�2

Wðr1 ;...;rL�3Þ;ðrL�2aL�2ÞB
rL�1
aL�2 ;aL�1

BrL
aL�1 ;1

: ð50Þ
We have now obtained various different exact representations of jwi in the MPS form, which al-
ready indicates that the MPS representation of a state is not unique, a fact that we are going to exploit
later on.

(iii) Mixed-canonical matrix product state. We can also mix the decomposition of the state from the
left and from the right. Let us assume we did a decomposition from the left up to site ‘, such that
cr1 ;...;rL ¼
X

a‘

ðAr1 
 
 
Ar‘ Þa‘Sa‘ ;a‘ ðV
yÞa‘ ;ðr‘þ1 ;...;rLÞ: ð51Þ
We reshape V y as Wða‘r‘þ1 ;...;rL�1Þ;rL and carry out successive SVDs from the right as in the original
decomposition from the right, up to and including site r‘þ2; in the last SVD Uða‘r‘þ1Þ;a‘þ1 Sa‘þ1 ;a‘þ1 remains,
which we reshape to Br‘þ1

a‘a‘þ1
. Then we obtainX
ðV yÞa‘ ;ðr‘þ1 ;...;rLÞ ¼
a‘þ1 ;...;aL�1

Br‘þ1
a‘ ;a‘þ1


 
 
BrL
aL�1

: ð52Þ
All B-matrices are right-normalized. This is simply due to the SVD for sites ‘þ 2 through L; on site
‘þ 1, it follows from the property V yV ¼ I:
da‘ ;a0‘
¼
X

r‘þ1 ;...

ðV yÞa‘ ; r‘þ1 ;...;rLð ÞV ðr‘þ1 ;...;rLÞ;a0‘ ¼
X

r‘þ1 ;...

Br‘þ1 
 
 
BrL BrLy 
 
 
Br‘þ1y

 !
a‘;a0‘

¼
X
r‘þ1

Br‘þ1 Br‘þ1y

 !
a‘;a0‘

;

where we use in the last line the right-normalization property of all the B-matrices on sites ‘þ 2; . . . ; L
to obtain the desired result.

We therefore end up with a decomposition
cr1 ;...;rL ¼ Ar1 
 
 
Ar‘SBr‘þ1 
 
 
BrL ; ð53Þ
which contains the singular values on the bond ð‘; ‘þ 1Þ and can be graphically represented as in
Fig. 8.
σ1 σL

Graphical representation of an exact MPS obtained by a sequence of singular value decompositions, starting from the left
ht. The diamond represents the diagonal singular value matrix. Matrices to the left are left-normalized, to the right are
ormalized.
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What is more, the Schmidt decomposition into A and B, where A runs from sites 1 to ‘ and B from
sites ‘þ 1 to L, can now be read off immediately. If we introduce vectors
ja‘iA ¼
X

r1 ;...;r‘

ðAr1 
 
 
Ar‘ Þ1;a‘ jr1; . . . ;r‘i; ð54Þ

ja‘iB ¼
X

r‘þ1 ;...;rL

ðBr‘þ1 
 
 
BrLÞa‘;1jr‘þ1; . . . ;rLi; ð55Þ
then the state takes the form ðsa ¼ Sa;aÞ
jwi ¼
X

a‘

saja‘iAja‘iB; ð56Þ
which is the Schmidt decomposition provided the states on A and B are orthonormal respectively. But
this is indeed the case by construction.

(iv) Gauge degrees of freedom. By now, we have three different ways of writing an arbitrary quantum
state as an MPS, all of which present advantages and disadvantages. While these three are arguably
the most important ways of writing an MPS, it is important to realise that the degree of non-unique-
ness is much higher: MPS are not unique in the sense that a gauge degree of freedom exists. Consider
two adjacent sets of matrices Mri and Mriþ1 of shared column/row dimension D. Then the MPS is
invariant for any invertible matrix X of dimension ðD� DÞ under
Mri ! Mri X; Mriþ1 ! X�1Mriþ1 : ð57Þ
This gauge degree of freedom can be used to simplify manipulations drastically, our three construc-
tions are just special cases of that.

Several questions arise. Is there a connection between this notation and more familiar concepts
from many-body physics? Indeed, there is a profound connection to iterative decimation procedures
as they occur in renormalization group schemes, which we will discuss in Section 4.1.4.

The matrices can potentially be exponentially large and we will have to bound their size on a com-
puter to some D. Is this possible without becoming too inaccurate in the description of the state? In-
deed this is possible in one dimension: if we consider the mixed-canonical representation, we see that
for the exponentially decaying eigenvalue spectra of reduced density operators (hence exponentially
decaying singular values sa) it is possible to cut the spectrum following Eq. (27) at the D largest sin-
gular values (in the sense of an optimal approximation in the 2-norm) without appreciable loss of pre-
cision. This argument can be generalized from the approximation incurred by a single truncation to
that incurred by L� 1 truncations, one at each bond, to reveal that the error is at worst [96]
kjwi � jwtruncik
2
2 6 2

XL

i¼1

�iðDÞ; ð58Þ
where �iðDÞ is the truncation error (sum of discarded squared singular values) at bond i incurred by
truncating down to the leading D singular values. So the problem of approximability is as in DMRG
related to the eigenvalue spectra of reduced density operators, indicating failure in two dimensions,
and (a bit more tenuously) to the existence of area laws.

4.1.4. MPS and single-site decimation in one dimension
In order to connect MPS to more conventional concepts, let us imagine that we set up an iterative

growth procedure for our spin chain, ‘! ‘þ 1, as illustrated in Fig. 9, such that associated state spaces
grow by a factor of d at each step. In order to avoid exponential growth, we now demand that state
1 -1 1

|a -1〉A |a 〉A|σ 〉

Fig. 9. A block of length ‘� 1 is grown towards the right to a block of length ‘ by adding a site ‘.
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space dimensions have a ceiling of D. Once the state space dimension grows above D, the state space
has to be truncated down by some as of now undefined procedure.

Assume that somehow we have arrived at such a D-dimensional effective basis for our system (or
left block A, in DMRG language) of length ‘� 1; ja‘�1iA


 �
. If the D basis states of the (left) block A of

length ‘ after truncation are ja‘iA

 �

and the local states of the added site jr‘if g, we must have
Fig. 10
solid ci
ja‘iA ¼
X

a‘�1r‘
Aha‘�1r‘ja‘iA ja‘�1iAjr‘i; ð59Þ
for these states, with Aha‘�1r‘ja‘iA as of now unspecified. We now introduce at site ‘ d matrices A½‘�r‘ of
dimension ðD� DÞ each, one for each possible local state jr‘i. We can then rewrite Eq. (59) as
ja‘iA ¼
X

a‘�1r‘

A½‘�r‘a‘�1 ;a‘
ja‘�1iAjr‘i; ð60Þ
where the elements of the matrices A½‘�r‘ are given by (see Fig. 10)
A½‘�r‘a‘�1a‘
� Aha‘�1r‘ja‘iA: ð61Þ
Let us make a short remark on notations right here: in A½‘�r‘ ; ½‘� indicates which set of A-matrices is
considered, and r‘ which A-matrix in particular. In the present case, this is a notational overkill, be-
cause the local state jr‘i is taken from the site where the matrices were introduced. In such cases,
we drop one of the two ‘, usually ½‘�:
A½‘�r‘ ! Ar‘ : ð62Þ
We will, however, encounter situations where matrices A are selected by local states not on the site
where they were introduced. In such cases, the full notation obviously has to be restored!

Similarly, we will shorten ja‘iA ! ja‘i, when the fact that the state lives on block A is irrelevant or
totally obvious.

The advantage of the matrix notation, which contains the decimation procedure yet unspecified, is
that it allows for a simple recursion from a block of length ‘ to the smallest, i.e. vanishing block. Quan-
tum states obtained in this way take a very special form:
ja‘iA ¼
X
a‘�1

X
r‘

Ar‘
a‘�1 ;a‘

ja‘�1iAjr‘i ¼
X

a‘�1 ;a‘�2

X
r‘�1 ;r‘

Ar‘�1
a‘�2 ;a‘�1

Ar‘
a‘�1 ;a‘

ja‘�2iAjr‘�1ijr‘i ¼ 
 
 


¼
X

a1 ;a2 ;...;a‘�1

X
r1 ;r2 ;...;r‘

Ar1
1;a1

Ar2
a1 ;a2

 
 
Ar‘

a‘�1 ;a‘
jr1ijr2i; . . . ; jr‘i

¼
X
ri2A

ðAr1 Ar2 
 
 
Ar‘ Þ1;a‘ jr1ijr2i; . . . ; jr‘i; ð63Þ
where i runs through all sites of block A. The index ’A’ indicates that we are considering states on the
left side of the chain we are building. On the first site, we have, in order to keep in line with the matrix
notation, introduced a dummy row index 1: the states of block length 1 are built from the local states
on site 1 and the block states of the ‘‘block’’ of length 0, for which we introduce a dummy state and
index 1. This means that Ar1 is in fact a (row) vector (cf. Fig. 6). We also see that the left or row index
of A correspond to states ‘‘left’’ of those labelled by the right or column index. Quite generally, we can
show this construction as in Fig. 11, if – as before – we introduce the rule that all connected legs are
σ

a -1 a

a -1 a

σ

. Graphical representation of A-matrices: the left diagram represents Ar‘
a‘�1 ;a‘

, the right diagram the conjugate Ar‘�
a‘�1 ;a‘

. The
rcle represents the lattice sites, the vertical line the physical index, the horizontal lines the matrix indices.



σ1

a

σ

Fig. 11. Graphical representation of the recursive construction of a state ja‘i by contraction (multiplication) of A-matrices.
Contractions run over all connected legs.
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summed over (contracted). The advantage of the matrix notation is that we can hide summations in
matrix multiplications.

Similarly, we can build blocks to grow towards the left instead of to the right (Fig. 12): we have
ja‘iB ¼
X

a‘þ1r‘þ1

Bha‘þ1r‘þ1ja‘iB ja‘þ1iBjr‘þ1i ð64Þ
or
ja‘iB ¼
X

a‘þ1r‘þ1

B½‘þ1�r‘þ1
a‘ ;a‘þ1

ja‘þ1iBjr‘þ1i ð65Þ
with
B½‘þ1�r‘þ1
a‘ ;a‘þ1

¼ B a‘þ1r‘þ1ja‘h iB: ð66Þ
We call matrices B to indicate that they emerge from a growth process towards the left, in DMRG lan-
guage this would mean block B. Recursion gives
ja‘iB ¼
X
ri2B

ðBr‘þ1 Br‘þ2 
 
 
BrL Þa‘þ1 ;1
jr‘þ1ijr‘þ2i; . . . ; jrLi; ð67Þ
where i runs from ‘þ 1 to L, the sites of block B. A similar dummy index as for position 1 is introduced
for position L, where the B-matrix is a (column) vector.

Note a slight asymmetry in the notation compared to the A-matrices: in order to be able to match
blocks A and B later, we label block states according to the bond at which they terminate: bond ‘ con-
nects sites ‘ and ‘þ 1, hence a labeling as in Fig. 13.

If we introduce A-matrices and B-matrices in this way, they can be seen to have very special prop-
erties. If we consider the growth from the left, i.e. A-matrices, and demand reasonably that the chosen
states should for each block length be orthonormal to each other, we have using Eq. (60)
da0
‘
;a‘ ¼ Aha0‘ja‘iA ¼

X
r0
‘
;r‘

X
a0
‘�1 ;a‘�1

A
r0
‘
�

a0
‘�1

;a0
‘
Ar‘

a‘�1 ;a‘ Aha0‘�1r
0
‘ja‘�1r‘iA

¼
X
r‘

X
a‘�1

Ar‘y
a0
‘
;a‘�1

Ar‘
a‘�1 ;a‘

¼
X
r‘

ðAr‘yAr‘ Þa0
‘
;a‘
:

Summarizing we find that the A-matrices are left-normalized:
X
r

AryAr ¼ I: ð68Þ
A graphical representation is provided in Fig. 14: The multiplication can also be interpreted as the con-
traction of A and A� over both r and their left index.
+2

|a +1〉B|a 〉B |σ +1〉

L L+1+1

Fig. 12. A block B of length L� ‘� 1 is grown towards the left to a block B of length L� ‘ by adding site ‘þ 1.



Fig. 13. Blocks A (sites 1 through ‘) and B (sites ‘þ 1 through L) are joined at bond ‘. States are labelled ja‘iA and ja0‘iB.

Fig. 14. If two left-normalized A-matrices are contracted over their left index and the physical indices, a da0
‘
;a‘ line results.
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Similarly, we can derive for B-matrices of blocks B built from the right that the right-normalization
identity
Fig. 15
X
r

BrBry ¼ I; ð69Þ
holds (usually, A and B will be used to distinguish the two cases). See Fig. 15. This means that ortho-
normal states can always be decomposed into left- or right-normalized matrices in the MPS sense and
that all states constructed from left- or right-normalized matrices form orthonormal sets, provided the
type of normalization and the direction of the growth match.

Let us take a closer look at the matrix dimensions. Growing from the left, matrix dimensions go as
ð1� dÞ; ðd� d2Þ; ðd2 � d3Þ; ðd3 � DÞ, where I have assumed that d4

> D. Then they continue at dimen-
sions ðD� DÞ. At the right end, they will have dimensions ðD� DÞ; ðD� d3Þ; ðd3 � d2Þ; ðd2 � dÞ and
ðd� 1Þ.

We can now again write down a matrix product state. Putting together a chain of length L from a
(left) block A of length ‘ (sites 1 to ‘) and a (right) block B of length L� ‘ (sites ‘þ 1 to L), we can form a
general superposition
jwi ¼
X
a‘ ;a0‘

Wa‘;a0‘
ja‘iAja0‘iB: ð70Þ
Inserting the states explicitly, we find
jwi ¼
X
r

ðAr1 
 
 
Ar‘ Þ1;a‘Wa‘ ;a0‘
ðBr‘þ1 
 
 
BrL Þa0

‘
;1jri: ð71Þ
The bold-faced r stands for all local state indices, jri ¼ jr1;r2; . . . ;rLi. The notation suggests to inter-
pret W as a matrix; then the notation simplifies to
jwi ¼
X
r

Ar1 
 
 
Ar‘WBr‘þ1 
 
 
BrL jri: ð72Þ
If we allow general matrices and do not worry about left, right or no normalization, we can simply
multiply the W-matrix into one of the adjacent A or B matrices, such that the general MPS for open
boundary conditions appears (see Fig. 16):
jwi ¼
X
r

Mr1 
 
 
MrL jri ðMPS for OBCÞ; ð73Þ
. If two right-normalized B-matrices are contracted over their right index and the physical indices, a da0
‘
;a‘ line results.



Fig. 16. Representation of an open boundary condition MPS.
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where no assumption about the normalization is implied (which is why I call matrices M). Due to the
vectorial nature of the first and last matrices the product results in a scalar. This is exactly the form of
an MPS already discussed in the last section.

At this point it is easy to see how a matrix product state can exploit good quantum numbers. Let us
focus on magnetization and assume that the global state has magnetization M. This Abelian quantum
number is additive, M ¼

P
iMi. We choose local bases frig whose states are eigenstates of local mag-

netization. Consider now the growth process from the left. If we choose the states ja1i to be eigen-
states of local magnetization (e.g. by taking just the jr1i), then Eq. (59) allows us to construct by
induction states ja‘i that are eigenstates of magnetization, provided the matrices Ar‘

a‘�1 ;a‘
obtain a block

structure such that for each non-zero matrix element
Fig. 17.
become
before
Mðja‘�1iÞ þMðjr‘iÞ ¼ Mðja‘iÞ; ð74Þ
holds. This can be represented graphically easily by giving directions to the lines of the graphical rep-
resentation (Fig. 17), with ingoing and outgoing arrows. The rule is then simply that the sum of the
magnetizations on the ingoing lines equals that on the outgoing lines. In order to enforce some global
magnetization M, we may simply give magnetization values 0 and M to the ingoing and outgoing dum-
my bonds before the first and after the last site. We may envisage that the indices of the MPS matrices
are multiindices for a given magnetization allowing degeneracy, leading to elegant coding represen-
tation. An inversion of the bond arrows would directly tie in with the structure of B-matrices from
the growth from the right, but proper book-keeping gives us lots of freedom for the arrows: an inver-
sion means that the sign has to be reversed.

In order to use good quantum numbers in practice, they have to survive under the typical opera-
tions we carry out on matrix product states. It turns out that all operations that are not obviously
unproblematic and maintain good quantum numbers can be expressed by SVDs. An SVD will be ap-
plied to matrices like Aðai�1riÞ;ai

. If we group states jai�1rii and jaii according to their good quantum
number, A will consist of blocks; if we rearrange labels appropriately, we can write
A ¼ A1 � A2 � 
 
 
 ¼ U1S1V y1 � U2S2V y2 � 
 
 
 or A ¼ USV y where U ¼ U1 � U2 � 
 
 
 and so forth. But this
means that the new states generated from jai�1rii via U will also have good quantum numbers. When
the need for truncation arises, this property of course still holds for the retained states. If we replace
SVD by QR where possible and carry it out on the individual blocks, Ai ¼ QiRi, the unitary matrices Qi

transform within sets of states of the same quantum numbers, hence they remain good quantum
numbers.

Let us now assume that our lattice obeys periodic boundary conditions. At the level of the state
coefficients cr1 ;...;rL there is no notion of the boundary conditions, hence our standard form of an
MPS is capable to describe a state that reflects periodic boundary conditions. In that sense it is in fact
wrong to say that Eq. (73) holds only for open boundary conditions. It is true in the sense that the
anomalous structure of the matrices on the first and last sites is not convenient for periodic boundary
conditions; indeed, the entanglement across the bond ðL;1Þmust be encoded as stretching through the
entire chain. This leads to numerically very inefficient MPS representations.
Representation of an open boundary condition MPS with good (additive) quantum numbers. Physical states and bonds
directed, such that the quantum numbers on the ingoing lines equal those on the outgoing lines. For the dummy bonds

the first and after the last site we set suitable values to fix the global good quantum number.



Fig. 18. Representation of a periodic boundary condition MPS; the long line at the bottom corresponds to the trace operation.
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For periodic boundary conditions the natural generalization of the MPS form is to make all matrices
of equal dimensions ðD� DÞ; as site L connects back to site 1, we make the MPS consistent with matrix
multiplications on all bonds by taking the trace (see Fig. 18):
jwi ¼
X
r

TrðMr1 
 
 
MrL Þjri ðMPS for PBCÞ: ð75Þ
While a priori not more accurate than the other, it is much better suited and computationally far more
efficient.

In this section, our emphasis has been on approximate representations of quantum states rather
than on usually unachievable exact representations. While we have no prescription yet how to con-
struct these approximate representations, some remarks are in order.

Even an approximate MPS is still a linear combination of all states of the Hilbert space, no product
basis state has been discarded. The limiting constraint is rather on the form of the linear combina-
tions: instead of dL coefficients, dL matrices of dimension ðD� DÞ with a matrix-valued normalization
constraint that gives LD2 scalar constraints have ðd� 1ÞLD2 independent parameters only, generating
interdependencies of the coefficients of the state.

The quality of the optimal approximation of any quantum state for given matrix dimensions will
improve monotonically with D: take D < D0, then the best approximation possible for D can be written
as an MPS with D0 with ðD� DÞ submatrices in the ðD0 � D0Þ matrices and all additional rows and col-
umns zero. They give further parameters for improvement of the state approximation.

Product states (with Schmidt rank 1 for any Schmidt decomposition) can be written exactly using
D ¼ 1 MPS. Real quantum physics with entangled states starts at D ¼ 2. Given the exponential number
of coefficients in a quantum state, it may be a surprise that even in this simplest non-trivial case inter-
esting quantum physics can be done exactly! But there are important quantum states that find a com-
pact exact expression in this new format.

4.1.5. The AKLT state as a matrix product state
In order to make the MPS framework less abstract, let us construct the MPS representation of a

non-trivial quantum state. One of the most interesting quantum states in correlation physics is the Af-
fleck-Kennedy-Lieb-Tasaki state introduced in 1987, which is the ground state of the AKLT Hamiltonian
[33,34]
bH ¼X
i

Si 
 Siþ1 þ
1
3
ðSi 
 Siþ1Þ2; ð76Þ
where we deal, exceptionally in this paper, with S ¼ 1 spins. It can be shown that the ground state of
this Hamiltonian can be constructed as shown in Fig. 19. Each individual spin-1 is replaced by a pair of
spin-1

2 which are completely symmetrized, i.e. of the four possible states we consider only the three
triplet states naturally identified as S ¼ 1 states:
jþi ¼ j ""i;

j0i ¼ j "#i þ j #"iffiffiffi
2
p ; ð77Þ

j�i ¼ j ##i:

On neighbouring sites, adjacent pairs of spin-1

2 are linked in a singlet state
j "#i � j #"iffiffiffi
2
p : ð78Þ



spin-1 spin-1/2singlet

Fig. 19. The Affleck–Kennedy–Lieb–Tasaki (AKLT) state is built from expressing the local spin-1 as two totally symmetrized
spin-1

2 particles which are linked across sites by singlet states. The picture shows the case of PBC, for OBC the ‘‘long’’ bond is cut,
and two single spins-1

2 appear at the ends.
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As it turns out, this state can be encoded by a matrix product state of the lowest non-trivial dimen-
sion D ¼ 2 and contains already lots of exciting physics [33–35]. In the language of the auxiliary 2L
spin-1

2 states on a chain of length L any state is given as
jwi ¼
X

a

X
b

cabjabi ð79Þ
with jai ¼ ja1; . . . ; aLi and jbi ¼ jb1; . . . ; bLi representing the first and second spin-1
2 on each site. We

now encode the singlet bond Ri on bond i connecting sites i and iþ 1 as
jR½i�i ¼
X

biaiþ1

Rbajbiijaiþ1i; ð80Þ
introducing a 2� 2 matrix R
R ¼
0 1ffiffi

2
p

� 1ffiffi
2
p 0

" #
: ð81Þ
Then the state with singlets on all bonds reads
jwRi ¼
X

a

X
b

Rb1a2 Rb2a3 ; . . . ;RbL�1aL
RbLa1 jabi ð82Þ
for periodic boundary conditions. If we consider open boundary conditions, RbLa1 is omitted and the
first and last spin-1

2 remain single.
Note that this state is a product state factorizing upon splitting any site i into its two constituents.

We now encode the identification of the symmetrized states of the auxiliary spins with the physical
spin by introducing a mapping from the states of the two auxiliary spins-1

2 ; jaiijbii 2 fj "i; j #ig�2 to the
states of the physical spin-1, jrii 2 fjþi; j0i; j�ig. To represent Eq. (77), we introduce Mr

abjrihabj, with
jabi and jri representing the auxiliary spins and the physical spin on site i. Writing Mr

ab as three 2� 2
matrices, one for each value of jri, with rows and column indices standing for the values of jai and jbi,
we find
Mþ ¼
1 0
0 0

� 	
M0 ¼

0 1ffiffi
2
p

1ffiffi
2
p 0

" #
M� ¼

0 0
0 1

� 	
: ð83Þ
The mapping on the spin-1 chain Hilbert space fjrig then reads
X
r

X
ab

Mr1
a1b1

Mr2
a2b2

 
 
MrL

aLbL
jrihabj: ð84Þ
jwRi therefore is mapped to
X
r

X
ab

Mr1
a1b1

Rb1a2 Mr2
a2b2

Rb2a3 ; . . . ;RbL�1aL
MrL

aLbL
RbLa1 jri ð85Þ
or
jwi ¼
X
r

TrðMr1 RMr2R 
 
 
MrLR�Þjri; ð86Þ
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using the matrix notation. To simplify further, we introduce eAr ¼ MrR, such that
eAþ ¼ 0 1ffiffi
2
p

0 0

" # eA0 ¼
� 1

2 0
0 þ 1

2

" # eA� ¼ 0 0
� 1ffiffi

2
p 0

" #
: ð87Þ
The AKLT state now takes the form
jwi ¼
X
r

TrðeAr1 eAr2 
 
 
 eArL Þjri: ð88Þ
Let us left-normalize the eAr.
P

r
eAryeAr ¼ 3

4 I, which implies that the matrices eA should be rescaled by
2ffiffi
3
p , such that we obtain normalized matrices A,
Aþ ¼ 0
ffiffi
2
3

q
0 0

" #
A0 ¼

� 1ffiffi
3
p 0

0 1ffiffi
3
p

" #
A� ¼

0 0

�
ffiffi
2
3

q
0

" #
: ð89Þ
This normalizes the state in the thermodynamic limit: we have
hwjwi¼
X
r

TrðAr1 
 
 
ArL Þ�TrðAr1 
 
 
ArL Þ¼Tr
X
r1

Ar1� �Ar1

 !

 
 


X
rL

ArL� �ArL

 !
¼TrEL¼

X4

i¼1

kL
i :
In this expression, the ki are the 4 eigenvalues of
E ¼
X
r

Ar� � Ar ¼

1
4 0 0 1

2

0 � 1
4 0 0

0 0 � 1
4 0

1
2 0 0 1

4

26664
37775; ð90Þ
namely 1;� 1
3 ;� 1

3 ;� 1
3. But then hwjwi ¼ 1þ 3ð�1=3ÞL ! 1 for L!1.

The methods of the next section can now be used to work out analytically the correlators of the

AKLT state: antiferromagnetic correlators are decaying exponentially, Sz
i Sz

j

D E
/ ð�1=3Þi�j, whereas

the string correlator Sz
i eip
P

i<k<j
Sz

k Sz
j

D E
¼ �4=9 for j� i > 2, indicating hidden order.

To summarize, it has been possible to express the AKLT state as a D ¼ 2 matrix product state, the
simplest non-trivial MPS! In fact, the projection from the larger state space of the auxiliary spins
which are linked by maximally entangled states (here: singlets) onto the smaller physical state space
can also be made the starting point for the introduction of MPS and their higher-dimensional gener-
alizations [56,66].

4.2. Overlaps, expectation values and matrix elements

Let us now turn to operations with MPS, beginning with the calculation of expectation values.
Expectation values are obviously special cases of general matrix elements, where states jwi and j/i
are identical. Staying in the general case, let us consider an overlap between states jwi and j/i, de-
scribed by matrices M and eM , and focus on open boundary conditions.

Taking the adjoint of j/i, and considering that the wave function coefficients are scalars, the over-
lap reads
h/jwi ¼
X
r

eMr1� 
 
 
 eMrL�Mr1 
 
 
MrL : ð91Þ
Transposing the scalar formed from the eM 
 
 
 eM (which is the identity operation), we arrive at adjoints
with reversed ordering:
h/jwi ¼
X
r

eMrLy 
 
 
 eMr1yMr1 
 
 
MrL : ð92Þ
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In a pictorial representation (Fig. 20), this calculation becomes much simpler, if we follow the rule that
all bond indices are summed over.

4.2.1. Efficient evaluation of contractions
Evaluating expression (92) in detail shows the importance of finding the right (optimal) order of

contractions in matrix or more generally tensor networks. We have contractions over the matrix indi-
ces implicit in the matrix multiplications, and over the physical indices. If we decided to contract first
the matrix indices and then the physical indices, we would have to sum over dL strings of matrix mul-
tiplications, which is exponentially expensive. But we may regroup the sums as follows:
Fig

Fig. 21.
through
h/jwi ¼
X
rL

eMrLy 
 
 

X
r2

eMr2y
X
r1

eMr1yMr1

 !
Mr2

 !

 
 


 !
MrL : ð93Þ
This means, in the (special) first step we multiply the column and row vectors eMr1y and Mr1 to form a
matrix and sum over the (first) physical index. In the next step, we contract a three-matrix multipli-
cation over the second physical index, and so forth (Fig. 21). The important observation is that from
the second step onwards the complexity does not grow anymore. Also, it is of course most efficient
to decompose matrix multiplications ABC as ðABÞC or AðBCÞ. Then we are carrying out ð2L� 1Þd mul-
tiplications, each of which is of complexity OðD3Þ, ignoring for simplicity that matrices are non-square
in general at the moment. The decisive point is that we go from exponential to weak polynomial com-
plexity, with total operation count OðLD3dÞ.

What is also immediately obvious, is that for a norm calculation hwjwi and OBC having a state in
left- or right-normalized form immediately implies that it has norm 1. In the calculation above it
can be seen that for left-normalized matrices A, the innermost sum is just the left-normalization con-
dition, yielding I, so it drops out, and the next left-normalization condition shows up, until we are
through the chain (Fig. 22):
hwjwi ¼
X
rL

ArLy 
 
 

X
r2

Ar2y
X
r1

Ar1yAr1

 !
Ar2

 !

 
 


 !
ArL ¼

X
rL

ArLy 
 
 

X
r2

Ar2yAr2

 !

 
 


 !
ArL

¼ 
 
 
 ¼
X
rL

ArLyArL ¼ 1:
|ψ〉

〈φ|

. 20. Overlap between two states j/i and jwi. All contractions (sums) over same indices are indicated by arrows.

1
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3
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6
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10

9

|ψ〉

〈φ|

Overlap between two states j/i and jwi with indication of the optimal sequence of contractions, running like a zipper
the chain.



|ψ〉

〈ψ|

= 1

Fig. 22. Steps of a norm calculation for a left normalized state jwi by subsequent applications of the contraction rule for left-
normalized A-matrices.
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To calculate general matrix elements, we consider /jbO½i� bO½j� 
 
 
 jwD E
, tensored operators acting on

sites i and j. The matrix elements of such operators are taken from
Fig. 23.
places,
bO½‘� ¼X
r‘ ;r0‘

Or‘ ;r0‘ jr‘ihr0‘j: ð94Þ
Let us extend this to an operator on every site, which in practice will be the identity on almost all sites,
e.g. for local expectation values or two-site correlators. We are therefore considering operator matrix
elements Or1 ;r01 Or2 ;r02 
 
 
OrL ;r0L . In the analytical expression, we again transpose and distribute the (now
double) sum over local states (matrix multiplications for the M-matrices are as before):
X

r;r0

eMr1� 
 
 
 eMrL�Or1 ;r01 Or2 ;r02 
 
 
OrL ;r0L Mr01 
 
 
Mr0L

¼
X
rL ;r0L

OrL ;r0L eMrLy 
 
 

X
r2 ;r02

Or2 ;r02 eMr2y
X
r1 ;r01

Or1 ;r01 eMr1yMr01

0@ 1AMr02

0@ 1A . . .

0@ 1AMr0L :
This amounts to the same calculation as for the overlap, with the exception that formally the single sum
over the physical index turns into a double sum (Fig. 23). For typical correlators the double sum will triv-
ially reduce to a single sum on most sites, as for most sites only the identity acts, bO½i� ¼ bI; on the few non-
trivial sites, of the up to d2 matrix elements, most will be zero for conventional operators, strongly
restricting the number of terms, so essentially the operational count is OðLD3dÞ again.

Important simplifications for expectation values wjbO½‘� jwD E
are feasible and should be exploited

whenever possible: assume that we look at a local operator bO½‘� and that normalizations are such that
to the left of site ‘ all matrices are left-normalized and to the right of site ‘ all matrices are right-nor-
malized; the status of site ‘ itself is arbitrary. Then left- and right-normalization can be used to con-
tract the network as in Fig. 22 without explicit calculation, such that just two matrices remain
(Fig. 24). The remaining calculation is just
wjbO½‘�jwD E
¼
X
r‘r0‘

Or‘r0‘Tr Mr‘yMr0
‘

� �
; ð95Þ
an operation of order OðD2d2Þ, saving one order of D in calculation time. As we will encounter algo-
rithms where the state is in such mixed-canonical representation, it makes sense to calculate observ-
ables ‘‘on the sweep’’. This is just identical to expectation values on the explicit sites of DMRG.
OO

|ψ〉

〈φ|

Matrix elements between two states j/i and jwi are calculated like the overlap, with the operators inserted at the right
generating a double sum of physical indices there, as indicated by the arrows.



O

Fig. 24. hwjbO½‘� jwi for a state jwi with left- and right-normalized matrices to the left and right of site ‘.
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A frequently used notation for the calculation of overlaps, expectation values and matrix elements
is provided by reading the hierarchy of brackets as an iterative update of a matrix, which eventually
gives the scalar result. We now introduce matrices C½‘�, where C½0� is a dummy matrix, being the scalar
1. Then an overlap h/jwi can be carried out iteratively by running ‘ from 1 through L:
C ½‘� ¼
X
r‘

eMr‘yC ½‘�1�Mr‘ ; ð96Þ
where C½L� will be a scalar again, containing the result. For operators taken between the two states, the
natural extension of this approach is
C ½‘� ¼
X
r‘;r0‘

Or‘;r0‘ eMr‘yC ½‘�1�Mr0
‘ : ð97Þ
Again, the right order of evaluating the matrix products makes a huge difference in efficiency:
C ½‘�a‘;a0‘
¼
X

r‘ ;a‘�1

eMr‘�
a‘�1 ;a‘

X
r0
‘

Or‘ ;r0‘
X
a0
‘�1

C ½‘�1�
a‘�1 ;a0‘�1

M
r0
‘

a0
‘�1

;a0
‘

0@ 1A0@ 1A; ð98Þ
reduces an operation OðD4d2Þ to OðD3dÞ þ OðD2d2Þ þ OðD3dÞ.
Of course, we can also proceed from the right end, introducing matrices D½‘�, starting with D½L� ¼ 1, a

scalar. To this purpose, we exchange the order of scalars in h/jwi,
h/jwi ¼
X
r

Mr1 
 
 
MrL eMr1� 
 
 
 eMrL� ð99Þ
and transpose again the eM-matrices, leading to a hierarchy of bracketed sums, with the sum over rL

innermost. The iteration running from ‘ ¼ L to ‘ ¼ 1 then reads:
D½‘�1� ¼
X
r‘

Mr‘D½‘� eMr‘y; ð100Þ
which can be extended to the calculation of matrix elements as
D½‘�1� ¼
X
r‘ ;r0‘

Or‘ ;r0‘Mr0
‘D½‘� eMr‘y: ð101Þ
D½0� then contains the result.
This approach is very useful for book-keeping, because in DMRG we need operator matrix elements

for left and right blocks, which is just the content of the C- and D-matrices for blocks A and B. As blocks
grow iteratively, the above sequence of matrices will be conveniently generated along with block
growth.

4.2.2. Transfer operator and correlation structures
Let us formalize the iterative construction of C½‘�-matrices of the last section a bit more, because it is

useful for the understanding of the nature of correlations in MPS to introduce a transfer (super)oper-
ator bE½‘�, which is a mapping from operators defined on block A with length ‘� 1 to operators defined
on block A with length ‘,
fja‘�1iha0‘�1jg ! fja‘iha0‘jg ð102Þ
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and defined as
bE½‘� ¼ X
a‘�1 ;a0‘�1

X
a‘ ;a0‘

X
r‘

M½‘�r‘� �M½‘�r‘

 !
a‘�1a0

‘�1 ;a‘ ;a
0
‘

ðja‘�1iha0‘�1jÞðja‘iha0‘jÞ; ð103Þ
where we read off the expression in brackets as the matrix elements of E½‘� of dimension D2
‘�1 � D2

‘

� �
,

the M-matrix dimensions at the respective bonds. It generalizes to the contraction with an interposed
operator at site ‘ as
E½‘�O ¼
X
r‘ ;r0‘

Or‘ ;r0‘M½‘�r‘� �M½‘�r0
‘ : ð104Þ
How does bE½‘� act? From the explicit notation
E½‘�ða‘�1a0
‘�1
Þ;ða‘a0‘Þ

¼
X
r‘

M½‘�r‘�
a‘�1 ;a‘


M½‘�r‘
a0
‘�1

;a0
‘

ð105Þ
we can read bE½‘�½bO½‘�1�� as an operation on a matrix O½‘�1�
a;a0 as
E½‘�½O½‘�1�� ¼
X
r‘

Mr‘yO½‘�1�Mr‘ ð106Þ
or on a row vector of length D2
‘�1 with coefficients vaa0 ¼ O½‘�1�

a;a0 multiplied from the left,
X
r‘

X
a‘�1 ;a0‘�1

va‘�1a0
‘�1

Mr‘�
a‘�1 ;a‘

Mr‘
a0
‘�1 ;a

0
‘
: ð107Þ
The C-matrices of the last section are then related as
C ½‘� ¼ E½‘� C ½‘�1�
h i

; ð108Þ
but we will now take this result beyond numerical convenience: If D‘�1 ¼ D‘, we can also ask for eigen-
values, eigenmatrices and (left or right) eigenvectors interchangeably. In this context we obtain the
most important property of E, namely that if it is constructed from left-normalized matrices A or
right-normalized matrices B, all eigenvalues jkkj 6 1.

In fact, for k1 ¼ 1 and left-normalized A-matrices, the associated left eigenvector vaa0 ¼ daa0 , as can
be seen by direct calculation or trivially if we translate it to the identity matrix:
E½I� ¼
X
r

Ary 
 I 
 Ar ¼ 1 
 I: ð109Þ
The right eigenvector for E constructed from left-normalized A matrices is non-trivial, but we will
ignore it for the moment. For right-normalized B matrices, the situation is reversed: explicit calcula-
tion shows that vaa0 ¼ daa0 is now right eigenvector with k1 ¼ 1, and the left eigenvector is non-trivial.

To show that 1 is the largest eigenvalue [97], we consider C0 ¼ E½C�. The idea is that then one can
show that s01 6 s1 for the largest singular values of C0 and C, if E is constructed from either left- or right-
normalized matrices. This immediately implies that all eigenvalues of E; jkij 6 1 : C0 ¼ kiC implies
s01 ¼ jkijs1, such that jkij > 1 would contradict the previous statement. The existence of several
jkij ¼ 1 cannot be excluded. The proof runs as follows (here for left-normalized matrices): consider
the SVD C ¼ UySV . C is square, hence UyU ¼ UUy ¼ V yV ¼ VV y ¼ I. We can then write
C 0 ¼
X
r

AryUySVAr ¼ ðUA1Þy . . . ðUAdÞy

 � S

S

S

264
375 VA1

..

.

VAd

2664
3775 ¼ Py

S

S

S

264
375Q : ð110Þ
We have PyP ¼ I and Q yQ ¼ I (however PPy – I; QQ y – I), if the Ar are left-normalized:
PyP ¼

P
rAryUyUAr ¼

P
rAryAr ¼ I and similarly for Q; they therefore are reduced basis transforma-

tions to orthonormal subspaces, hence the largest singular value of C0 must be less or equal to that
of S, which is s1.



126 U. Schollwöck / Annals of Physics 326 (2011) 96–192
Independent of normalization, the overlap calculation becomes
hwjwi ¼ E½1�E½2�E½3� 
 
 
 E½L�2�E½L�1�E½L� ð111Þ
and expectation value calculations before proper normalization by hwjwi would read
w bO½1� bO½2� 
 
 
 bO½L�1� bO½L���� ���wD E
¼ E½1�O1

E½2�O2
E½3�O3

 
 
 E½L�2�

OL�2
E½L�1�

OL�1
E½L�OL

: ð112Þ
Numerically, this notation naively taken is not very useful, as it implies OðD6Þ operations; of course, if
its internal product structure is accounted for, we return to OðD3Þ operations as previously discussed.
But analytically, it reveals very interesting insights. Let us assume a translationally invariant state
with left-normalized site-independent A-matrices (hence also site-independent E) with periodic
boundary conditions. Then we obtain in the limit L!1
hwjbO½i� bO½j�jwi ¼ TrE½1� 
 
 
 E½i�1�E½i�O E½iþ1� 
 
 
 E½j�1�E½j�O E½jþ1� 
 
 
 E½L� ¼ TrE½i�O Ej�i�1E½j�O EL�jþi�1

¼
X

l;k

hljE½i�O jkik
j�i�1
k hkjE½j�O jlik

L�jþi�1
l ¼

X
k

h1jE½i�O jkik
j�i�1
k hkjE½j�O j1i ðL!1Þ;
where kk are the eigenvalues of E. We have used jkkj 6 1 for E from normalized matrices and that
k1 ¼ 1 is the only eigenvalue of modulus 1; but relaxing the latter (not necessarily true) assumption
would only introduce a minor modification. jki and hkj are the right and left eigenvectors of (non-Her-
mitian) E for eigenvalues kk. h1j corresponds to the eigenoperator I for E from left-normalized A.

The decisive observation is that correlators can be long-ranged (if the matrix elements h1jE½i�O j1i are
finite) or are a superposition of exponentials with decay length nk ¼ �1= ln kk, such that MPS two-
point correlators take the generic form
w bO½i� bO½j���� ���wD E
hwjwi ¼ c1 þ

XD2

k¼2

cke�r=nk ; ð113Þ
where r ¼ jj� i� 1j and ck ¼ h1jE½i�O jkihkjE
½j�
O j1i for i < j.

A simple example can be extracted from the AKLT state of the previous section. The eigenvalues of E
were already found to be 1;�1=3;�1=3;�1=3. For the spin-operators, the matrix elements for long-
range order vanish, such that the correlation hbSz

i
bSz

j i ¼ ð12=9Þð�1Þj�ie�ðj�iÞ ln 3 for j > i, a purely exponen-
tial decay with correlation length n ¼ 1= ln 3 ¼ 0:9102. On the other hand, for the string correlator, the
long-range matrix elements are finite, and long-range order emerges in the string correlator.

The form of correlators of MPS has important consequences: the usual form correlators take in one
dimensional quantum systems in the thermodynamic limit is either the Ornstein–Zernike form
O0Oxh i 	 e�x=nffiffiffi
x
p ð114Þ
or the critical power-law form (maybe with logarithmic corrections),
O0Oxh i 	 x�a: ð115Þ
The AKLT state belongs to a very special state class whose correlation functions mimic a quantum sys-
tem in a lower spatial dimension (so-called dimensional reduction), which removes the

ffiffiffi
x
p

-term; the
AKLT state sits on a so-called disorder line, where such phenomena occur [98].

Any finite-dimensional MPS therefore will only approximate the true correlator by a superposition
of exponentials. It turns out that this works very well on short distances, even for power laws. What
one observes numerically is that the true correlation function will be represented accurately on
increasingly long length scales as D is increased. Eventually, the slowest exponential decay will sur-
vive, turning the correlation into a pure exponential decay with n ¼ �1= ln k, where k is the largest
eigenvalue of E that contributes to the correlator. The comparison of curves for various D is therefore
an excellent tool to gauge the convergence of correlation functions and the length scale on which it
has been achieved.
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4.2.3. MPS and reduced density operators
As we have already seen for DMRG, the concept of reduced density operators is of importance in

various ways. Let us express them using the MPS notation. We have
jwihwj ¼
X
r;r0

Ar1 
 
 
ArL Ar01� 
 
 
Ar0L�jrihr0j ¼
X
r;r0

Ar1 
 
 
ArL Ar0Ly 
 
 
Ar01yjrihr0j: ð116Þ
We now bipartition into AB, where A contains sites 1 through ‘ and B sites ‘þ 1 through L. Tracing out
the degrees of freedom of B in the last expression we obtain
q̂½‘�A ¼ TrBjwihwj ¼
X

r;r02A

Ar1 
 
 
Ar‘q½‘�A Ar0
‘
y 
 
 
Ar01yjrihr0j; ð117Þ
where
q½‘�A ¼
X
r2B

Ar‘þ1 
 
 
ArL ArLy 
 
 
Ar‘þ1y: ð118Þ
This equation immediately implies a recursion relation between different reduced density matrices,
namely
q½‘�1�
A ¼

X
r‘

Ar‘q½‘�A Ar‘y: ð119Þ
In the thermodynamic limit L!1; ‘!1 of a translationally invariant system, we may therefore ask
whether a fixed point relationship
qf
A ¼

X
r

Arqf
AAry ð120Þ
is fulfilled.
All these equations hold even if the matrices of the MPS are not left-normalized. In the case that

they are, we can directly express the density operator in the orthonormal basis generated by the
A-matrices, namely
q̂½‘�A ¼
X
a‘;a0‘

q½‘�A

� �
a‘ ;a0‘
ja‘iAAha0‘j: ð121Þ
Similar relationships hold for the reduced density operator of B, where (using B-matrices now) we
obtain
q̂½‘�B ¼ TrAjwihwj ¼
X

r;r02B

Br0Ly 
 
 
Br0
‘þ1yq½‘�B Br‘þ1 
 
 
BrL jrihr0j; ð122Þ
where
q½‘�B ¼
X
r2A

Br‘y 
 
 
Br1yBr1 
 
 
Br‘ ð123Þ
and the recursion relationship
q½‘�B ¼
X
r‘

Br‘yq½‘�1�
B Br‘ ; ð124Þ
giving rise to a potential fixed point relationship
qf
B ¼

X
r

Bryqf
BBr: ð125Þ
Again, all these relationships would hold for arbitrary MPS matrices, but if they are right-normalized,
we again get an expression in an orthonormal basis, now generated by the B-matrices,
q̂½‘�B ¼
X
a‘;a0‘

q½‘�B

� �
a‘ ;a0‘
ja‘iBBha0‘j: ð126Þ
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In the case of a mixed-canonical state jwi ¼
P

rAr1 
 
 
Ar‘WBr‘þ1 
 
 
BrL jri a rerun of the calculation
shows that
q̂½‘�A ¼ WWy ð127Þ
and
q̂½‘�B ¼ WyW; ð128Þ
expressed in an orthonormal basis.

4.3. Adding two matrix product states

An operation that one needs comparatively rarely in practice is the addition of two MPS. Let us first
consider the PBC case, which is easier. Taking two MPS, with no normalization assumed,
jwi ¼
X
r

TrðMr1 
 
 
MrL Þjri j/i ¼
X
r

Trð eMr1 
 
 
 eMrL Þjri; ð129Þ
we can write down
jwi þ j/i ¼
X
r

TrðNr1 
 
 
NrLÞjri; ð130Þ
where
Nri ¼ Mri � eMri : ð131Þ
This means that we simply take M and eM as diagonal blocks of a matrix N. The diagonal block structure
implies that upon multiplying the N matrices the result is again diagonal, with MMMMM . . . in the first
and eM eM eM eM eM . . . in the second block. Then the trace can be split, and we are back at the original
states:
TrðNNNNNNÞ ¼ Tr
MMMMMM 0

0 eM eM eM eM eM eM
� �

¼ TrðMMMMMMÞ þ Trð eM eM eM eM eM eMÞ:
ð132Þ
In the case of OBC, we can proceed in exactly the same fashion. On the first and last sites, something
special has to happen: naively, the first and last dimensions would go up to 2, and the scalar nature be
lost. Physically, these indices are dummies anyways. So what we have to do (and a simple calculation
shows that this works) is to form a row vector ½M eM� and a column vector ½M eM�T on the last sites, from
the row and column vectors of the original states.

Addition of MPS therefore leads to new matrices with dimension DN ¼ DM þ DeM , such that MPS of a
certain dimension are not closed under addition. It is also obvious that in many cases this way of
describing a new state is uneconomical: the extreme case would be adding jwi þ jwi, where the result-
ing state is the same, just with a prefactor 2, so matrix dimensions should not increase. So after addi-
tions it is worthwhile to consider compressing the MPS again to some lower dimension, which
depending on the states added may or may not (like in the example) incur a loss of information.

4.4. Bringing a matrix product state into canonical form

For a general matrix product state, no particular demands are placed on the matrices Mri except
that their dimensions must match appropriately. Certain classes of matrices are to be preferred,
namely left- and right-normalized matrices, leading to left- and right-canonical MPS: certain contrac-
tions become trivial, orthonormal reduced bases are generated automatically.

In order to bring an arbitrary MPS to canonical form we exploit that SVD generates either unitary
matrices or matrices with orthonormal rows and columns which can be shown to obey the left- or
right normalization condition.
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4.4.1. Generation of a left-canonical MPS
Setting out from a general MPS, without normalization assumption, making the contractions

explicit,
jwi ¼
X
r

X
a1 ;...

Mr1
1;a1

Mr2
a1 ;a2

Mr3
a2 ;a3

 
 
 jri; ð133Þ
we reshape Mr1
1;a1

by grouping physical and left (row) index to carry out an SVD on the new M, yielding
M ¼ ASV y:
X

r

X
a1 ;...

Mðr1 ;1Þ;a1 Mr2
a1 ;a2

Mr3
a2 ;a3

 
 
 jri ¼

X
r

X
a1 ;...

X
s1

Aðr1 ;1Þ;s1 Ss1 ;s1 V ys1 ;a1
Mr2

a1 ;a2

 
 
 jri

¼
X
r

X
a2 ;...

X
s1

Ar1
1;s1

X
a1

Ss1 ;s1 V ys1 ;a1
Mr2

a1 ;a2

 !
Mr3

a2 ;a3

 
 
 jri

¼
X
r

X
a2 ;...

X
s1

Ar1
1;s1
eMr2

s1 ;a2
Mr3

a2 ;a3

 
 
 jri: ð134Þ
As AyA ¼ I due to SVD, after reshaping to Ar1 , left-normalization holds for Ar1 . The remaining two
matrices of the SVD are multiplied into Mr2 , such that a new MPS with eMr2

s1 ;a2
¼
P

a1
Ss1 ;s1 V ys1 ;a1

Mr2
a1 ;a2

is generated.
Now the procedure can be iterated: eMr2

s1 ;a2
is reshaped to eM ðr2 ;s1Þ;a2 (Fig. 25), singular value decom-

posed as ASV y, generating Aðr2 ;s1Þ;s2 , reshaped to a left-normalized Ar2
s1 ;s2

. The right two matrices of the
SVD are again multiplied into the next ansatz matrix, and so forth. After the last step, left-normalized
matrices Ari

si�1 ;si
live on all sites. S1;1ðV yÞ1;1, a scalar as ArL is a column vector, survive at the last site, but

this scalar is nothing but the norm of jwi. We may keep it separately if we want to work with non-nor-
malized states.

This procedure extends trivially to normalization: we identify the prefactor of the state, but instead
of storing it, we simply set it to 1. As we do not use the singular values explicitly, the above procedure
can be easily reformulated using QR decompositions, along the lines of Section 4.1.3. Standard QR,
however, does not show us whether the matrices used are bigger than necessary, i.e. have singular val-
ues that are zero, such that matrices can be trimmed to a smaller size without loss of accuracy; this
would only be possible using rank revealing QR; for many MPS it is however clear from the underlying
physics that the spectrum of singular values has a long tail, such that this issue does not arise. The
same argumentation holds also for the generation of a right-canonical MPS, which we turn to in the
following.

4.4.2. Generation of a right-canonical MPS
The same procedure can be applied to arrive at a state of right-normalized matrices, by carrying out

a sequence of SVDs starting from the right on reshaped matrices fMrg ! M ¼ USB, splitting B into
matrices Br that are right-normalized (due to BBy ¼ I), and multiplying U and S to the left, creating
the matrix to be singular value decomposed next:
X

r

X



;aL�1


 
 
MrL�2
aL�3 ;aL�2

MrL�1
aL�2 ;aL�1

MrL
aL�1 ;1
jri ¼

X
r

X



;aL�1


 
 
MrL�2
aL�3 ;aL�2

MrL�1
aL�2 ;aL�1

MaL�1 ;ðrL ;1Þjri

¼
X
r

X



aL�1

X
sL�1


 
 
MrL�2
aL�3 ;aL�2

MrL�1
aL�2 ;aL�1

UaL�1 ;sL�1 SsL�1 ;sL�1 BsL�1 ;ðrL ;1Þjri

¼
X
r

X



aL�2

X
sL�1


 
 
MrL�2
aL�3 ;aL�2

X
aL�1

MrL�1
aL�2 ;aL�1

UaL�1 ;sL�1 SsL�1 ;sL�1

 !
BsL�1 ;ðrL ;1Þjri

¼
X
r

X



aL�2

X
sL�1


 
 
MrL�2
aL�3 ;aL�2

eMrL�1
aL�2 ;sL�1

BrL
sL�1 ;1
jri;

ð135Þ
proceeding as before, with the sole differences that (i) the direction is reversed and (ii) reshaping now
groups the physical index with the column instead of the row index: eMri

ai�1 ;si
! eMai�1 ;ðrisiÞ !

Bsi�1 ;ðrisiÞ ! Bri
si�1 ;si

.
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Fig. 25. For canonization, sets of matrices on a given site are brought together in a single matrix.

130 U. Schollwöck / Annals of Physics 326 (2011) 96–192
4.5. Approximate compression of an MPS

The (rare) addition of MPS and various algorithms that can be formulated with MPS lead to a sub-
stantial increase in matrix dimensions of the result. It is therefore a recurrent issue how to approxi-
mate a given MPS with matrix dimensions ðD0i � D0iþ1Þ by another MPS with matrix dimensions
ðDi � Diþ1Þ, where Di < D0i, as closely as possible.

Fundamentally, two procedures are available, SVD compression and variational compression. Both
have advantages and disadvantages: for small degrees of compression, D 	 D0, SVD is fast, but it is
never optimal; it becomes very slow if D0 � D. Variational compression is optimal, but slow if the
starting point is chosen randomly, can however be greatly speeded up by providing a good trial state,
e.g. from the SVD approach. Generally, issues of getting stuck in a non-optimal compression may arise
in the variational ansatz.

Depending on the specific nature of the state to be compressed, procedures can be optimized, for
example if the MPS to be compressed is a sum of MPS or if it is the result of the application of a matrix
product operator (MPO; Section 5) to an MPS.

4.5.1. Compressing a matrix product state by SVD
Let us consider an MPS in mixed canonical representation,
jwi ¼
X
r

Ar1 Ar2 
 
 
Ar‘K½‘�Br‘þ1 
 
 
BrL�1 BrL jri ð136Þ
from which we read off the Schmidt decomposition jwi ¼
PD0

a‘¼1sa‘ ja‘iAja‘iB, where the states on A and
B form orthonormal sets respectively; this follows from the canonical construction. Let us suppose
there are D0 states each for this decomposition. We now look for the state j~wi that approximates jwi
best in the 2-norm and can be spanned by D states each in A and B. We have shown that SVD provides
the result by retaining the D largest singular values, and the compressed state simply reads
jwi ¼

PD
a‘¼1sa‘ ja‘iAja‘iB, providing a simple truncation prescription: retain the first D columns of Ar‘ ,

the first D rows of Br‘þ1 , and the first D rows and columns of K½‘�. If normalization is desired, the re-
tained singular values must be rescaled.

This procedure rests on the orthonormality of the states on A and B, therefore can only be carried
out at one bond. In order to shrink all matrices, we have to work our way through all mixed canonical
representations, say from right to left, truncate, and shift the boundary between left- and right-nor-
malized matrices by one site to the left, using techniques from canonization.

After the first step of right-canonization of a left-canonical state, it reads:
jwðL�1Þi ¼
X
r

Ar1 
 
 
ArL�1 USBrL jri; ð137Þ
where I have already reshaped B, which is right-normalized and guarantees that states formed as
jaL�1iB ¼

P
rL
ðBrL ÞaL�1 ;1

jrLi are orthonormal. But so are the states
jaL�1iA ¼
X

r1 ;...;rL�1

ðAr1 
 
 
ArL�1 UÞ1;aL�1
jr1; . . . ;rL�1i; ð138Þ
as SVD guarantees UyU ¼ 1: we are just doing a basis transformation within the orthonormal basis set
constructed from the left-normalized Ari . Hence, we have a correct Schmidt decomposition as
jwðL�1Þi ¼
X
aL�1

saL�1 jaL�1iAjaL�1iB: ð139Þ
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The difference to a right canonization is now the truncation: matrices U; S and BrL are truncated (and
singular values possibly renormalized) to eU ; eS and eBrL just as explained before: retain the D largest
singular values. eBrL is still right-normalized. The next ArL�1 to the left, eU and eS are multiplied together
to form MrL�1 . By reshaping, SVD and reshaping as
Mr
ij ¼ Mi;ðrjÞ ¼

X
k

UikSkkBk;ðrjÞ ¼
X

k

UikSkkBr
kj; ð140Þ
we obtain right-normalized BrL�1 , truncate U; S and BrL�1 to eU ; eS and eBrL�1 , and the procedure
continues:
jwi ¼
X
r

Ar1 
 
 
ArL�3 ArL�2 ArL�1 US
� �

BrL jri !
X
r

Ar1 
 
 
ArL�3 ArL�2 ArL�1 eUeS� �eBrL jri

¼
X
r

Ar1 
 
 
ArL�3 ArL�2 MrL�1 eBrL jri ¼
X
r

Ar1 
 
 
ArL�3 ArL�2 US
� �

BrL�1 eBrL jri

!
X
r

Ar1 
 
 
ArL�3 ArL�2 eUeS� �eBrL�1 eBrL jri ¼ 
 
 

At the end, the compressed MPS j~wi is right-normalized and given by eB-matrices. As we will see, this
compression procedure is just the truncation that is carried out by (time-dependent) DMRG or TEBD
as they sweep through the chain. Both methods at each bond have correctly normalized matrices (i.e.
orthonormal states) to the left and right, carry out the cut and proceed.

The disadvantage of the procedure is that a one-sided interdependence of truncations occurs: the
matrix M always contains a truncated eU from the previous step, hence is truncation-dependent. Gen-
erally, truncations cannot be independent of each other because for each decomposition (136) trunca-
tions of the A- and B-matrices affect the orthonormal systems, but here the dependence is one-sided
and ‘‘unbalanced’’: truncations further to the left depend on those to the right, but not vice versa. If the
truncation is small – which it usually is for small time steps in time-dependent DMRG – the intro-
duced additional inaccuracy is minor; however, for cases where large truncations may occur, the
dependence might become too strong and the truncation far from optimal.

A second concern regards efficiency: for matrix dimensions ðm� nÞ;m P n, the cost of SVD is
Oðmn2Þ. This means that the SVD cost OððD0Þ2dDÞ if D0 6 dD and OðD0d2D2Þ otherwise; the matrix mul-
tiplications cost OðdDðD0Þ2Þ. In many applications, D0 � D; then this method becomes quite slow. The
situation is even worse if the original state is not in canonical form and has to be brought to that form
first by a sequence of SVDs, that are of order OððD0Þ3Þ.

Let me conclude this section with the remark that of course we can of course also compress by
imposing some � which at each truncation we accept as maximal 2-norm distance between the origi-
nal and the compressed state (given by the sum of the squares of the discarded singular values),
implicitly defining D.

4.5.2. Compressing a matrix product state iteratively
The optimal approach is to start from an ansatz MPS of the desired reduced dimension, and to min-

imize its distance to the MPS to be approximated iteratively, i.e. by changing its eMr matrices itera-
tively. The matrices play the role of variational parameters.

The mathematically precise form of optimal compression of jwi from dimension D0 to j~wi with
dimension D is to minimize kjwi � j~wik2

2, which means that we want to minimize hwjwi � h~wjwi�
hwj~wi þ h~wj~wi with respect to j~wi. Let us call the matrices M and eM respectively, to emphasize that
we make no assumption about the normalization. Expressed in the underlying matrices eM , this is a
highly nonlinear optimization problem.

But this can be done iteratively as follows. Start with an initial guess for j~wi, which could be an
SVD-compression of jwi, arguably not optimal, but a good starting point. Then we sweep through
the set of eMri site by site, keeping all other matrices fixed and choosing the new eMri , such that dis-
tance is minimized. The (usually justified hope) is that repeating this sweep through the matrices sev-
eral times will lead to a converged optimal approximation.
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The new eMri is found by extremizing with respect to eMri�
ai�1 ;ai

, which only shows up in
�h~wjwi þ h~wj~wi. We find
Fig. 27.
be com

Fig. 26.
compre
@

@ eMri�
ai�1 ;ai

ðh~wj~wi � h~wjwiÞ ¼
X
r�
ð eMr1� 
 
 
 eMri�1�Þ1;ai�1

ð eMriþ1� 
 
 
 eMrL�Þai ;1
eMr1 
 
 
 eMri 
 
 
 eMrL

�
X
r�
ð eMr1� 
 
 
 eMri�1�Þ1;ai�1

ð eMriþ1� 
 
 
 eMrL�Þai ;1
Mr1 
 
 
Mri 
 
 
MrL

¼ 0:
The sum over r� runs over all physical sites except i. This system looks complicated, but is in fact quite
easy. Keeping the matrix to be found, eMri , explicit, we may rewrite this equation as
X

a0
i�1

a0
i

eOai�1ai ;a0i�1
a0

i

eMri
a0

i�1
a0

i
¼ Ori

ai�1ai
: ð141Þ
If, for each ri, we interpret the matrix eMri as a vector v of length D2; eO as a matrix P of dimension
ðD2 � D2Þ and Ori as a vector b of length D2, we have a linear equation system
Pv ¼ b: ð142Þ
The result v can then taken to be the matrix we are looking for. As this system is usually too big for a
direct solution, an iterative solver has to be used, such as a conjugate gradient method. The system is
Hermitian, as can be seen from the construction of P: unconjugated and conjugated eM simply reverse
their role under transposition. Once again, the graphical representation is simplest (Fig. 26).

As in the later case of finding ground states variationally, it is important to realize that the cost of
the matrix–vector multiplications in the conjugate gradient method is not OðD4Þ as dimensions would
naively suggest. There is an obvious factorization, which becomes particularly obvious graphically,
that then leads to a cost of OðD3Þ:
eOai�1ai ;a0i�1

a0
i
¼ eLai�1 ;a0i�1


 eRai ;a0i
; ð143Þ
where
eLai�1 ;a0i�1
¼

X
ri�1

eMri�1y . . .
X
r1

eMr1y eMr1

 !
. . .

 ! eMri�1

 !
ai�1 ;a0i�1

ð144Þ
and similarly eR. In the graphical representation (Fig. 28), they are simply the contracted objects to the
left and right of the circled eM-matrix we are solving for.
L R

Equation for iterative compression of an MPS for a suitably normalized state. The fatter lines correspond to the state to
pressed, the thinner lines to the compressed state.

Linear equation system to be solved for iterative compression of an MPS. The fatter lines correspond to the state to be
ssed, the thinner lines to the compressed state. The unknown matrix is circled.



L~
~
R

Fig. 28. Iteratively constructed objects eL and eR for compression.
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Then
X
a0

i�1
a0

i

eOai�1ai ;a0i�1
a0

i

eMri
a0

i�1
a0

i
¼
X
a0

i�1

eLai�1 ;a0i�1

X
a0

i

eRai ;a0i
eMri

a0
i�1

a0
i

0@ 1A; ð145Þ
two operations of cost OðD3Þ.
A similar decomposition simplifies the calculation of the vector b, which is formed from Ori

ai�1ai
as
X

a0
i�1

a0
i

Lai�1 ;a0i�1
Mri

a0
i�1

a0
i
Rai ;a0i

ð146Þ
with L and R as indicated in Fig. 27. In fact, calculating L and R is nothing but carrying out the first steps
of an overlap calculation, starting from left or right. The result would then be the C matrix produced
there at intermediate steps. If one sweeps through the system from left to right and back one can build
L and R iteratively from previous steps, which is the most efficient way.

We can however drastically simplify the compression procedure if we exploit the canonical form!
Assume that j~wi is in mixed canonical form eAr1 
 
 
 eAri�1 eMri eBriþ1 
 
 
 eBrL and we want to update eMri : to
the left of the matrix to be updated, everything is left-normalized, to the right everything is right-nor-
malized and the form of eMri does not matter, as it will be recalculated anyways.

Then eLai�1 ;a0i�1
¼ dai�1 ;a0i�1

because of left normalization, and similarly eRai ;a0i
¼ dai ;a0i

because of right nor-
malization, hence eOai�1ai ;a0i�1

a0
i
¼ dai�1 ;a0i�1

dai ;a0i
. In the linear equation system this means that P ¼ I and we

have trivially
v ¼ b; ð147Þ
so there is no need to solve a large equation system (Fig. 27).
To make this work for an entire chain, we have to shift the boundary between the left and right

normalized matrices as we move through the chain. Assume we begin with all left-normalized matri-
ces. Then we move through the chain from right to left, start by solving on the last site for eMrL , right-
normalize it via SVD (or, as we do not need the singular values, more cheaply by QR) as before, to ob-
tain eAr1 
 
 
 eArL�2 eMrL�1 eBrL where eMrL�1 is in general without normalization. It is now optimized as
eMri
ai�1 ;ai

¼
X
a0

i�1

Lai�1 ;a0i�1

X
a0

i

Rai ;a0i
Mri

a0
i�1

;a0
i

0@ 1A; ð148Þ
where
Lai�1 ;a0i�1
¼

X
ri�1

eMri�1y 
 
 

X
r1

eMr1yMr1

 !
. . .

 !
Mri�1

 !
ai�1 ;a0i�1

ð149Þ
and similarly R, the result is right-normalized, and so on as we go through the chain. At the end, all
matrices are right-normalized, and we restart from the left.

In order to assess convergence, we can monitor at each step kjwi � j~wik2, and observe the conver-
gence of this value; if necessary, D has to be increased. The calculation may seem costly, but is not. If
we keep j~wi in proper mixed normalization, and use Eq. (148) to simplify the overlap hwj~wi, we find
kjwi � j~wik2 ¼ 1�
X
ri

Trð eMriy eMri Þ; ð150Þ
which is easy to calculate. The subtracted sum is just h~wj~wi; at the end, this allows us to normalize the
state j~wi by simple rescaling.
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As already hinted at for single-site DMRG – and we will discuss this issue at length in Section 6 –
there is a danger that this variational ansatz gets stuck in a non-global minimum for the distance be-
tween the compressed and the original state. Often (but not always) it is helpful to consider two sites
at the same time, by analogy to two-site DMRG, for optimization. An operation count shows that this is
somewhat slower. Assume the compressed j~wi is in a mixed-canonical representation
j~wi ¼
X
r

eAr1 
 
 
 eAr‘�1 eMr‘r‘þ1 eBr‘þ2 
 
 
 eBrL jri: ð151Þ
Running through the same arguments as before, optimizing with respect to eMr‘r‘þ1�
a‘�1 ;a‘þ1

, yields an equa-
tion as in Fig. 29 for eMr‘r‘þ1

a‘�1 ;a‘þ1
. The major change occurs now: we reshape the new eMr‘r‘þ1 aseM ða‘�1r‘Þ;ðr‘þ1a‘þ1Þ, carry out an SVD to obtain
X

a‘

eU ða‘�1r‘Þ;a‘Sa‘ ðV
yÞa‘;ðr‘þ1a‘þ1Þ ¼

X
a‘

eMr‘
a‘�1 ;a‘

Br‘þ1
a‘ ;a‘þ1

; ð152Þ
where the eM is formed from reshaping eUS. In fact, it is discarded because we shift one site towards the
left, looking for eMr‘�1r‘ . We can also use a cheaper QR decomposition of eMy instead, to obtain B from
Q y.

Let me conclude this section on compression by discussing the relative merits of the methods. If the
compression is only small, the interdependency of the SVD approach will not matter too much. Still,
the variational ansatz is superior; its only weakness is that because of its iterative nature one has to
provide an initial guess for the compressed state. Taken randomly, the method will waste a lot of time
on just getting into the right vicinity. Therefore, the smart proposal is to take the SVD-compressed
state as the first input into the iterative method. How can we avoid the potentially high costs due
to D0 at least partially?

In practice, compressions occur mainly in two situations: (i) MPS have been added, hence the ma-
trix dimensions have been added; (ii) a matrix product operator (MPO) has been applied to an MPS;
we will see that this leads to the multiplication of the matrix dimensions of MPS and MPO.

In the first case, the variational compression can be speeded up by using the fact that
jwi ¼ j/1i þ j/2i þ 
 
 
 j/ni. Then we may rewrite the variational equation as
@

@ eMri�
ai�1ai

h~wj~wi � h~wjwi
� �

¼ @

@ eMri�
ai�1ai

h~wj~wi � h~wj/1i � h~wj/2i � 
 
 
 � h~wj/ni
� �

¼ 0: ð153Þ
If we work out the equation (assuming mixed canonical representation), the right-hand side consists
now of a sum of n overlaps involving D-dimensional matrices, instead of one overlap involving D- and
nD-dimensional matrices (costing up to Oðn2D3Þ and OðnD3Þ in the two types of matrix multiplications
occurring in the overlap) we now have n overlaps costing OðD3Þ. For large n, the ‘‘decomposed’’ ap-
proach should be up to n times faster.

The second case we postpone for details until we have discussed MPOs. The idea is to carry out an
SVD compression, but without the particularly costly step of previously ensuring correct normaliza-
tion; if for some reason the block states are almost orthonormal nevertheless, the outcome should
be quite reasonable (and can be brought into canonical form, which is cheap after compression) or
can at least serve as a reasonable input for the variational method [99].

4.6. Notations and conversions

So far, we have explored an MPS notation based on one set of matrices per site; special normaliza-
tion properties for these matrices were exploited to arrive at MPS with attractive additional features
(like the generation of orthonormal sets of states or the encoding of a Schmidt decomposition). If we
consider our lattice with sites 1 through L, it would be useful in view of the DMRG construction to be
Fig. 29. Equation for iterative compression of an MPS in a two-site approach.
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able to access easily all L� 1 possible bipartitionings of the system AB that can be obtained with a sin-
gle cut.

Such a notation has been introduced by Vidal [47] and takes the following form:
jwi ¼
X

r1 ;...;rL

Cr1K½1�Cr2K½2�Cr3 K½3� 
 
 
CrL�1K½L�1�CrL jr1; . . . ;rLi; ð154Þ
where we introduce on each site ‘ a set of d matrices Cr‘ and on each bond ‘ one diagonal matrix K½‘�.
The matrices are specified by the demand that for arbitrary 1 6 ‘ < L we can read off the Schmidt
decomposition
jwi ¼
X

a‘

sa‘ ja‘iAja‘iB; ð155Þ
where the Schmidt coefficients are the diagonal elements of K½‘�; sa‘ ¼ K½‘�a‘ ;a‘
and the states on A and B

are given as
ja‘iA ¼
X

r1 ;...;r‘

Cr1K½1�Cr2 
 
 
K½‘�1�Cr‘
� �

a‘
jr1; . . . ;r‘i; ð156Þ

ja‘iB ¼
X

r‘þ1 ;...;rL

Cr‘þ1 K½‘þ1�Cr‘þ2 
 
 
K½L�1�CrL

� �
a‘
jr‘þ1; . . . ;rLi; ð157Þ
where the states on A and on B are orthonormal respectively, reminding of similar constructions from
A- and B-matrices. Graphically, the new notation can be represented as in Fig. 30. It is obviously a
more explicit version of the A-matrix notation with the advantage of keeping explicit reference to
the singular values, reduced density matrix eigenvalues and entanglement: Cutting bond ‘, the re-
duced density operators q̂A and q̂B read in eigenbasis representation
q½‘�A ¼ q½‘�B ¼ K½‘�
� �2

; ð158Þ
more precisely (but irrelevant for real and diagonal K½‘�) q½‘�A ¼ K½‘�K½‘�y and q½‘�B ¼ K½‘�yK½‘�, where the

eigenstates of q½‘�A and q½‘�B are given by fja‘iAg and fja‘iBg respectively. The von Neumann entropy of

entanglement can be read off directly from K½‘� as SAjB ¼ �Tr K½‘�
� �2

log2 K½‘�
� �2

.

Before exploring the connections to other notations, let us first show that any quantum state can
indeed be brought into that form by a procedure in close analogy to the one that decomposed jwi into
a product of A-matrices (or B-matrices, for that matter). Starting from coefficients cr1 ;...;rL , we reshape
to Wr1 ;ðr2 ;...;rLÞ, which is SVDed iteratively. We label the singular value matrices K½i�. After the first SVD,
we rename Ar1 to Cr1 . In the subsequent SVDs, as before we form the next matrix to be SVDed by mul-
tiplying K and V y into W, reshaping such that there is always one a- and one r-index for the rows.
Using the reshaping of Uða‘�1r‘Þ;a‘ ! Ar‘

a‘�1 ;a‘
already used, we obtain
cr1 ;...;rL ¼ Wr1 ;ðr2 ;...;rLÞ ¼
X

a1

Ar1
a1

K½1�a1 ;a1
ðV yÞa1 ;ðr2 ;...;rLÞ ¼

X
a1

Cr1
a1

Wða1r2Þ;ðr3 ;...;rLÞ

¼
X
a1 ;a2

Cr1
a1

Ar2
a1 ;a2

K½2�a2 ;a2
ðV yÞa2 ;ðr3 ;...;rLÞ ¼

X
a1 ;a2

Cr1
a1

K½1�a1 ;a1
Cr2

a1 ;a2
Wða2r3Þ;ðr4 ;...;rLÞ

¼
X

a1 ;a2 ;a3

Cr1
a1

K½1�a1 ;a1
Cr2

a1 ;a2
Ar3

a2 ;a3
K½3�a3 ;a3

ðV yÞa3 ;ðr4 ;...;rLÞ

¼
X

a1 ;a2 ;a3

Cr1
a1

K½1�a1 ;a1
Cr2

a1 ;a2
K½2�a2 ;a2

Cr3
a2 ;a3

Wða3r4Þ;ðr5 ;...;rLÞ
and so on. The crucial difference to the decomposition into A-matrices is that each A is decomposed,
using the knowledge of K½‘�1� obtained in the previous step, into
Ar‘
a‘�1 ;a‘

¼ K½‘�1�
a‘�1 ;a‘�1

Cr‘
a‘�1 ;a‘

; ð159Þ



Λ[1] Λ[L-1]Λ[2]Γσ1 ΓσLΓσL−1Γσ2

A BΛA B B BA B

Fig. 30. Representation of an MPS in Vidal’s notation. Singular values remain explicit on bonds (diamonds). K sit on bonds, C on
sites. By construction, adjacent K and C can be contracted to A or B matrices, that are either left- or right-normalized. The state
can be trivially grouped into a string of A (giving orthonormal block states), a singular value matrix, and a string of B (giving
orthonormal block states).
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which implies a division by the diagonal elements of K½‘�1�. If in our SVD we keep only the non-zero
singular values, this is a mathematically valid operation, albeit potentially fraught with numerical dif-
ficulty. Ignoring this issue in this conceptual demonstration, we do arrive at a decomposition of the
desired form; in order to prove that it is indeed correct, we have to show that at each iteration we in-
deed obtain a Schmidt decomposition. But this is easy to see: The matrices to the left of any K½‘� can all
be grouped into (or rather, have been generated from) left-normalized A-matrices, which generate a
set of orthonormal states on the part of the lattice ranging from site 1 to ‘. On the right hand side
of any K½‘�, there is a matrix V y with orthonormal rows, which means that the states
ja‘iB ¼

P
r‘þ1 ;...

ðV yÞa‘ ;r‘þ1 ;...
jr‘þ1 
 
 
i are also orthonormal. Hence, the SVD giving K½‘� indeed leads to a va-

lid Schmidt decomposition.
An alternative way of obtaining this notation would be to carry out a standard left-normalized

decomposition, and store all singular value matrices generated (and previously discarded) as K½i�,
and to insert afterwards the identities K½i�ðK½i�Þ�1 between all neighbouring A-matrices Ari and Ariþ1 .
Then using Eq. (159) leads to the same result.

Similarly, starting the decomposition from the right using the right-normalization of B-matrices
the same state is obtained with a grouping
Br‘
a‘�1 ;a‘

¼ Cr‘
a‘�1 ;a‘

K½‘�a‘ ;a‘
; ð160Þ
where for notational simplification for this and for the corresponding equation for the A-matrix, Eq.
(159), it is useful to introduce dummies K½0� and K½L� that are both scalar 1.

The groupings for A and B-matrices allow to reexpress the left- and right-normalization conditions
in the CK-language: The left-normalization condition reads
I ¼
X
ri

AriyAri ¼
X
ri

CriyK½i�1�yK½i�1�Cri ð161Þ
or, more compactly,
X
ri

Criyq½i�1�
B Cri ¼ I: ð162Þ
The right-normalization condition reads
X
ri

Criq½i�A Criy ¼ I: ð163Þ
Interestingly, Eqs. (162) and (163) also arise if we translate the density operator recursions Eqs. (119)
and (124) using Eqs. (159) and (160). A matrix product state in the form of Eq. (154) which meets the
constraints Eqs. (162) and (163) is called canonical.

Conversions between the AB-notation, the CK-notation and also the block-site notation of DMRG
are possible, albeit fraught with some numerical pitfalls.

Conversion CK! A;B: The conversion from CK! A;B is easy. If one introduces an additional dum-
my scalar K½0� ¼ 1 as a ‘‘matrix’’ to the very left of jwi, we can use the above defining Eq. (159) to group
K½0�Cr1

� �
K½1�Cr2

� �
K½2�Cr3

� �

 
 
 ! Ar1 Ar2 Ar3 
 
 
 ð164Þ
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or using Eq. (160)
Fig. 31.
the B m

Fig. 32
DMRG
elemen
Cr1 K½1�
� �

Cr2K½2�
� �

Cr3K½3�
� �


 
 
 ! Br1 Br2 Br3 
 
 
 ð165Þ
In view of what DMRG and other MPS methods actually do, it is interesting to consider mixed con-
versions. Consider bond ‘ between sites ‘ and ‘þ 1. We could contract KC! A starting from the left,
giving left-normalized matrices, and CK! B from the right, giving right normalized matrices, leaving
out just K½‘� in the center (Fig. 31):
K½0�C
� �

K½1�C
� �


 
 
 K½‘�2�C
� �

K½‘�1�C
� �

K½‘� CK½‘þ1�
� �

CK½‘þ2�
� �


 
 
 CK½L�
� �

: ð166Þ
As the bracketing to the left of bond ‘ generates left-normalized A-matrices and right-normalized
matrices B on the right, we can multiply them out as done in the recursions of the previous section
to arrive at orthonormal block bases for A and B, hence at a Schmidt decomposition
jwi ¼
X

a‘

ja‘iAsa‘ ja‘iB: ð167Þ
What is more, we can also take one site (‘) or two sites (‘; ‘þ 1) and multiply all matrices into one
there (Figs. 32 and 33):
K½0�C
� �

K½1�C
� �


 
 
 K½‘�2�C
� �

K½‘�1�CK½‘�
� �

CK½‘þ1�
� �

CK½‘þ2�
� �


 
 
 CK½L�
� �

: ð168Þ
Λ [1] Λ[L-1]Λ [2]Γσ1 ΓσLΓσL−1Γσ2

A BA B BA BΛ[ ]

|a 〉A |a 〉B

A

Vidal’s MPS notation, A;B-matrix MPS notation, and DMRG block notation. The A-matrices generate the left block states,
atrices generate the right block states. The matrix K½‘� connects them via singular values.

Λ [1] Λ[L-1]Λ [2]Γσ1 ΓσLΓσL−1Γσ2

A BΛA B BA BΓ Λ

Ψσ

|a -1〉A |σ 〉 |a 〉B

. Representation of a state in single-site DMRG: translating Vidal’s MPS notation and A;B-matrix MPS notation into
block notation. The A-matrices generate the left block states, the B matrices generate the right block states. The matrix
ts of Wr‘ are just the coefficients of the DMRG state.



Λ [1] Λ[L-1]Λ [2]Γσ1 ΓσLΓσL−1Γσ2

A BΛ[ -1]A BA BΓ Λ[ ]

Ψσ σ +1

|a -1〉A |σ 〉 |a +1〉B|σ +1〉

Γ Λ[ +1]

Fig. 33. Representation of a state in two-site DMRG: translating Vidal’s MPS notation and A;B-matrix MPS notation into DMRG
block notation. The A-matrices generate the left block states, the B matrices generate the right block states. The elements of
matrix Wr‘r‘þ1 are just the coefficients of the DMRG state.
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Calling the central matrix Wr‘ ¼ K½‘�1�Cr‘K½‘�, we can write
jwi ¼
X
r

Ar1 
 
 
Ar‘�1 Wr‘Br‘þ1 
 
 
BrL jri ð169Þ
or, again building block bases,
jwi ¼
X

a‘�1 ;a‘ ;r‘

ja‘�1iAWr‘
a‘�1a‘
ja‘iB: ð170Þ
If we group even two sites, we have
K½0�C
� �

K½1�C
� �


 
 
 K½‘�2�C
� �

K½‘�1�CK½‘�CK½‘þ1�
� �

CK½‘þ2�
� �


 
 
 CK½L�
� �

ð171Þ
or, with central matrix Wr‘r‘þ1 ¼ K½‘�1�Cr‘K½‘�Cr‘þ1K½‘þ1�,
jwi ¼
X
r

Ar1 
 
 
Ar‘�1 Wr‘r‘þ1 Br‘þ2 
 
 
BrL jri ð172Þ
or, using block bases,
jwi ¼
X

a‘�1 ;a‘þ1 ;r‘;r‘þ1

ja‘�1iAWr‘r‘þ1
a‘�1a‘þ1

ja‘þ1iB: ð173Þ
These are just the states considered by ‘‘single-site’’ and the original ‘‘two-site’’ DMRG, which keep one
or two sites explicit between two blocks.

Conversion A;B! CK: Conversion in the other direction A;B! CK is more involved. The idea is to
obtain iteratively the Schmidt decompositions (hence singular values) of a state, hence the diagonal
matrices K½‘�, from which the Cr-matrices can be calculated. The procedure is in fact very similar to
that used to show the existence of a canonical CK representation for an arbitrary quantum state.

Let us assume that jwi is right-normalized, then state coefficients take the form Br1 Br2 Br3 Br4 
 
 
.
Then we can proceed by a sequence of SVDs as
Br1 Br2 Br3 Br4 
 
 
 ¼ ðAr1 K½1�V yÞBr2 Br3 Br4 
 
 
 ¼ Cr1 Mr2 Br3 Br4 
 
 
 ¼ Cr1 ðAr2K½2�V yÞBr3 Br4 
 
 

¼ Cr1K½1�Cr2 Mr3 Br4 
 
 

and so forth. Here, the to-be-SVDed matrices Mr‘ ¼ K½‘�1�V yBr‘ . The Cr‘ -matrices are obtained from the
Ar‘-matrices by remembering K½‘�1� and using Eq. (159), which implies a division by singular values.

The division by singular values is a numerical headache as they can and will often be very small, in
particular if a high-precision calculation is attempted and even very small singular values will be car-
ried along. It is numerically advisable to proceed as in the calculation of the (pseudo)inverse of an al-
most singular matrix and set all sa < �, with, say, � ¼ 10�8, to 0 and exclude them from all sums (e.g. in
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Fig. 34. Conversions of representations: c is the explicit representation by the exponentially large number of state coefficients;
A;B and CK stand for left-canonical, right-canonical and canonical MPS; M stands for an arbitrary MPS. Solid lines indicate
computationally feasible conversions, dashed lines more hypothetical ones.
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a Schmidt decomposition). As we order sa by size, this implies shrinking matrices U and V y accordingly.
These small singular values carry little weight in the reduced density operators (their square), hence
the loss of accuracy in the state description is very small compared to the numerical pitfalls. In fact,
the problem is that at various places in algorithms we implicitly rely on (ortho)normality assumptions
that may no longer hold after a ‘‘wild’’ division.

Let me conclude this long section by summarizing the various conversion and canonization proce-
dures in a diagram (Fig. 34), where it should however be kept in mind that some conversions are only
possible in theory, not in numerical practice.

5. Matrix product operators (MPO)

If we consider a single coefficient hrjwi of an MPS,
hrjwi ¼ Mr1 Mr2 
 
 
MrL�1 MrL ;
it is a natural generalization to try to write coefficients hrjbOjr0i of operators as [51,69,71–73]
hrjbOjr0i ¼Wr1r01 Wr2r02 
 
 
WrL�1r0L�1 WrLr0L ; ð174Þ
where the Wrr0 are matrices just like the Mr, with the only difference that as representations of oper-
ators they need both outgoing and ingoing physical states:
bO ¼X
r;r0

Wr1r01 Wr2r02 
 
 
WrL�1r0L�1 WrLr0L jrihr0j ð175Þ
with the same extension to periodic boundary conditions as for MPS. The pictorial representation
introduced for MPS can be extended in a straightforward fashion: instead of one vertical line for
the physical state in the representation of M, we now have two vertical lines, one down, one up, for
the ingoing and outgoing physical state in W (Fig. 35). The complete MPO itself then looks as in
Fig. 36. If we want to use good quantum numbers, the methods for MPS translate directly: we intro-
duce an ingoing local state quantum number from the top, an outgoing one towards the bottom, and
an ingoing quantum number from the left and an outgoing one to the right. The rule is, as for MPS, that
the total sum of ingoing and outgoing quantum numbers must be equal, or MðjriiÞ þMðjbi�1iÞ ¼
Mðjr0iiÞ þMðjbiiÞ, where I have interpreted the bond labels as states for the notation. We may also
think about dummy indices before the first and after the last site as in an MPS, which reflect in which
(definite!) way the operator changes the total quantum number. For a Hamiltonian, which commutes
with the corresponding operator, the change is zero, and we can ignore the dummies. The MPOs we



b -1 b

σ

σ´

b1

σ1

bL-1

σL

σ´1 σ´L

(i) (ii) (iii)

Fig. 35. Elements of a matrix product operator: (i) a corner matrix operator W
½1�r1r01
1;b1

at the left end of the chain; (ii) a bulk
matrix operator W

½‘�r‘r0‘
b‘�1 ;b‘

; (iii) a corner operator W
½L�rLr0L
bL�1 ;1

at the right end: the physical indices points up and down, the matrix
indices are represented by horizontal lines.

σ

σ´

σ1 σL

σ´1 σ´L

Fig. 36. A matrix product operator acting on an entire chain: the horizontal matrix indices are contracted, and the MPO is ready
to be applied to an MPS by simple contraction of vertical (physical) indices.
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are going to build can all be shown to have good quantum numbers on the bonds, because they orig-
inate either from SVDs (e.g. for time evolutions) or from rules that involve operators with well-defined
changes of quantum numbers (e.g. for MPOs for Hamiltonians).

In fact, any operator can be brought into the form of Eq. (175), because it can be written as
bO ¼ X
r1 ;...;rL ;r01 ;...;r

0
L

cðr1 ;...;rLÞðr01 ;...;r
0
LÞjr1; . . . ;rLihr01; . . . ;r0Lj

¼
X

r1 ;...;rL ;r01 ;...;r
0
L

cðr1r01Þ;...;ðrLr0LÞjr1; . . . ;rLihr01; . . . ;r0Lj ð176Þ
and we can decompose it like we did for an MPS, with the double index rir0i taking the role of the in-
dex ri in an MPS.

As for MPS, we have to ask how we operate with them and how they can be constructed in practice,
because the naive decomposition might be exponentially complex. As it turns out, most operations
run in perfect analogy to the MPS case.

5.1. Applying an MPO to an MPS

The application of a matrix product operator to a matrix product state runs as
bOjwi ¼X
r;r0

Wr1 ;r01 Wr2 ;r02 
 
 

� �

Mr01 Mr02 
 
 

� �

jri ¼
X
r;r0

X
a;b

W
r1 ;r01
1;b1

W
r2 ;r02
b1 ;b2

 
 


� �
M

r01
1;a1

M
r02
a1 ;a2

 
 


� �
jri

¼
X
r;r0

X
a;b

W
r1 ;r01
1;b1

M
r01
1;a1

� �
W

r2 ;r02
b1 ;b2

M
r02
a1 ;a2

� �

 
 
 jri ¼

X
r

X
a;b

Nr1
ð1;1Þ;ðb1 ;a1ÞN

r2
ðb1 ;a1Þ;ðb2 ;a2Þ 
 
 
 jri

¼
X
r

Nr1 Nr2 
 
 
 jri:
The beauty of an MPO is that it leaves the form of the MPS invariant, at the prize of an increase in
matrix size: the new MPS dimension is the product of that of the original MPS and that of the MPO
(Fig. 37).

The result can be summarized as j/i ¼ bOjwi with j/i an MPS built from matrices Nri with
Nri
ðbi�1 ;ai�1Þ;ðbi ;aiÞ

¼
X
r0

i

W
rir0i
bi�1bi

M
r0

i
ai�1ai

: ð177Þ



σ1 σL

σ1 σL

Fig. 37. A matrix product operator acting on a matrix product state: matching physical (vertical) indices are contracted, a new
matrix product state emerges, with multiplied matrix dimensions and product structure in its matrices.
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If we use (additive) good quantum numbers, one can show from the sum rules at each tensor that they
are additive on the in- and outgoing horizontal bonds.

Once again, a seemingly exponentially complex operation (sum over exponentially many r) is re-
duced to a low-cost operation: the operational count is of order Ld2D2

W D2; DW being the dimension of
the MPO.

5.2. Adding and multiplying MPOs

Operations with MPOs follow very much the lines of MPS. If we consider the addition of two oper-
ators, bO and bP , that have MPO representations Wrir0i and fWrir0i , then the resulting MPO is formed ex-
actly as in the case of MPS, by the direct sum Wrir0i � fWrir0i for all sites 1 < i < L, with the same special
rules for sites 1 and L. In essence, we (again) just have to consider ri and r0i as one ‘‘big’’ physical index.

The multiplication of (or rather, subsequent operation with) two operators, bP bO, can also be under-

stood easily: the application of bO to some state jwi leads to a new MPS with matrices

Nri
ðbi�1ai�1Þ;ðbiaiÞ

¼
P

r0
i
W

rir0i
bi�1bi

M
r0

i
ai�1ai

. Then the subsequent operation of bP gives a new MPS with

Kri

ð~bi�1bi�1ai�1Þ;ð~bibiaiÞ
¼
P

r0
i

fWrir0i
~bi�1

~bi
N

r0
i
ðbi�1ai�1Þ;ðbiaiÞ

. But from this we can read off right away (and this is also

obvious from the graphical representation of a sequence of two MPOs applied to a state) that the

new MPO (with matrices Vrir0i ) is given by
V
rir0i
ð~bi�1bi�1Þ;ð~bibiÞ

¼
X
r00

i

fW rir00i
~bi�1

~bi
W

r00
i
r0

i
bi�1bi

: ð178Þ
Hence, MPO dimensions simply multiply as for tensors. If we consider an MPS as an MPO with dummy
indices in one physical direction, the rule for applying an MPO to an MPS follow as a special case.

5.3. Compressing MPOs and MPO–MPS products

As for MPS, the question of compressing an MPO may arise. This should be obvious from the last
section, where MPO dimensions summed up or multiplied. If it is no option to shift the issue of com-
pression to the application of an MPO to an MPS (then of dimension DW D and a natural candidate for
compression), we have to compress the MPO. A typical example would be given by the representation
of a longer-ranged Hamiltonian in MPO form, which quickly leads to large dimensions.

But we can apply the same techniques as for compressing MPS, both by SVD and iteratively, in or-
der to approximate the exact MPO by one with smaller DW . The only change is that instead of one
physical index r, we have now two physical indices r;r0, which we may take as one single index
ðr;r0Þ. The approximation is then done in the Frobenius norm, which naturally extends the 2-norm
of vectors we used for MPS approximations.

At this point it is worthwhile mentioning that it has been proposed [99] that in the special case of
compressing an MPO–MPS product, an important speedup over the standard methods may be
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achieved: SVD may be very slow if normalization has to be carried out first at a cost OðD3
W D3Þ, but a

good starting point for the variational method would be essential to have. But the proposed solution
from SVD compression may not be bad if the block states are almost orthonormal and it seems that in
the MPO–MPS product case this is essentially true if both the MPO and the MPS were in canonical form
(for the MPO again formed by looking at the double index as one big index), which can be achieved at
much lower cost (OðdD3Þ and Oðd2D3

W Þ, where DW 
 D usually, versus OðdD3D3
WÞ). Even if the proposed

compression is not too good, it will still present a much better starting point for the variational com-
pression. So the procedure would be: (i) bring both MPO and MPS in the same canonical form; (ii) do
SVD compression, of course only multiplying out MPO and MPS matrices on the fly; (iii) use this as
variational input if you do not trust the result too much.
6. Ground state calculations with MPS

Assume we want to find the ground state of some Hamiltonian bH. In order to find the optimal
approximation to it, we have to find the MPS jwi of some dimension D that minimizes
E ¼ hwj
bHjwi
hwjwi : ð179Þ
The most efficient way of doing this (in particular compared to an imaginary time evolution starting
from some random state, which is also possible) is a variational search in the MPS space. In order to
make this algorithm transparent, let us first express bH as an MPO.

6.1. MPO representation of Hamiltonians

Due to the product structure inherent in the MPO representation, it might seem a hopeless
task – despite its guaranteed existence – to explicitly construct a compact MPO representation for a
Hamiltonian such as
bH ¼XL�1

i¼1

J
2
bSþi bS�iþ1 þ

J
2
bS�i bSþiþ1 þ JzbSz

i
bSz

iþ1 � h
X

i

bSz
i : ð180Þ
This common notation is of course an abbreviation for sums of tensor products of operators:
bH ¼ JzbSz
1 � bSz

2 �bI �bI �bI 
 
 
 þbI � JzbSz
2 � bSz

3 �bI �bI 
 
 
 þ 
 
 


It is however surprisingly easy to express this sum of tensor products in MPO form [69] – to this pur-
pose it is convenient to reconsider the building block Wrr0

bb0 combined with its associated projector
jrihr0j to become an operator-valued matrix cW bb0 ¼

P
rr0W

rr0
bb0 jrihr0j such that the MPO takes the sim-

ple form
bO ¼ cW ½1�cW ½2� 
 
 
cW ½L�: ð181Þ
Each cW ½i� acts on a different local Hilbert space at site i, whose tensor product gives the global Hilbert
space. Multiplying such operator-valued matrices yields sums of tensor products of operators such
that expressing bH in a compact form seems feasible.

To understand the construction, we move through an arbitrary operator string appearing in bH:
starting from the right end, the string contains unit operators, until at one point we encounter one
of (in our example) 4 non-trivial operators. For the field operator, the string part further to the left
may only contain unit operators; for the interaction operators, the complementary operator must fol-
low immediately to complete the interaction term, to be continued by unit operators further to the
left. For book-keeping, we introduce five corresponding states of the string at some given bond: state
1: only units to the right, states 2, 3, and 4: one bSþ; bS�; bSz just to the right, state 5: completed inter-
action or field term �hbSz somewhere to the right. Comparing the state of a string left and right of
one site, only a few transitions are allowed: 1! 1 by the unit operator bI;1! 2 by bSþ;1! 3 by
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bS�;1! 4 by bSz;1! 5 by �hbSz. Furthermore 2! 5 by ðJ=2ÞbS�; 3! 5 by ðJ=2ÞbSþ and 4! 5 by JzbSz, to
complete the interaction term, and 5! 5 for a completed interaction by the unit operator bI. Further-
more all string states must start at 1 to the right of the last site and end at 5 (i.e. the dimension DW of
the MPO to be) to the left of the first site. This can now be encoded by the following operator-valued
matrices:
cW ½i� ¼

bI 0 0 0 0bSþ 0 0 0 0bS� 0 0 0 0bSz 0 0 0 0

�hbSz ðJ=2ÞbS� ðJ=2ÞbSþ JzbSz bI

26666666664

37777777775
ð182Þ
and on the first and last sites
cW ½1� ¼ �hbSz ðJ=2ÞbS� ðJ=2ÞbSþ JzbSz bIh i cW ½L� ¼

bIbSþbS�bSz

�hbSz

26666666664

37777777775
: ð183Þ
Indeed, a simple multiplication shows how the Hamiltonian emerges. Inserting the explicit operator
representations gives the desired Wrr0-matrices for the MPO. It is therefore possible to express
Hamiltonians exactly in a very compact MPO form; a similar set of rules leading to the same result
has been given by Crosswhite et al. [100].

For longer-ranged Hamiltonians, further ‘‘intermediate states’’ have to be introduced. Let us con-
sider a model with just bSzbSz-interactions, but between nearest and next-nearest neighbours,
bH ¼ J1

X
i

bSz
i
bSz

iþ1 þ J2

X
i

bSz
i
bSz

iþ2: ð184Þ
Then the bulk operator would read
cW ½i� ¼

bI 0 0 0bSz 0 0 0
0 bI 0 0
0 J1

bSz J2
bSz bI

266664
377775: ð185Þ
While the J1-interaction can be encoded as before (moving as 1! 2! 4), for the next-nearest neigh-
bour interaction, one has to insert an additional step between 2 and 4, an intermediate state 3, where
exactly one identity is inserted (moving as 1! 2! 3! 4). It merely serves as a book-keeping device.
Similarly, one can construct longer-ranged interactions. Except the top-left and bottom-right corner,
the non-vanishing parts of cW ½i� are all below the diagonal by construction.

It might seem that for longer-ranged interactions the dimension DW will grow rapidly as more and
more intermediate states are needed (one additional state per unit of interaction range and per inter-
action term). While this is true in general, important exceptions are known which can be formulated
much more compactly [73,100]; consider for example the following exponentially decaying interac-
tion strength JðrÞ ¼ Je�r=n ¼ Jkr , where r > 0 and k ¼ expð�1=nÞ. An interaction term

P
rJðrÞbSz

i
bSz

iþr would
be captured by a bulk operator
cW ½i� ¼
bI 0 0bSz kbI 0
0 JkbSz bI

264
375: ð186Þ
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But even if such a simplification does not occur, it turns out that MPOs with quite small dimensions
and moderate loss of accuracy can be found, either by approximating an arbitrary interaction function
JðrÞ by a sum of exponentials coded as above [71,100], minimizing the L2 distance kJðrÞ �

Pn
i¼1aik

r
i k in

ai; ki, where n is given by the DW and loss of accuracy one is willing to consider. Alternatively [73], one
can of course construct the exact MPO where feasible and compress it by adapting MPS compression
techniques to an acceptable DW (and loss of accuracy).

6.2. Applying a Hamiltonian MPO to a mixed canonical state

Let us consider jwi in the following mixed canonical representation, identical to the single-site
DMRG representation,
Fig. 38
contrac
networ
jwi ¼
X
r

Ar1 
 
 
Ar‘�1 Wr‘Br‘þ1 
 
 
BrL jri ð187Þ
or
jwi ¼
X

a‘�1 ;a‘

ja‘�1iAWr‘
a‘�1 ;a‘

ja‘iB: ð188Þ
Let us now look at the matrix elements ha‘�1r‘a‘jbHja0‘�1r0‘a0‘i obtained using the MPO representation
for bH. By inserting twice the identity bI ¼Prjrihrj, we obtain (the sums with a star exclude site ‘)
ha‘�1r‘a‘jbHja0‘�1r
0
‘a
0
‘i ¼

X
r

X
r0

Wr1 ;r01 
 
 
WrL ;r0L ha‘�1r‘a‘jrihr0ja0‘�1r
0
‘a
0
‘i

¼
X
r�

X
r0�

Wr1 ;r01 
 
 
Wr‘ ;r0‘ 
 
 
WrL;r0L

ha‘�1jr1; . . . ;r‘�1iha‘jr‘þ1; . . . ;rLihr01; . . . ;r0‘�1ja0‘�1ihr0‘þ1; . . . ;r0Lja0‘i

¼
X
r�

X
r0�

Wr1 ;r01 
 
 
Wr‘ ;r0‘ 
 
 
WrL ;r0L

ðAr1 
 
 
Ar‘�1 Þ�1;a‘�1
ðBr‘þ1 
 
 
BrL Þ�a‘;1ðA

r01 
 
 
Ar0
‘�1 Þ1;a0

‘�1
ðBr0

‘þ1 
 
 
Br0L Þa0
‘
;1

¼
X
fai ;bi ;a

0
i
g

X
r1r01

Ar1�
1;a1

W
r1 ;r01
1;b1

A
r01
1;a01

0@ 1A X
r2r02

Ar2�
a1 ;a2

W
r2 ;r02
b1 ;b2

A
r02
a01 ;a

0
2

0@ 1A 
 
 
 �W
r‘ ;r0‘
b‘�1 ;b‘

�
X

r‘þ1r0‘þ1

Br‘þ1�
a‘;a‘þ1

W
r‘þ1 ;r0‘þ1
b‘;b‘þ1

B
r0
‘þ1

a0
‘
;a0
‘þ1

0@ 1A 
 
 
 X
rLr0L

BrL�
aL�1 ;1

W
rL ;r0L
bL�1 ;1

B
r0L
a0

L�1
;1

0@ 1A:

All the beauty of the MPO formulation seems gone, but a graphical representation restores it (Fig. 38).
It can be understood most easily from the second or third line of the explicit expressions above: the
a -1

σ

σ ´

a ´a -1´

a

L

L

W R

. Representation of the DMRG expression ha‘�1r‘a‘ jbHja0‘�1r0‘a0‘i in MPO/MPS language. The Hamiltonian MPO is
ted with four block state expansions in MPS form (two bras, two kets, two on block A, two on block B). The contracted
k decouples into parts L;W and R, corresponding to blocks A and B and the center site.
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Hamilton MPO (expressed in the product basis) is projected on the block states of A and B, which have
an expansion in the r-basis.

In fact, we can also encode the obvious tripartite structure of the expression as
ha‘�1r‘a‘jbHja0‘�1r
0
‘a
0
‘i ¼

X
b‘�1 ;b‘

L
a‘�1 ;a0‘�1
b‘�1

W
r‘ ;r0‘
b‘�1 ;b‘

R
a‘ ;a0‘
b‘

; ð189Þ
where L and R contain the contracted left and right parts of the graphical network:
L
a‘�1 ;a0‘�1
b‘�1

¼
X

fai ;bi ;a0i ;i<‘�1g

X
r1r01

Ar1�
1;a1

W
r1 ;r01
1;b1

A
r01
1;a01

0@ 1A 
 
 
 X
r‘�1r0‘�1

Ar‘�1�
a‘�2 ;a‘�1

W
r‘�1 ;r0‘�1
b‘�2 ;b‘�1

A
r0
‘�1

a0
‘�2 ;a

0
‘�1

0@ 1A: ð190Þ

R
a‘ ;a0‘
b‘
¼

X
fai ;bi ;a0i ;i>‘g

X
r‘þ1r0‘þ1

Br‘þ1�
a‘;a‘þ1

W
r‘þ1 ;r0‘þ1
b‘;b‘þ1

B
r0
‘þ1

a0
‘
;a0
‘þ1

0@ 1A 
 
 
 X
rLr0L

BrL�
aL�1 ;1

W
rL ;r0L
bL�1 ;1

B
r0L
a0

L�1
;1

0@ 1A: ð191Þ
We can now write the action of bH on a state jwi in the mixed canonical or single-site DMRG represen-
tation as
bHjwi ¼ X
b‘�1 ;b‘

X
a0
‘�1

;r0
‘
;a0
‘

L
a‘�1 ;a0‘�1
b‘�1

W
r‘;r0‘
b‘�1 ;b‘

R
a‘;a0‘
b‘

W
r0
‘

a0
‘�1 ;a

0
‘
ja‘�1iAjr‘ija‘iB: ð192Þ
As we will discuss in an instant, bHjwi is the key operation in an iterative ground state search. Evalu-
ating this expression naively is inacceptably slow; it can be drastically accelerated on two counts: first,
L and R can be built iteratively in order to maximally reuse available information; this involves an
optimal arrangement of a network contraction. Moreover, the final action of L; R and W on jwi can also
be arranged highly efficiently.

Let us first consider building L and R. In actual applications, we will never carry out the full network
contraction that stands behind them, because in the spirit of DMRG we are looking at blocks that are
growing and shrinking in size site by site. The construction of L and R, however, is iterative in a way
that directly matches block growth and shrinkage. I will illustrate it for L, using A-matrices; left-nor-
malization will be exploited explicitly for further simplification at one point only such that the formu-
lae are generic. We start by considering the block of size 1: we contract A½1� and A½1�y with W ½1�. The
block basis representation is then given by
F ½1�a1 ;b1 ;a01
¼

X
r1 ;r01 ;a0 ;b0 ;a00

W
½1�r1r01
b0 ;b1

ðA½1�r1yÞa1 ;a0
F ½0�a0 ;b0 ;a00

A
½1�r01
a00 ;a

0
1
; ð193Þ
where we have introduced a dummy scalar F ½0�a0 ;b0 ;a00
¼ 1, and where a0; b0; a00 can just take the value 1;

this is just to make the first step more consistent with all that follow. The resulting object is a tensor
F ½1�a1 ;b1 ;a01

, corresponding to the three legs sticking out.
We can now simply continue to contract A;Ay and W on the next site, and the contraction update reads
F ½i�ai ;bi ;a0i
¼

X
ri ;r0i ;ai�1 ;bi�1 ;a

0
i�1

W
½i�rir0i
bi�1 ;bi

ðA½i�riyÞai ;ai�1
F ½i�1�

ai�1 ;bi�1 ;a0i�1
A
½i�r0

i
a0

i�1
;a0

i
ð194Þ
and can be represented pictorially as in Fig. 39.
This construction can be calculated most efficiently by optimal bracketing as
F ½i�ai ;bi ;a0i
¼
X

ri ;ai�1

ðA½i�riyÞai ;ai�1

X
r0

i
;bi�1

W
½i�rir0i
bi�1 ;bi

X
a0

i�1

F ½i�1�
ai�1 ;bi�1 ;a0i�1

A
½i�r0

i
a0

i�1
;a0

i

0@ 1A0@ 1A: ð195Þ
Here, we have contracted the three new tensors into the network one by one, at operational counts
OðdD3DWÞ in the innermost bracket, then Oðd2D2D2

WÞ and last OðdD3DWÞ. In fact, the second operation
is faster in practice, as we know that most operators in cW are simply zero; the remaining ones also often
have a simple structure. Another acceleration is possible in the case of building L from left-normalized



ai-1

ai-1´

bi-1

ai´

ai

bi

ai´

ai

bi

Fig. 39. Update from F ½i�1� to F ½i� by contracting with A½i��; W ½i� and A½i� . While it makes sense mathematically to consider the
three added tensors as one object, in numerical practice, they are contracted into the network sequentially for efficiency.

146 U. Schollwöck / Annals of Physics 326 (2011) 96–192
matrices for indices bi ¼ DW , if we build bH following the rules outlined in the previous section: we know
that in this case only identities operate towards the left, implying that F ½i�ai ;DW ;a0

i
¼ dai ;a0i

, simplifying both
the innermost bracket and the outermost operation. The same idea applies for indices bi ¼ 1 on the right
side for building R from right-normalized matrices.

Note that this construction is a generalization of the representation update explained for DMRG: a
typical situation is the representation of bOi

bOj, where the two operators act locally on sites i and j
respectively. Then the MPOs are of dimension ð1� 1Þ everywhere and Wrr0 ¼ dr;r0 everywhere but
on sites i and j, where they read Wrir0i ¼ O½i�ri ;r0i and similarly for j. Pushing forward the contractions,
F ½i�1� is still a scalar 1. Then
F ½i� ¼
X
ri ;r0i

O½i�ri ;r0i A½i�riyA½i�r
0
i ; ð196Þ
where F ½i�;A½i�riy and A½i�r
0
i are matrices and a multiplication A½i�riyA½i�r

0
i is implied. The F ½i�-matrix is just

the operator representation in the block basis, comprising sites 1 through i.
The update up to site j� 1 then simplifies to
F ½k� ¼
X
rk

A½k�rkyF ½k�1�A½k�rk ði < k < jÞ; ð197Þ
matrix multiplications implied, and at site j we get again a non-trivial step,
F ½j� ¼
X
rj ;r0j

O½j�rj ;r0j A½j�rjyF ½j�1�A½j�r
0
j ; ð198Þ
after which updates continue as on the previous sites. Making the matrix multiplications explicit, one
sees that this is just the construction discussed for the DMRG algorithm.

In the end, bHjwi can be bracketed advantageously as follows:
bHjwi ¼ X
b‘�1 ;a0‘�1

L
a‘�1 ;a0‘�1
b‘�1

X
b‘r0‘

W
r‘ ;r0‘
b‘�1 ;b‘

X
a0
‘

R
a‘ ;a0‘
b‘

W
r0
‘

a0
‘�1 ;a

0
‘

0@ 1A0@ 1Aja‘�1iAjr‘ija‘iB; ð199Þ
which scales at worst as OðD3Þ. More precisely, the innermost operation is OðD3DW dÞ; the next one is
OðD2D2

W d2Þ, after this we have a sum of cost OðD3D2
W d2Þ. It is advantageous to keep track of the struc-

ture of W, namely exploiting for which ðb‘�1; b‘Þ configurations it is zero and nothing has to be calcu-
lated (usually, for most of them), and to use the simplifications for L and R just discussed if the state is
in mixed-canonical form.

6.3. Iterative ground state search

Let us now turn to the algorithm. Assume bH given in MPO form and consider a class of MPS with
predefined matrix dimensions (simply think about a random MPS with matrices Mr of desired shape
and size, but no normalization assumed for the moment). In order to find the optimal approximation
to the ground state within this class, we have to find the MPS jwi that minimizes
E ¼ hwj
bHjwi
hwjwi : ð200Þ
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It turns out that this can be turned into a ground state algorithm much more efficient than imaginary
time evolution from some random state. In order to solve this problem, we introduce a Lagrangian
multiplier k, and extremize
Fig. 40
hand si
hwjbHjwi � khwjwi: ð201Þ
In the end, jwi will be the desired ground state and k the ground state energy. The MPS network that
represents Eq. (201) is shown in Fig. 40.

The problem with this approach is that the variables (the matrix elements Mr
aa0 ) appear in the form

of products, making this a highly non-linear optimization problem. But it can be done iteratively, too,
and this is the idea that also drives DMRG: while keeping the matrices on all sites but one (‘) constant,
consider only the matrix entries Mr‘

a‘�1a‘
on site ‘ as variables. Then the variables appear in Eq. (201)

only in quadratic form, for which the determination of the extremum is a benign linear algebra prob-
lem. This will lower the energy, and find a variationally better state, but of course not the optimal one.
Now one continues to vary the matrix elements on another site for finding a state again lower in en-
ergy, moving through all sites multiple times, until the energy does not improve anymore.

Let us first consider the calculation of the overlap, while keeping the chosen Mr‘ explicit. We find
hwjwi ¼
X
r‘

X
a‘�1a‘

X
a0
‘�1a0

‘

WA
a‘�1 ;a0‘�1

Mr‘�
a‘�1 ;a‘

Mr‘
a0
‘�1 ;a

0
‘
WB

a‘ ;a0‘
; ð202Þ
where
WA
a‘�1 ;a0‘�1

¼
X

r1 ;...;r‘�1

ðMr‘�1y 
 
 
Mr1yMr1 
 
 
Mr‘�1 Þa‘�1 ;a0‘�1
; ð203Þ

WB
a‘;a0‘
¼

X
r‘þ1 ;...;rL

ðMr‘þ1 
 
 
MrL MrLy 
 
 
Mr‘þ1yÞa0
‘
;a‘
: ð204Þ
As is particularly clear in the graphical representation, for obtaining the last two expressions the same
rules about smart contracting apply as for overlaps; moreover, if we move through sites ‘ from neigh-
bour to neighbour, they can be updated iteratively, minimizing computational cost. In the case where
sites 1 through ‘� 1 are left-normalized and sites ‘þ 1 through L right-normalized, normalization
conditions lead to a further simplification, namely
WA
a‘�1 ;a0‘�1

¼ da‘�1 ;a0‘�1
WB

a‘a0‘
¼ da‘a0‘

: ð205Þ
Let us now consider hwjbHjwi, with bH in MPO language. Taking into account the analysis of bHjwi in
the last section, we can immediately write
hwjbHjwi ¼X
r‘;r0‘

X
a0
‘�1

a0
‘

X
a‘�1a‘

X
b‘�1 ;b‘

L
a‘�1 ;a0‘�1
b‘�1

W
r‘;r0‘
b‘�1 ;b‘

R
a‘;a0‘
b‘

Mr‘�
a‘�1 ;a‘

M
r0
‘

a0
‘�1 ;a

0
‘

ð206Þ
with L and R as defined before; how such an expression can be evaluated efficiently has been discussed
previously.

If we now take the extremum of Eq. (201) with respect to Mr‘�
a‘�1 ;a‘

we find
X
r0
‘

X
a0
‘�1a0

‘

X
b‘�1 ;b‘

L
a‘�1 ;a0‘�1
b‘�1

W
r‘ ;r0‘
b‘�1 ;b‘

R
a‘ ;a0‘
b‘

M
r0
‘

a0
‘�1 ;a

0
‘
� k

X
a0
‘�1a0

‘

WA
a‘�1 ;a0‘�1

WB
a‘a0‘

Mr‘
a0
‘�1 ;a

0
‘
¼ 0: ð207Þ
. Network to be contracted to obtain the functional to be extremized to find the ground state and its energy. The left-
de represents the term hwjbHjwi, the right-hand side the squared norm hwjwi.
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This is in fact a very simple eigenvalue equation; if we introduce matrices H and N by reshaping

Hðr‘a‘�1a‘Þ;ðr0‘a
0
‘�1a0

‘
Þ ¼

P
b‘�1 ;b‘

L
a‘�1 ;a0‘�1
b‘�1

W
r‘ ;r0‘
b‘�1 ;b‘

R
a‘ ;a0‘
b‘

and Nðr‘a‘�1a‘Þ;ðr0‘a
0
‘�1a0

‘
Þ ¼ WA

a‘�1 ;a0‘�1
WB

a‘ ;a0‘
dr‘ ;r0‘ as well as a vec-

tor v with vr‘a‘�1a‘ ¼ Mr‘
a‘�1 ;a‘

, we arrive at a generalized eigenvalue problem of matrix dimension

ðdD2 � dD2Þ,
Fig. 41.
networ
Hv � kNv ¼ 0; ð208Þ
represented in Fig. 41. Solving for the lowest eigenvalue k0 gives us a v0
r‘a‘�1a‘

, which is reshaped back
to Mr‘

a‘�1a‘
; k0 being the current ground state energy estimate.

A few remarks are in order.

� The problem is Hermitian; both H and N are Hermitian, as can be seen from the construction and
the Hermiticity of the MPO employed.
� In general, dD2 is too large for an exact diagonalization, but as we are only interested in the lowest

eigenvalue and eigenstate, an iterative eigensolver that aims for the ends of the spectrum will do.
Typical methods are the Lanczos or Jacobi–Davidson large sparse matrix solvers. The speed of con-
vergence of such methods ultimately rests on the quality of the initial starting or guess vector. As
this eigenproblem is part of an iterative approach to the ground state, the current Mr‘ is a valid
guess that will dramatically speed up calculations close to convergence.
� Generalised eigenvalue problems can be numerically very demanding, if the condition number of N

becomes bad. But this is no issue for open boundary conditions, if one ensures that the state is left-
normalized up to site ‘� 1 and right-normalized from site ‘þ 1 onwards. Then the simplifications
for WA and WB imply that N is just the identity matrix I. The eigenvalue problem then simplifies to a
standard one,
X
r0
‘

X
a0
‘�1

a0
‘

X
b‘�1 ;b‘

L
a‘�1 ;a0‘�1
b‘�1

W
r‘;r0‘
b‘�1 ;b‘

R
a‘;a0‘
b‘

M
r0
‘

a0
‘�1 ;a

0
‘
� kMr‘

a‘�1 ;a‘
¼ 0: ð209Þ
or Hv � kv ¼ 0, as represented in Fig. 42. The evaluation of the sums will be done using the optimal
bracketing for bHjwi. To achieve this simplification, one will sweep the position ‘ from right to left and
vice versa through the chain, such that the optimal normalization configuration can be maintained by
a single step of the left or right canonization procedure after each minimization.

The optimal algorithm then runs as follows.

� Start from some initial guess for jwi, which is right-normalized, i.e. consists of B-matrices only.
� Calculate the R-expressions iteratively for all site positions L� 1 through 1 iteratively.
� Right sweep: Starting from site ‘ ¼ 1 through site L� 1, sweep through the lattice to the right as fol-

lows: solve the standard eigenproblem by an iterative eigensolver for Mr‘ , taking its current value
as starting point. Once the solution is obtained, left-normalize Mr‘ into Ar‘ by SVD (or QR) to main-
tain the desired normalization structure. The remaining matrices of the SVD are multiplied to the
Mr‘þ1 to the right, which will be the starting guess for the eigensolver for the next site. Build iter-
atively the L expression by adding one more site. Move on by one site, ‘! ‘þ 1, and repeat.
Generalized eigenvalue problem for the optimization of Mr‘
a‘�1 ;a‘

. The unknown matrix is circled on the left and right
ks.



Fig. 42. Standard eigenvalue problem for the optimization of Mr‘
a‘�1 ;a‘

. The unknown matrix is circled on the left network.
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� Left sweep: Starting from site ‘ ¼ L through site 2, sweep through the lattice to the left as follows:
solve the standard eigenproblem by an iterative eigensolver for Mr‘ , taking its current value as
starting point. Once the solution is obtained, right-normalize Mr‘ into Br‘ by SVD (or QR) to main-
tain the desired normalization structure. The remaining matrices of the SVD are multiplied to the
Mr‘�1 to the left, which will be the starting guess for the eigensolver for the next site. Build itera-
tively the R expression by adding one more site. Move on by one site, ‘! ‘� 1, and repeat.
� Repeat right and left sweeps, until convergence is achieved. Convergence is achieved if energy con-

verges, but the best test is (using MPO) to consider hwjbH2jwi � ðhwjbHjwiÞ2 to see whether an eigen-
state has been reached; this expression should approach 0 as closely as possible.

If we call matrices A;B;M depending on their normalization (M always being the one on the site
currently attended to), and giving them an subscript index i to label the number of updates by the
eigensolver they have undergone, the algorithm would formalize as
M0B0B0B0B0B0

!diag
M1B0B0B0B0B0 !

SVD
A1M0B0B0B0B0

!diag
A1M1B0B0B0B0 !

SVD
A1A1M0B0B0B0

!diag
A1A1M1B0B0B0 !

SVD
A1A1A1M0B0B0

. . .

!diag
A1A1A1A1M1B0 !

SVD
A1A1A1A1A1M0

!diag
A1A1A1A1A1M1 !

SVD
A1A1A1A1M1B1

!diag
A1A1A1A1M2B1 !

SVD
A1A1A1M1B2B1

. . .

!diag
A1M2B2B2B2B1 !

SVD
M1B2B2B2B2B1
and again moving from left to right, starting with a diagonalization step.
In this iterative process, the energy can only go down, as we continuously improve by varying the

parameters. Two problems occur: starting from a random state, the guesses for the Mr‘ in the iterative
eigensolvers will be very bad in the initial sweeps, leading to large iteration numbers and bad perfor-
mance. Moreover, we cannot guarantee that the global minimum is actually reached by this procedure
instead of being stuck in a non-global minimum.

One way of addressing the first issue is to start out with infinite-system DMRG to produce an initial
guess; an optimal MPS version of infinite-system DMRG is discussed in Section 10. While this initial
guess may be far from the true solution, it will usually fare much better than a random starting state.
Moreover, one can try to balance the number of iterations (high in the first sweeps) by starting with
small D, converge in that ansatz class, enlarge D and add zeros in the new matrix entries, converge
again, and so on. When D gets large, the guess states will hopefully be so close to the final state that
only very few iterations will be needed. It turns out, however, that starting with too small D may land
us in a non-global minimum that we will not get out of upon increasing D. Quite generally, as in
DMRG, one should never calculate results for just a single D, but increase it in various runs until results
converge (they are guaranteed to be exact in the D!1 limit).
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If we are looking for low-lying excited states instead of a ground state, two typical situations occur:
(i) The excited state is known to be the ground state of another sector of the Hilbert space decomposed
according to some good quantum number. Then the calculation is just a ground state calculation in
that different sector. (ii) The excited state is the first, second, or higher excitation in the sector of
the ground state. Then we have to calculate these excitations iteratively, and orthonormalize the state
with respect to the lower-lying states already identified; this clearly limits the approach to a few low-
lying excitations. The place where the algorithm is to be modified is in the iterative eigensolver; e.g. in
the Lanczos iterations, the next Lanczos state generated is orthonormalized not only with respect to
the previous Lanczos states, but also already constructed eigenstates of the Hamiltonian. This is a stan-
dard extension of the Lanczos algorithm.

The variational MPS algorithm just introduced is quite prone to getting stuck. How this is going to
happen, actually depends a bit on how initial states are chosen in the procedure: assume that, as is the
case for the anisotropic Heisenberg chain, there is a quantum symmetry with some commuting oper-
ator ½bH; bO� ¼ 0, in this case the total magnetization operator bM ¼Pi

bSz
i , giving rise to magnetization M

as a good quantum number. Then initial states fall into two categories, whether they are eigenstates ofbM or not. The latter will generally be the case if the state is chosen randomly; the former is the case if
it is generated by infinite-system DMRG or its MPS variant.

Decomposing the Hilbert space into eigenstates of magnetisation, H ¼ �MHM , we can write initial
states as
jwi ¼
X

M

wM jMi jMi 2HM : ð210Þ
The ground state we are looking for is jw0i 2HeM ; the initial state will then have either arbitrary wM or
wM ¼ 0 if M – eM (assuming that we do not run into the desaster of offering an initial state in the
wrong symmetry sector). Let us assume that in the first case, sweeping will eliminate contributions
from the wrong symmetry sectors; if they do not, the variationally optimal state can never be reached
anyways because wrong admixtures survive. As an iterative ground state search by, e.g. Lanczos is an
optimized version of the power method limn!1 bHnjwi for finding the largest eigenvalue and associated
eigenstate, one can show that in the full Hilbert space wrong symmetry sectors will definitely be pro-
jected out. In our algorithm, this iterative projection proceeds in a highly constrained state space and
might not be as efficient, as it looks at various wave function components sequentially. As random
starting states are very inefficient, I cannot report on a lot of practical experience here. In any case,
once we arrive in a well-defined symmetry sector, we will have, for any Schmidt decomposition
jwi ¼

P
a‘

sa‘ ja‘iAja‘iB, that each of the states will have a good quantum number (superpositions of dif-
ferent quantum numbers lead immediately to a contradiction to a global good quantum number),
namely mA

a and mB
a such that mA

a þmB
a ¼ eM , where I have simplified indices. Taking the mB

a , for exam-
ple, they will be distributed over some range, say 1 state with magnetization m, 3 states with magne-
tization m0, 5 states with magnetization m00 and so forth. As I will show next, this distribution stays
fixed in further sweeps. This means that if it does not correspond to the distribution that the variation-
ally optimal state would yield, it can never reach that state. In the random state approach one may
hope that the slow elimination of other total magnetizations ‘‘eases’’ us into the right distributions
but there is no guarantee; in the infinite-system approach one has to hope that this warm-up scheme
produces the right distribution right away, which is quite unlikely to happen.

The reason why the distribution stays fixed can be seen from the SVD of Mr‘
a‘�1 ;a‘

to carry out one (for
example) left-normalization step: reshaping matrices Mr‘ into some W and applying an SVD gives at
most D non-vanishing singular values; the right-singular vectors in V y are nothing but the eigenvec-
tors of WyW, which is block-diagonal because the states ja‘iB have good quantum numbers. The right
singular vectors (eigenvectors) therefore encode a basis transformation within blocks of the same
quantum number, hence the number of states with a given quantum number remains the same,
and so does the number of states with a given quantum number in the other part of the system be-
cause of the matching of quantum numbers required in the Schmidt decomposition.

Various ways of getting out of this potential trap have been proposed. The first one is to modify the
algorithm to consider two sites at the same time, just as in conventional (two-site) DMRG; we will
discuss its MPS implementation in the next section. While this approach is slower (roughly by a factor
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of d), it offers a slightly enlarged ansatz space with a subsequent truncation that allows the algorithm
to be more robust against the danger of getting stuck in local energy minima in ground state searches.
In particular, the enlarged ansatz space of the two-site algorithm allows a reshuffling of the quantum
number distribution due to the truncation. Once this is converged, one may switch to the single-site
algorithm, as proposed by Takasaki et al. [45], although it is not at all clear that this leads strictly to the
optimal outcome [64].

Much better, there is a procedure by White [46] that protects reasonably against trapping and en-
sures reshuffling. It is crucial for a reliable single-site DMRG (or variational MPS, which we will show
to be identical) algorithm and turns it into the state of the art form of the method. It starts from the
observation that quantum numbers of a subsystem A are changed by quantum fluctuations due to
those parts of the Hamiltonian that connect A to the rest of the system. We therefore have to consider
the structure of bHjwi in more detail.

Consider wr‘
a‘�1 ;a‘

after energy optimization in the single-site algorithm. We can also write
Fig. 43
have al
bH ¼X
b‘

bHA�
b‘
bHB

b‘
; ð211Þ
where
bHA�
b‘
¼
X

r;r02A�
Wr1 ;r01 
 
 
Wr‘ ;r0‘
� �

b‘

bHB
b‘
¼
X

r;r02B

ðWr‘þ1 ;r0‘þ1 ; . . . ;WrL ;r0L Þb‘ ; ð212Þ
such that there are DW terms in this sum. If we think in terms of block states, we would like to know
which new states can be reached on A� by the action of bHA�

b‘
. Projecting the result of this action onto

the A�B basis it will read
bHA�
b‘
jwi

� �a‘�1 ;r‘;a‘
¼
X
r0
‘

X
a0
‘�1 ;b‘�1

X
fai ;bi ;a0i ;i<‘�1g

X
r1r01

Ar1�
1;a1

W
r1 ;r01
1;b1

A
r01
1;a01

0@ 1A 
 
 

�

X
r‘�1r0‘�1

Ar‘�1�
a‘�2 ;a‘�1

W
r‘�1 ;r0‘�1
b‘�2 ;b‘�1

A
r0
‘�1

a0
‘�2

;a0
‘�1

0@ 1AW
r‘ ;r0‘
b‘�1 ;b‘

W
r0
‘

a0
‘�1

;a‘
; ð213Þ
which is just
bHA�
b‘
jwi

� �a‘�1 ;r‘;a‘
¼
X
r0
‘

X
a0
‘�1 ;b‘�1

L
a‘�1 ;a0‘�1
b‘�1

W
r‘ ;r0‘
b‘�1 ;b‘

W
r0
‘

a0
‘�1

;a‘
; ð214Þ
using L
a‘�1 ;a0‘�1
b‘�1

from Eq. (190), as can be seen graphically in Fig. 43. This indicates that the actual cost of
computation is very low, because we have already done the most complicated part.

Now we would like to include the states generated by bHA�
b‘

into the search for a good basis for A�.
Here, DMRG offers the possibility of multiple-state targeting. The conventional algorithm would now
a -1

σ

a

L

L
b

. ðbHA�
b‘
jwiÞa‘�1 ;r‘ ;a‘ represented graphically: with the exception of one W-tensor and one W-tensor, all the contractions

ready been computed to obtain L
a‘�1 ;a0‘�1
b‘�1

.
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proceed by calculating q̂A� ¼ TrBjwihwj or qða‘�1r‘Þ;ða0‘�1r
0
‘
Þ ¼

P
a‘
Wr‘

a‘�1 ;a‘
W

r0
‘
y

a‘ ;a0‘�1
, finding the eigenvalues

(squares of the singular values), the eigenvectors (left singular vectors), truncation and so on. But
we can look at a modified density matrix, which takes also into account the new terms as
q̂A� ¼ TrBjwihwj þ a
X

b‘

TrB
bHA�

b‘
jwihwjbHA�

b‘
; ð215Þ
where a is a small number, say 10�4, giving a little weight to contributions that the conventional algo-
rithm may miss. The price paid is that at the end of the spectrum a few very-small weight states from
jwihwj will drop out. Upon multiple sweeping, a will be taken slowly to zero.

The new density matrix is diagonalized, and truncation according to the D largest eigenvalues is
carried out, yielding a ðdD� DÞ matrix of orthonormal columns, Uða‘�1r‘Þ;a‘ ! Ar‘

a‘�1 ;a‘
, and we continue

on the next site; as we are not using the eigenvalues of the modified density matrix beyond their rel-
ative ordering, it does not matter that they do not sum up to 1. For predicting the next Wr‘þ1 for the
large sparse matrix solver, we use the DMRG prediction formula derived in the next section,
Wr‘þ1
a‘ ;a‘þ1

¼
X

a‘�1r‘a0‘

Ar‘y
a‘;a‘�1

Wr‘
a‘�1 ;a0‘

Br‘þ1
a0
‘
;a‘þ1

: ð216Þ
Otherwise, everything remains the same. The additional numerical cost and programming effort is
minimal for an algorithm that often converges much faster and is much less prone to getting stuck
at a non-optimal result.

6.4. Conventional DMRG in MPS language: the subtle differences

How can the previous approach be related to conventional DMRG? The essential answer is that the
MPS approach is identical to finite-size DMRG for OBC, albeit only if we shift one site instead of two,
i.e. consider ‘‘single-site’’ instead of ‘‘two-site’’ DMRG, where we consider a block-site-block configu-
ration A�B instead of a block-site-site-block configuration A��B.

Let us first remind ourselves of the key steps of the algorithms, assuming that we are sweeping to the
right: (i) given some configuration A�B (or corresponding configuration AAAMBB) and a Hamiltonian bH ,
the ground state is found by a large sparse matrix eigensolver looking for the optimal wa‘�1r‘a‘ (in DMRG)
or Mr‘

a‘�1 ;a‘
(in MPS) respectively; analogously for A��B. (ii) Given the ground state, MPS derives a set of

left-normalized A-matrices, whereas DMRG finds new block states whose structure can be encoded
by left-normalized A-matrices. (iii) All algorithms switch to a new A�B, A��B or AAAAMB configuration,
where the active center is shifted by one site to the right and provide an initial guess for the calculation of
the next ground state, taking us back to step (i).

Step (i): Results must be identical if we use the same state configuration and the same Hamiltonian.
As DMRG grows the blocks A and B from left and right, and as each block growth step A� ! A can be
encoded by A-matrices and similarly �B! B, we conclude that all matrices on A are left-normalized
and those on B right-normalized, hence the two-site DMRG state takes the form
jwi ¼
X

a‘�1r‘r‘þ1a‘þ1

Wr‘r‘þ1
a‘�1 ;a‘þ1

ja‘�1iAjr‘ijr‘þ1ija‘þ1iB ¼
X
r

Ar1 
 
 
Ar‘�1 Wr‘r‘þ1 Br‘þ2 
 
 
BrL jri; ð217Þ
with the obvious change for a single-site DMRG state, Wr‘r‘þ1 ! Wr‘ . This is in perfect agreement with
the mixed-canonical states of the variational MPS approach and we are looking at the same state
structure.

It remains to show that the Hamiltonians are identical, too. Strictly speaking, this is not the case:
The MPO representation of bH we just used is clearly exact. On the other hand, the representation of bH
in DMRG contains a series of reduced basis transformations, hence is inherently inexact. So, the two
representations seem unrelated, with an advantage on the MPO side because it is exact. But a more
careful analysis reveals that on the level of calculating expectation values hwjbHjwi as they appear in
MPS and DMRG ground state searches both representations give identical results (they are not iden-
tical for higher moments, such as hwjbH2jwi, where the MPO representation is demonstrably more accu-
rate at a numerical cost, see below).
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Both the DMRG and the MPO Hamiltonian contain all terms of the exact Hamiltonian. As we have
already seen in the application of a Hamiltonian MPO to a mixed canonical state (Section 6.2), the
evaluation of the L and R-objects appearing in the large sparse eigenproblem Eq. (207) is nothing
but the sequence of reduced basis transformations occuring in DMRG up to the current A�B configu-
ration. Hence, for hwjbHjwi (but in general only for this!), both approaches are identical.

Moreover, the calculation bHjwi appearing in the eigenproblem does not have a worse operational
count than in the corresponding DMRG procedure. To see this, let us focus on our example MPO for an
anisotropic nearest-neighbour Heisenberg chain. There seems to be a difference in efficiency when we
consider the double sum over b‘�1; b‘. From the structure of the W-matrix it is clear that for most of the
D2

W (in the example 25) entries we find zeros, such that we can strongly restrict the sum. But this
would still give the following count: setting the field 0, for the Heisenberg Hamiltonian there are eight
contributions in the DMRG setup: one each for bHA and bHB, the parts of the Hamiltonian that act strictly
on A and B, and three per block for the three operator combinations linking a block and the site. All of
them are diagonal in the other block, so there are altogether eight operations of cost OðD3Þ. In the MPO
calculation, the double matrix–matrix multiplication would naively suggest 16 operations of cost
OðD3Þ, for the eight non-vanishing entries of Wr‘ ;r0‘ . But then we can exploit the following rules: if
b‘�1 ¼ dW , then there are no operations to the left, L

a‘�1 ;a0‘�1
dW

¼ da‘�1 ;a0‘�1
, and one operation drops out. Sim-

ilarly, if b‘ ¼ 1, then there are no operations to the right and R
a‘ ;a0‘
b‘
¼ da‘ ;a0‘

, and again one operation
drops out. Looking at the structure of W, all non-vanishing entries meet one or the other condition,
and the count halves down to eight operations. Only longer-ranged interactions do not fit this picture,
but they would be of cost 2OðD3Þ in DMRG as well.

Step (ii): After energy minimization, variational MPS and DMRG produce (identical) Mr‘ and Wr‘ , or
Wr‘r‘þ1 . Both methods now seem to proceed differently with the result, but in fact do the same: in var-
iational MPS one just shifts one site to the right after an SVD to ensure left-normalization, to continue
minimizing on the next site. In DMRG one previously carries out a density matrix analysis to deter-
mine a new (truncated) block basis. But if one carries out the corresponding SVD, the number of
non-zero singular values (hence non-zero density matrix eigenvalues) is limited by D, the matrix
dimension:
Wr‘
a‘�1 ;a‘

! Wða‘�1r‘Þ;a‘ ¼
XminðdD;dÞ¼D

k¼1

Ar‘
a‘�1 ;k

SkkðV yÞk;a‘ : ð218Þ
Hence, no truncation happens, and we are just doing a unitary transformation to obtain orthonormal
states for the new larger block A (which is just the left-normalization in the MPS because of the link
between SVD and density matrix diagonalization). Both formalisms act identically; as no truncation
occurs, thin QR would do, too.

On the other hand, in two-site DMRG the same step reads
Wr‘r‘þ1
a‘�1 ;a‘þ1

! Wða‘�1r‘Þ;ðr‘þ1a‘þ1Þ ¼
XminðdD;dDÞ¼dD

k¼1

Ar‘
a‘�1 ;k

Sk;kðV yÞk;ðr‘þ1a‘þ1Þ: ð219Þ
But we can only keep D states in the new block, hence truncation has to occur! Here is the only dif-
ference between variational MPS and single-site DMRG on the one and two-site DMRG on the other
hand.

Step (iii): In DMRG, after completion of one iteration, the free site(s) are shifted by one, leading to
block growth of A and shrinkage of B. Here, all methods agree again: in variational MPS, the shrinkage
of B is simply reflected in the states being formed from a string of B-matrices where the leftmost one
has dropped off. The growth of A is given by a similar string, where one A-matrix has been added. The
matrix on the free sites is to be determined in all approaches, so nothing is to be said about its
normalization.

Minimization of ground state energy is, as we have seen, a costly large sparse matrix problem. As
the methods are iterative, a good initial guess is desirable. DMRG has provided some ‘‘state prediction’’
for that [21]. In fact, it turns out that the result of the prediction is just what one gets naturally in var-
iational MPS language without the intellectual effort involved to find state prediction.
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Let us assume that for single-site DMRG we just optimized Wr‘ , deriving a new Ar‘ . Then in MPS
language the next Wr‘þ1 ¼ SV yBr‘þ1 , where S and V y are from the SVD. In DMRG language, we take
jwi ¼
X

a‘�1r‘a0‘

Wr‘
a‘�1 ;a‘

ja‘�1iAjr‘ija0‘iB ð220Þ
and insert twice approximate identities I ¼
P
ja‘iAAha‘j and I ¼

P
jr‘þ1ija‘þ1iBBha‘þ1jhr‘þ1j. Expressing

the matrix elements by A and B matrices, the state now reads
jwi ¼
X

a‘r‘þ1a‘þ1

X
a‘�1r‘a0‘

Ar‘y
a‘ ;a‘�1

Wr‘
a‘�1 ;a0‘

Br‘þ1
a0
‘
a‘þ1

0@ 1Aja‘iAjr‘þ1ija‘þ1iB: ð221Þ
So the prediction reads
Wr‘þ1
a‘ ;a‘þ1

¼
X

a‘�1r‘a0‘

Ar‘y
a‘;a‘�1

Wr‘
a‘�1 ;a0‘

Br‘þ1
a0
‘
a‘þ1

: ð222Þ
But this is exactly the MPS ansatz for the next eigenproblem, as Ar‘yWr‘Br‘þ1 ¼ Ar‘yAr‘SV yBr‘þ1 . But this
is just SV yBr‘þ1 because in the ansatz, r‘ is summed over and left-normalization holds. Two-site DMRG
proceeds by analogy and is left as an exercise for the reader.

While this clarifies the relationship between variational MPS, single-site DMRG (the same) and
two-site DMRG (different), it is important to note that the different ways of storing information more
implicitly or more explicitly implies differences even if the algorithms are strictly speaking identical –
the fact that in one formulation prediction is trivial and in the other is not already gave us an example.
But there is more.

(i) In DMRG, the effective bases for representing the states and the Hamiltonian or other operators
are tied up. This is why concepts such as targetting multiple states arise, if we consider several
different states like the ground state and the first excited state at the same time. One then con-
siders mixed reduced density operators
q̂A ¼
X

i

aiTrBjwiihwij ð223Þ

with jwii the target states and 0 < ai 6 1;
P

iai ¼ 1, to give a joint set of bases for all states of
interest. This can of course only be done at a certain loss of accuracy for given numerical re-
sources and for a few states only. At the price of calculating the contractions anew for each state,
in the MPO/MPS formulation, the state bases are only tied up at the level of the exact full basis.
MPO/MPS formulations therefore acquire their full potential versus conventional DMRG lan-
guage once multiple states get involved.
(ii) Another instance where the MPO/MPS formulation is superior, albeit at elevated numerical cost,
is the calculation of the expression hwjbH2jwi, which is interesting, e.g. in the context of estimat-
ing how accurately a ground state has been obtained. In the MPO formalism, it can be done
exactly up to the inherent approximations to jwi by contracting the network shown in
Fig. 44. It would of course be most economical for the programmer to calculate bHjwi and take
the norm, two operations which at this stage he has at hand. The operational cost of this would
be OðLD2D2

W d2Þ for the action of the MPO and OðLD3D3
W dÞ for the norm calculation. The latter is

very costly, hence it is more efficient to do an iterative construction as done for hwjbHjwi. Let me
make the important remark that dimension D2

W is only the worst case for bH2 [73]: writing out
the square and introducing rules for the expression leads to more efficient MPOs, whose opti-
mality can be checked numerically by doing an SVD compression and looking for singular values
that are zero. Our anisotropic Heisenberg Hamiltonian takes DW ¼ 9 instead of 25 for bH2. For
higher powers, the gains are even more impressive, and can be obtained numerically by com-
pressing an explicit MPO for bHn with discarding only zeros among the singular values.

In a DMRG calculation, there would be a sequence bH bHjwi� �
, in the DMRG block-site basis as shown

in Fig. 45. The point is that before the second application of bH, a projection onto the reduced block
bases happens, which is not the identity and loses information.



Fig. 44. ‘‘Exact’’ calculation of the expectation value of bH2: the Hamiltonian MPO is repeated twice and sandwiched between jwi
at the bottom and hwj at the top.
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Fig. 45. DMRG calculation of the expectation value of bH2: the Hamiltonian MPO is applied once to jwi in step (1) in the DMRG
basis, i.e. the result is projected onto the reduced bases, yielding some Ur‘ . This in turn replaces Wr‘ in the second application ofbH in step (2). Ultimately, the result is projected on the block bases.
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What does the comparison MPS and DMRG imply algorithmically? First of all, the truncation error
of conventional DMRG, which has emerged as a highly reliable tool for gauging the quality of results, is
nothing but an artefact of the somewhat anomalous two-site setup. In variational MPS or single-site
DMRG it has to be replaced by some other criterion, like the variance of the energy. Second, while all
the approaches are variational in the sense that they are looking for the lowest energy that can be
achieved in a given type of ansatz, it varies from site to site in two-site DMRG (because of the Wrr

anomaly in the ansatz), the ansatz stays the same all the time in single-site DMRG, which is concep-
tually nicer. That this comes at the expense of potential trapping serves as a reminder that the math-
ematically most beautiful does not have to be the most practical.

7. Time evolutions (real and imaginary) with MPS

The calculation of the action of operators like e�ibHt or e�bbH on quantum states is of central interest
in quantum mechanics, for real-time evolutions of quantum states and for quantum statistical
mechanics; b can be interpreted as an imaginary time. It is one of the most attractive features of
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MPS that such real or imaginary time evolutions can be encoded very neatly and efficiently. This holds
both for pure and mixed states, important at finite temperature. In the following, I will focus on time
evolution based on a Trotter decomposition of the evolution operators [47–51], explaining first the
Trotter decomposition and the structure of the algorithm for pure states, then the representation of
the Trotter decomposition by MPOs. After this, I will discuss the changes necessary for the simulation
of the dynamics of mixed states.

7.1. Conventional time evolution: pure states

7.1.1. Trotter decompositions of time evolution
Let us assume that bH consists of nearest-neighbour interactions only, i.e. bH ¼Piĥi, where ĥi con-

tains the interaction between sites i and iþ 1. We can then discretize time as t ¼ Ns with
s! 0;N !1 and (in the most naive approach) do a first-order Trotter decomposition as
e�ibHs ¼ e�iĥ1se�iĥ2se�iĥ3s 
 
 
 e�iĥL�3se�iĥL�2se�iĥL�1s þ Oðs2Þ; ð224Þ
which contains an error due to the noncommutativity of bond Hamiltonians, ½ĥi; ĥiþ1�– 0 in general;
higher order decompositions will be discussed later in this section. All time evolutions on odd ðe�ibHoddsÞ
and even ðe�ibHevensÞ bonds respectively commute among each other, and can be carried out at the same
time. So we are looking for an MPO doing an infinitesimal time step on the odd bonds and for another
MPO doing the same on the even bonds.

As any operator is guaranteed to be MPO-representable, let us assume for a moment that indeed we
can construct these representation of infinitesimal time steps efficiently (see next section for the ex-
plicit construction). As we will see, the maximum bond dimension of the infinitesimal time step MPOs
is d2 because the dimension of e�iĥs is ðd2 � d2Þ. The application of the infinitesimal time step MPOs
thus increases the bond dimensions from D up to d2D. Repeated applications of the infinitesimal time
evolution MPOs leads to an exponential growth of the matrix dimensions, which therefore have to be
truncated after time steps.

The resulting time evolution algorithm takes a very simple form: starting from jwðt ¼ 0Þi, repeat
the following steps:

� Apply the MPO of the odd bonds to jwðtÞi.
� Apply the MPO of the even bonds to e�ibHoddsjwðtÞi.
� Compress the MPS jwðt þ sÞi ¼ e�ibHevense�ibHoddsjwðtÞi from dimensions d2D to D, monitoring the error.

Obviously, one may also allow for some compression error (state distance) � and choose a time-
dependent D: it will typically grow strongly with time, limiting the reachable timescale. By analogy
to the ground state calculations, all results should be extrapolated in D!1 or �! 0.

After each time step, we may evaluate observables in the standard way, hOðtÞi ¼ hwðtÞjbOjwðtÞi. But
we can do more: we can calculate time-dependent correlators as
bOðtÞbPD E
¼ wjeþibHt bOe�ibHtbP jw� �

¼ wðtÞjbOj/ðtÞD E
; ð225Þ
where jwðtÞi ¼ e�ibHt jwi and j/ðtÞi ¼ e�ibHtbPjwi. If we take, e.g. bO ¼ bSz
i and bP ¼ bSz

j , we can calculate
hbSz

i ðtÞbSz
j i and by a double Fourier transformation the structure function
Szzðk;xÞ /
Z

dt
X

n

hbSz
i ðtÞbSz

iþnieikne�ixt ; ð226Þ
where I have assumed translational invariance and infinite extent of the lattice for simplicity of the
formula.

A simple improvement on the algorithm given above is to do a second-order Trotter decomposition
e�ibHs ¼ e�ibHodds=2e�ibHevense�ibHodds=2 þ Oðs3Þ; ð227Þ
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where the error per timestep is reduced by another order of s. If we do not do evaluations after each
time step, we can group half steps, and work at no additional expense compared to a first-order Trotter
decomposition.

A very popular implementation of a fourth-order Trotter decomposition that originates in quantum
Monte Carlo would be given by the following formula due to Suzuki [101,102]:
Fig. 46.
the sim
factoriz
e�ibHs ¼ bUðs1ÞbUðs2ÞbUðs3ÞbUðs2ÞbUðs1Þ; ð228Þ
where
bUðsiÞ ¼ e�ibHoddsi=2e�ibHevensi e�ibHoddsi=2 ð229Þ
and
s1 ¼ s2 ¼
1

4� 41=3 s s3 ¼ s� 2s1 � 2s2: ð230Þ
Even smaller errors can be achieved at similar cost using less symmetric formulae [103]. This com-
pletes the exposition of the algorithm (an error analysis will be given after the other methods for time
evolution have been explained), and we now have to construct the MPOs.

7.1.2. MPO for pure state evolution
Let us consider the Trotter step for all odd bonds of a chain:
e�iĥ1s � e�iĥ3s � 
 
 
 � e�iĥL�1sjwi; ð231Þ
each bond-evolution operator like e�iĥ1s takes the form
P

r1r2 ;r01r
0
2
Or1r2 ;r01r

0
2 jr1r2ihr01r02j. Both in the

pictorial and the explicit mathematical representation it is obvious that this operator destroys the
MPS form (Fig. 46).

It would therefore be desirable to have Or1r2 ;r01r
0
2 in some form containing tensor products

Or1 ;r01 � Or2 ;r02 , to maintain the MPS form. To this purpose, we carry out the procedure for decomposing
an arbitrary state into an MPS, adapted to an operator (two indices per site). It works because there are
so few indices. One reorders O to group local indices and carries out a singular value decomposition:
Or1r2 ;r01r
0
2 ¼ Pðr1r01Þ;ðr2r02Þ ¼

X
k

Ur1r01 ;k
Sk;kðV yÞk;ðr2r02Þ

¼
X

k

U
r1r01
k U

r2r02
k ¼

X
k

U
r1r01
1;k U

r2r02
k;1 ;
where U
r1r01
k ¼ Uðr1r01Þ;k

ffiffiffiffiffiffiffi
Sk;k

p
and U

r2r02
k ¼

ffiffiffiffiffiffiffi
Sk;k

p
ðV yÞk;ðr2r02Þ

. In the very last step of the derivation, we

have introduced a dummy index taking value 1 to arrive at the form of an MPO matrix. The index k

may run up to d2, giving the bond dimension DW of the MPO.
The MPO representing the operator in Eq. (231), Ur1r01 Ur2r02 Ur3r03 Ur4r04 . . ., factorizes on every second

bond, as do the original unitaries. If one site does not participate in any bond evolution, we simply
A Trotter step: on all odd bonds, an (infinitesimal) bond time evolution is carried out. This merges two sites, such that
ple product form of MPS is lost at first sight, but the time evolution can be translated into MPOs. As the time evolution
es, the MPOs have dimension 1 on all even bonds (thin lines).
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assign it the identity unitary as a ð1� 1Þ-matrix: Ir;r
0

1;1 ¼ dr;r0 . Then the global MPO can be formed triv-
ially from local MPOs. The MPO for time evolution on all odd bonds would read UUUUUU . . ., whereas
the even-bond time step reads IUUUUUU . . . I (Fig. 47).

7.2. Conventional time evolution: mixed states

7.2.1. Purification of mixed states
Finite temperature calculations can be carried out based on the purification of an arbitrary mixed

quantum state [51]: if we consider a mixed state in physical space P formed from orthonormal states,
we can interpret it as the result of a partial trace over a Schmidt decomposition of a pure state on PQ,
where Q is an auxiliary space:
Fig. 48.
copy of
linked b
�ib=2.

Fig. 47.
MPO bo
q̂P ¼
Xr

a¼1

s2
a jaiPhajP ! jwi ¼

Xr

a¼1

sajaiPjaiQ q̂P ¼ TrQ jwihwj: ð232Þ
The auxiliary state space can simply be taken as a copy of the original one, so finite-temperature den-
sity operators on a chain can be expressed as pure states on a ladder (see Fig. 48).

To calculate a thermal density operator q̂b ¼ ZðbÞ�1e�bbH ; ZðbÞ ¼ TrPe�bbH , we write
q̂b ¼ ZðbÞ�1e�bbH ¼ ZðbÞ�1e�bbH=2 
bI 
 e�bbH=2: ð233Þ
The identity bI is nothing but Zð0Þq̂0, the infinite temperature density operator times the infinite tem-
perature partition function. Assume we know the purification of q̂0 as an MPS, jwb¼0i. Then
q̂b ¼ ðZð0Þ=ZðbÞÞe�bbH=2 
 TrQ jw0ihw0j 
 e�bbH=2 ¼ ðZð0Þ=ZðbÞÞTrQ e�bbH=2jw0ihw0je�bbH=2: ð234Þ
The trace over Q can be pulled out as the Hamiltonian does not act on Q. But the result means that we
have to do an imaginary time evolution
jwbi ¼ e�bbH=2jw0i: ð235Þ
1

2

3

4

5

6

7

8

9

10

...

...

physical P

auxiliary Q

maximally entangled state

imaginary time evolution

Schematic representation of finite-temperature simulations: instead of a chain, one sets up a ladder with an identical
the chain. Physical sites have odd, auxiliary sites have even labels. Equivalent sites on the physical and auxiliary leg are
y maximally entangled states. To reach inverse temperature b, an imaginary time evolution is carried out up to ‘‘time’’

A complete first-order Trotter time step (odd and even bonds). Fat and thin lines correspond to dimension 1 and > 1 on
nds. The MPOs in the top line on the first and last site are trivial scalar identities 1.
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Expectation values are given by
hbOib ¼ TrP
bOq̂b ¼ ðZð0Þ=ZðbÞÞTrP

bOTrQ jwbihwbj ¼ ðZð0Þ=ZðbÞÞhwbjbOjwbi: ð236Þ
ðZð0Þ=ZðbÞÞ ¼ ðdL
=ZðbÞÞmay seem difficult to obtain, but follows trivially from the expectation value of

the identity,
1 ¼ hbIib ¼ TrPq̂b ¼ ðZð0Þ=ZðbÞÞTrPTrQ jwbihwbj ¼ ðZð0Þ=ZðbÞÞhwbjwbi; ð237Þ
hence ZðbÞ=Zð0Þ ¼ hwbjwbi, or, in complete agreement with standard quantum mechanics,
hbOib ¼ hwbjbOjwbi
hwbjwbi

: ð238Þ
But this takes us right back to expressions we know how to calculate. All we have to do is to find jw0i,
carry out imaginary time evolution up to �ib=2, and calculate expectation values as for a pure state.
We can even subject the purified state jwbi to subsequent real time evolutions, to treat time depen-
dence at finite T.

We can also do thermodynamics quite simply, as ZðbÞ=Zð0Þ is given by the square of the norm of
jwbi and Zð0Þ ¼ dL. This means that we can obtain ZðbÞ by keeping the purified state normalized at
all temperatures and by accumulating normalization factors as temperature goes down and b in-
creases. From ZðbÞ, we have FðbÞ ¼ �b�1 ln ZðbÞ. At the same time, UðbÞ ¼ hbHib ¼ hwbjbHjwbi. But this
in turn gives us SðbÞ ¼ bðUðbÞ � FðbÞÞ. Further thermodynamic quantities follow similarly.

The purification of the infinite temperature mixed state is a simple MPS of dimension 1, because it
factorizes (if we take one ladder rung as a big site):
q̂0 ¼
1

dL
bI ¼ 1

d
bI� ��L

: ð239Þ
As q̂0 factorizes, we can now purify the local mixed state on each physical site as a pure state on rung i,
to get jwi0i, then jw0i ¼ jw1;0ijw2;0ijw3;0i . . ., a product state or an MPS of dimension 1. If we consider
some rung i of the ladder, with states jriP and jriQ on the physical site 2i� 1 and the auxiliary site
2i, we can purify as follows:
1
d
bI ¼X

r

1
d PjrihrjP ¼ TrQ

X
r

1ffiffiffi
d
p jriPjriQ

 ! X
r

1ffiffiffi
d
p hrjPhrjQ

 !" #
: ð240Þ
Hence the purification is given by a maximally entangled state (entanglement entropy is log2d),
jwi0i ¼
X
r

1ffiffiffi
d
p jriPjriQ : ð241Þ
It is easy to see that one can carry out local unitary transformations on both P and Q separately that
leave that structure invariant. For example, for the purification of a spin-1/2 chain it is advantageous
to use the singlet state as local purification,
jwi;0i ¼
1ffiffiffi
2
p j"P#Q i � j#P"Q i


 �
ð242Þ
in case the program knows how to exploit good quantum numbers: this state would allow to conserve
total S ¼ 0 and Sz ¼ 0 at the same time. In this case, the four A-matrices would read
A"P"Q ¼ 0 A"P#Q ¼ 1=
ffiffiffi
2
p

A#P"Q ¼ �1=
ffiffiffi
2
p

A#P#Q ¼ 0 ð243Þ
and the purified starting state jw0i for b ¼ 0 is now given by a product of singlet bonds on a ladder. In
fact, a SVD of reshaped matrix Ar;r0 allows us to introduce truly site-local A-matrices, which have
dimension ð1� 2Þ on odd and ð2� 1Þ on even sites:
A"2i�1 ¼ ½1 0� A#2i�1 ¼ ½0 � 1� A"2i ¼ ½0 1=
ffiffiffi
2
p
�T A#2i ¼ ½1=

ffiffiffi
2
p

0�T : ð244Þ
In order to apply the pure state time evolution algorithm, it remains to find the MPO.
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7.2.2. MPO for mixed state evolution
The ladder appearing in mixed state simulations can be mapped to a chain (Fig. 49), where the

physical Hamiltonian acts only on the odd sites, 1;3;5; . . ., and the auxiliary sites are even,
2;4;6; . . .. Then the only non-trivial time-evolution connects (1,3), (3,5), (5,7). There are several ways
of dealing with such longer-ranged interactions, one explicitly constructing the longer-ranged inter-
action, the other using so-called swap gates, reducing it to a nearest-neighbour interaction.

The direct MPO description of the ‘‘longer-ranged’’ interaction (1,3) involves necessarily a non-triv-
ial tensor on site 2, whereas the site 4 is inert. Similarly for (3,5), there is a non-trivial tensor on 4, but
site 6 is inert. This suggests a Trotter decomposition ð1;2;3;4Þ; ð5;6;7;8Þ; . . . in the ‘‘odd’’ and
ð3;4;5;6Þ; ð7;8;9;10Þ; . . . in the ‘‘even’’ steps.

The four-site evolution operator on sites 1–4 then reads
Fig. 49.
on the fi
on the
Oðr1r2r3r4Þ;ðr01r
0
2r
0
3r
0
4Þ ¼ Oðr1r2r3Þ;ðr01r

0
2r
0
3Þ 
 dr4 ;r04

ð245Þ
and we can build the three-site unitary with only a slight modification of the two-site unitary which
contains the actual physical time evolution:
Oðr1r2r3Þ;ðr01r
0
2r
0
3Þ ¼ Oðr1r3Þ;ðr01r

0
3Þ 
 dr2 ;r02

ð246Þ
This three-site unitary is now subjected to two SVDs. For the notation, we first shift down the indices
and reorder sitewise. Reshaping with subsequent SVDs then iteratively isolates r3;r03;r2;r02, and
r1;r01:
Oðr1r2r3Þ;ðr01r
0
2r
0
3Þ ¼ Pðr1r01r2r02Þ;ðr3r03Þ ¼

X
k2

Uðr1r01r2r02Þ;k2
S½2�k2 ;k2

ðV y23Þk2 ;ðr3r03Þ

¼
X

k2

Uðr1r01Þ;ðr2r02k2ÞS
½2�
k2 ;k2
ðV y23Þk2 ;ðr3r03Þ

¼
X
k1 ;k2

Uðr1r01Þ;k1 S½1�k1 ;k1
ðV y12Þk1 ;ðr2r02k2ÞS

½2�
k2 ;k2
ðV y23Þk2 ;ðr3r03Þ

¼
X
k1 ;k2

W
r1r01
1;k1

W
r2r02
k1 ;k2

W
r3r03
k2 ;1

;

where, with the introduction of dummy indices and the inert tensor on site 4:
W
r1r01
1;k1
¼ Uðr1r01Þ;k1

ffiffiffiffiffiffiffiffiffiffiffi
S½1�k1 ;k1

q
; ð247Þ

W
r2r02
k1 ;k2
¼

ffiffiffiffiffiffiffiffiffiffiffi
S½1�k1 ;k1

q
ðV y12Þk1 ;ðr2r02k2Þ

ffiffiffiffiffiffiffiffiffiffiffi
S½2�k2 ;k2

q
: ð248Þ

W
r3r03
k2 ;1
¼

ffiffiffiffiffiffiffiffiffiffiffi
S½2�k2 ;k2

q
ðV y23Þk2 ;ðr3r03Þ

: ð249Þ

W
r4r04
1;1 ¼ dr4 ;r04

: ð250Þ
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The time-evolution of mixed states on a chain can be seen as that of a pure state on a ladder, where the physical sites sit
rst leg and additional auxiliary sites on the second leg. This ladder is mapped to a chain. As the time evolution acts only

physical states, next-nearest neighbour interactions arise.
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From this, MPOs for the entire chain can be formed as for the pure state time evolution. We have done
nothing but the iterative decomposition of an MPO on four sites. Again, this is still manageable, as only
four sites are involved.

Obviously, it is a straightforward step to write an evolution operator acting on all four bonds (1,2),
(1,3), (2,4) and (3,4) and subject it to a similar sequence of SVDs, which would allow to consider pure
state time-evolution on a real ladder.

An alternative approach to carry out interactions beyond immediate neighbours is provided by the
use of swap gates [99]. Let us take the example of a real ladder with interactions on four bonds, two of
which [(1,3) and (2,4)] are next-nearest-neighbour interactions. But if we swapped states on sites
2$ 3, they would be nearest-neighbour interaction. Time-evolution on the ladder would then be
done as follows: (i) evolve bonds (1,2) and (3,4); (ii) swap states on sites 2 and 3, (iii) evolve
‘‘new’’ bonds (1,2) and (3,4) with the evolution operators for ‘‘old’’ bonds (1,3) and (2,4) and (iv) swap
states on sites 2 and 3 once again. In other situations, more astute schemes need to be found, prefer-
rably generating a sequence of swaps between nearest neighbours. The swap operator for sites i and j
is simply given by
bSij ¼
X

rir0irjr0j

Srirjr0ir
0
j jrirjihr0ir0jj Srirjr0ir

0
j ¼ dri ;r0j

drj ;r0i
; ð251Þ
is unitary and its own inverse. It swaps the physical indices of two sites in an MPS; for swaps between
nearest neighbours it is easy to restore the original form of the MPS: assume that the MPS is left-nor-
malized; a unitary applied to sites i and iþ 1 affects this only on these two sites. In particular, the
orthonormality of block states jak<iiA and jaiþ1iA is not affected. If we introduce a matrix

Mðai�1riþ1Þ;ðriaiþ1Þ ¼
P

ai
A½i�riþ1

ai�1 ;ai
A½iþ1�ri

ai ;aiþ1
, we can form eM ðai�1riÞ;ðriþ1aiþ1Þ ¼ Mðai�1riþ1Þ;ðriaiþ1Þ and carry out an SVD,

where Uðai�1riÞ;ai
yields a new left-normalized eAri

ai�1 ;ai
and Sai ;ai

ðV yÞai ;ðriþ1aiþ1Þ a new left-normalizedeAriþ1
ai ;aiþ1

. That the latter is left-normalized follows from the left-normalization of eAri and the maintained
orthonormality of the jaiþ1iA.

Let me conclude this outlook on beyond-nearest-neighbour interactions with the remark that using
MPO allows also other Trotter decompositions, e.g. decomposing the Heisenberg Hamiltonian in its x; y
and z-dependent parts, useful for long-range interactions [71].

7.3. tDMRG and TEBD compared to MPS time evolution: the little differences

A bit before time evolution with MPS (tMPS) was developed, two other algorithms were introduced
to simulate the real-time dynamics of one-dimensional quantum chains, time-evolving block decima-
tion (TEBD) [47,48] and real-time or time-dependent DMRG (tDMRG) [49,50]. Both algorithms are also
based on MPS, but are different from tMPS, when one looks more closely. Before I get into that, let me
stress however that all of them are based on the idea of time-evolving an MPS which was first put for-
ward in [47,48] and therefore are minor variations on a theme. tDMRG and TEBD are mathematically
equivalent, i.e. should for exact arithmetic give the same results, whereas numerically they are clearly
distinct algorithms, both carrying out operations that have no counterpart in the other method, with
their respective advantages and disadvantages. Let us discuss first tDMRG, because its language is clo-
ser to that of tMPS, and then TEBD, to see how important (or unimportant) the little differences are.

7.3.1. Time-dependent DMRG (tDMRG)
The decomposition of a global time-evolution on an entire lattice into a Trotter sequence of infin-

itesimal time-evolutions on bonds is the same for all three algorithms discussed here. Let us therefore
focus on one infinitesimal time-evolution e�iĥ‘þ1s on sites ‘þ 1 and ‘þ 2. The evolution operator ex-
pressed in the local basis is given by
Uðr‘þ1r‘þ2Þ;ðr0‘þ1r
0
‘þ2Þ ¼ r‘þ1r‘þ2je�iĥ‘þ1sjr0‘þ1r

0
‘þ2

D E
: ð252Þ
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The current state w is given in the two-site DMRG notation with left- and right normalized matrices as
jwi ¼
X
r

Ar1 
 
 
Ar‘Wr‘þ1r‘þ2 Br‘þ3 
 
 
BrL jri: ð253Þ
The time-evolution turns Wr‘þ1r‘þ2 into
Ur‘þ1r‘þ2
a‘ ;a‘þ2

¼
X

r0
‘þ1r

0
‘þ2

Uðr‘þ1r‘þ2Þ;ðr0‘þ1r
0
‘þ2ÞW

r0
‘þ1r

0
‘þ2

a‘ ;a‘þ2
: ð254Þ
This, together with the A and B-matrices defines a valid DMRG state we call j/i. In order to make pro-
gress, namely to apply e�iĥ‘þ3s on the next pair of sites, we have to bring the state into the form
j/i ¼
X
r

Ar1 
 
 
Ar‘þ2 Ur‘þ3r‘þ4 Br‘þ5 
 
 
BrL jri: ð255Þ
The changes can only concern sites ‘þ 1 through ‘þ 4: on the first two sites because of the action of
the evolution operator, on the last two sites because they are brought into DMRG form. Let us first
generate the new A-matrices on sites ‘þ 1 and ‘þ 2: We reshape Ur‘þ1r‘þ2

a‘ ;a‘þ2
¼ Uða‘r‘þ1Þ;ðr‘þ2a‘þ2Þ and sub-

ject it to an SVD (DMRG traditionally does this by a density matrix analysis and the DMRG prediction
when shifting sites, leading to the same result):
Uða‘r‘þ1Þ;ðr‘þ2a‘þ2Þ ¼
X
a‘þ1

Uða‘r‘þ1Þ;a‘þ1 Sa‘þ1 ;a‘þ1 ðV
yÞa‘þ1 ;ðr‘þ2a‘þ2Þ: ð256Þ
U can immediately be reshaped into a valid A-matrix, but has column dimension up to dD, which has
to be truncated down to D while maintaining the best approximation to the MPS of dimension dD. The
answer is provided as always by keeping just the D largest singular values and shrinking the matrices
U; S;V y accordingly. Here lies the approximation of the method (beyond the obvious Trotter error).
This done, we reshape as
X

a‘þ1

Ar‘þ1
a‘ ;a‘þ1

Sa‘þ1 ;a‘þ1 ðV
yÞr‘þ2

a‘þ1 ;a‘þ2
ð257Þ
and form U shifted by one site as
Ur‘þ2r‘þ3
a‘þ1 ;a‘þ3

¼
X
a‘þ2

Sa‘þ1 ;a‘þ1 ðV
yÞr‘þ2

a‘þ1 ;a‘þ2
Br‘þ3

a‘þ2 ;a‘þ3
: ð258Þ
But we have to shift by another site, which we achieve by reshaping Ur‘þ2r‘þ3
a‘þ1 ;a‘þ3

as Uða‘þ1r‘þ2Þ;ðr‘þ3a‘þ3Þ, carry
out an SVD as done before, keep the states corresponding to the D largest out of dD singular values,
reshape, note down Ar‘þ2 and form U shifted by two sites as
Ur‘þ3r‘þ4
a‘þ2 ;a‘þ4

¼
X
a‘þ3

Sa‘þ2 ;a‘þ2 ðV
yÞr‘þ3

a‘þ2 ;a‘þ3
Br‘þ4

a‘þ3 ;a‘þ4
: ð259Þ
The second SVD and the associated truncation down to D singular values does not lose further infor-
mation, because there are at most D non-zero singular values, although formally there could be dD of
them. The reason is that before the time evolution on sites ‘þ 1 and ‘þ 2, the Schmidt rank across the
bond ‘þ 2 was at most D (due to the MPS construction). The Schmidt rank of two states is however
identical if they are related by a unitary transformation that acts on either part A or part B. But the
infinitesimal time-evolution was a unitary on part A.

We can now continue with the next infinitesimal local time-evolution step, in the spirit of tMPS.

7.3.2. Time-evolving block decimation (TEBD)
Here, we assume that we have jwi in the CK-notation,
jwi ¼
X
r

Cr1K½1�Cr2 K½2� 
 
 
Cr‘K½‘�Cr‘þ1 K½‘þ1�Cr‘þ2K½‘þ2�Cr‘þ3K½‘þ3� 
 
 
CrL jri: ð260Þ
This state can be immediately connected to the two-site DMRG notation. In particular,
Wr‘þ1r‘þ2 ¼ K½‘�Cr‘þ1 K½‘þ1�Cr‘þ2 K½‘þ2�: ð261Þ
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This is identical to the DMRG W, so is the evolution operator Uðr‘þ1r‘þ2Þ;ðr0‘þ1r
0
‘þ2Þ, hence also
Ur‘þ1r‘þ2
a‘;a‘þ2

¼
X

r0
‘þ1

r0
‘þ2

Uðr‘þ1r‘þ2Þ;ðr0‘þ1r
0
‘þ2ÞW

r0
‘þ1r

0
‘þ2

a‘ ;a‘þ2
: ð262Þ
In order to proceed, the CK-notation has to be restored on the two active sites. In perfect analogy to
tDMRG, one obtains by SVD
Uða‘r‘þ1Þ;ðr‘þ2a‘þ2Þ ¼
X
a‘þ1

Uða‘r‘þ1Þ;a‘þ1K
½‘þ1�
a‘þ1 ;a‘þ1

ðV yÞa‘þ1 ;ðr‘þ2a‘þ2Þ; ð263Þ
What is missing are K½‘� and K½‘þ2�. We therefore write (reshaping U and V y and omitting the a-indices)
Ur‘þ1r‘þ2 ¼ K½‘� K½‘�
� ��1

Ur‘þ1K½‘þ1�Vr‘þ2y K½‘þ2�
� ��1

K½‘þ2�: ð264Þ
Now, as in tDMRG, there are up to dD singular values in K½‘þ1�, which we truncate down to the D largest
ones, just as in tDMRG, also truncating the neighbouring matrices accordingly. We now introduce
Cr‘þ1
a‘ ;a‘þ1

¼ K½‘�
� ��1

a‘ ;a‘
Ur‘þ1

a‘;a‘þ1
Cr‘þ2

a‘þ1 ;a‘þ2
¼ Vr‘þ2y

a‘þ1 ;a‘þ2
K½‘þ2�
� ��1

a‘þ2 ;a‘þ2

ð265Þ
and obtain
Ur‘þ1r‘þ2 ¼ K½‘�Cr‘þ1K½‘þ1�Cr‘þ2 K½‘þ2�; ð266Þ
back to the canonical form. In order to consider the time-evolution on the next bond, we have to carry
out no SVDs, but just group
Wr‘þ3r‘þ4 ¼ K½‘þ2�Cr‘þ3 K½‘þ3�Cr‘þ4K½‘þ4� ð267Þ
and continue. As in tDMRG, no loss of information is associated with this step, but this is more explicit
here.

When D becomes very large in high-precision calculations, singular values will tend to be very
small, and dividing by them is, as mentioned previously, a source of numerical instability. In the con-
text of the thermodynamic limit iTEBD method, which we will discuss later, Hastings has proposed an
elegant workaround that comes at very low numerical cost [104], but it can be easily adapted to finite-
system TEBD. Let us assume that we start with a state in representation (260). We then group all pairs
into right-normalized B-matrices,
Bri ¼ CriK½i�; ð268Þ
but remember the K½i� for later use. We then form
Wr‘þ1r‘þ2 ¼ Br‘þ1 Br‘þ2 ¼ Cr‘þ1K½‘þ1�Cr‘þ2 K½‘þ2�; ð269Þ
hence Wr‘þ1r‘þ2 ¼ K½‘�Wr‘þ1r‘þ2 . We carry out the time-evolution on Wr‘þ1r‘þ2 to obtain
Ur‘þ1r‘þ2
a‘;a‘þ2

¼
X

r0
‘þ1

r0
‘þ2

Uðr‘þ1r‘þ2Þ;ðr0‘þ1r
0
‘þ2ÞW

r0
‘þ1r

0
‘þ2

a‘ ;a‘þ2
: ð270Þ
Then Ur‘þ1r‘þ2 ¼ K½‘�Ur‘þ1r‘þ2 . As before, we carry out an SVD on Ur‘þ1r‘þ2 , to obtain
Uða‘r‘þ1Þ;ðr‘þ2a‘þ2Þ ¼
X
a‘þ1

Uða‘r‘þ1Þ;a‘þ1K
½‘þ1�
a‘þ1 ;a‘þ1

ðV yÞa‘þ1 ;ðr‘þ2a‘þ2Þ ¼ Ar‘þ1 K½‘þ1�Br‘þ2 : ð271Þ
Truncating down to the D largest singular values, we have found the new K½‘þ1�, to be retained for fur-
ther usage, and the new Br‘þ2 . The new Br‘þ1 is given by
Br‘þ1 ¼
X
r‘þ2

Ur‘þ1r‘þ2 Br‘þ2y; ð272Þ
hence costs a simple matrix multiplication; divisions have been avoided. For the last equation, we use
right-normalization of Br‘þ2 , hence

P
r‘þ2

Ur‘þ1r‘þ2 Br‘þ2y ¼ Ar‘þ1 K½‘þ1�. At the same time, Br‘þ1 ¼ Cr‘þ1



164 U. Schollwöck / Annals of Physics 326 (2011) 96–192
K½‘þ1� ¼ ðK½‘�Þ�1Ar‘þ1K½‘þ1�. Combining these two identities with Ur‘þ1r‘þ2 ¼ K½‘�Ur‘þ1r‘þ2 gives the
result.

7.3.3. Comparing the algorithms
Comparing TEBD and tDMRG step by step, one sees immediately the complete mathematical equiv-

alence of the methods. The second SVD in tDMRG does nothing but shifting the boundary between
left- and right-normalized matrices, which in TEBD is simply achieved by a rebracketing of C and
K. Nevertheless, there are differences: tDMRG carries out two costly SVD decompositions (or density
matrix analyses, which is equivalent) per bond evolution, where TEBD does only one. On the other
hand, TEBD encounters divisions by potentially very small singular values, which is a strong source
of potential numerical inaccuracies; but these can be eliminated [104] at low numerical cost. From
a numerical point of view, tDMRG is not just a translation of TEBD, which came first, but an algorithm
of its own, with strengths and weaknesses.

Both methods share the central feature that time evolution and truncation are intertwined: after
each bond evolution, there is a truncation by SVD. By contrast, tMPS evolves all bonds first, and then
truncates the entire state by compression of matrix dimensions d2D! D by SVD or iteratively.

tMPS is the cleaner approach, but it can also be shown to be more precise. In fact, for real-time evo-
lution it relates to tDMRG or TEBD exactly as iterative variational compression to compression by SVD,
which implies that for small state changes (e.g. for very small time steps) the difference goes down, as
the interdependence of truncations becomes less severe, there being only very benign truncations.
That the above relationship exists can be seen from compressing a tMPS state not variationally, but
by SVD only:

Take jwi to be right-canonical, and do a tDMRG/TEBD step on the first bond or tMPS steps on all odd
bonds. The truncation is now to be carried out by SVD and my claim is that SVD does not see a differ-
ence between the two very different time-evolved states. On the first bond itself, all methods produce
the same structure, but they differ on all other sites. Whereas
j/itDMRG ¼
X
r

Wr1r2 Br3 Br4 
 
 
 jri ð273Þ
is
j/itMPS ¼
X
r

Wr1r2 Br3 Br4 
 
 
 jri; ð274Þ
where the B-matrices come from the contraction with the time evolution bond operators. The SVDs on
the first bonds are equivalent for both states provided both sets fBg and fBg generate sets of orthonor-
mal states. This is indeed the case, because the B-matrices do this by definition, and the states gener-
ated by the B-matrices are related to the first set of orthonormal states by a unitary transformation
(real-time evolution!). This observation of the equivalence of methods also holds for bonds further
down the chain.

Hence, the difference between the three algorithms becomes only visible at the level of variational
compression.

7.4. How far can we go?

In this section, I have described basic algorithms for the time evolution of pure and mixed states.
There were two sources of error. One of them is the Trotter decomposition, which for an nth order
decomposition generated an error Oðsnþ1Þ for each time step s. As there are t=s time steps, the error
will ultimately be OðsntÞ, i.e. linear in time. This means it is only growing moderately in time and can
be scaled down by smaller time steps and/or higher-order decompositions. This is common to all cur-
rent methods [47–51]. In fact, there are other methods of calculating matrix exponentials such as the
Krylov method [105] or lookahead procedures such as in [106], which reduce this error even more. In
any case, it is not very worrisome in the long run.

On the other hand, there is the error due to the truncation of the blown-up bond dimensions of the
MPS after each time step. This error is serious; early on it could be shown to lead to errors
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exponentially blowing up in time [107]. Yet truncation errors are only the symptom, not the funda-
mental problem: the real reason is that – following the Lieb–Robertson theorem – entanglement S
can grow up to linearly in time for an out-of-equilibrium evolution of a quantum state:
SðtÞ 6 Sð0Þ þ ct, where c is some constant related to the propagation speed of excitations in the lattice
[108]. This linear bound is actually reached for many quantum quenches, where a Hamiltonian param-
eter is abruptly changed such that the global energy changes extensively. Both from D 	 2S and from a
rigorous analysis [109] it follows that in such cases the matrix dimensions will have to go up exponen-
tially in time, DðtÞ 	 2t , or that for fixed matrix dimensions precision will deteriorate exponentially.

Nevertheless, in many circumstances matrix size growth is slow enough that numerical resources
are sufficient to observe the time-dependent phenomenon of interest: time-dependent DMRG has
been used extensively in the meantime and found to open completely new perspectives on the
non-equilibrium behaviour of strongly correlated one-dimensional systems (to name a few:
[50,55,106,107,110–114]).
8. Time-dependent simulation: extending the range

Time evolution – whether it is done by TEBD, tDMRG or tMPS, to give the historical order – is fun-
damentally limited by the times that can be reached. The underlying reason is the (at worst) linear
buildup of entanglement in time in an out-of-equilibrium quantum state, that translates itself into
an (at worst) exponential growth of bond dimensions DðtÞ if a given precision is desired. A ‘‘time wall’’
is hit exponentially fast. Can one push it further into the future? A similar issue arises for finite-tem-
perature calculations. While they are not necessarily about dynamics, seen as imaginary time evolu-
tions they raise their own problems, regarding the T ! 0 limit for static or thermodynamic
calculations, and regarding dynamics, there in particular at high temperatures.

A second issue that we have not covered so far concerns dissipative time evolution where we are
not looking at a closed quantum system as in pure Hamiltonian dynamics but at an open quantum sys-
tem. If the dynamics is Markovian (i.e. the bath has no memory, a highly non-trivial assumption in
many cases), then the most general dynamics is given by the Lindblad equation. While it is easy to
show that formally this can be simulated using MPS quite easily, in actual practice this is numerically
involved and simpler schemes are highly desirable.

In this section we will first consider attempts to extend the time range of simulation by different
schemes for evaluating the time evolution tensor networks. As we have already seen for simple exam-
ples like the evaluation of wave function overlaps, the order of contractions may hugely change the
computational effort. In a second step, we will look at a prediction method that picks up on numerical
raw data and extrapolates them very successfully over an order of magnitude, provided they meet a
certain mathematical form, taking the case of finite temperature as an example. In a third step, we will
look at an altogether different way of finite temperature simulations. In a last step, I will take up the
issue of dissipative dynamics and show neat progress made in that field.
8.1. Orders of contraction: light cones, Heisenberg picture and transverse folding

Let us consider the calculation of the time-dependent expectation value
wðtÞjbObP jwðtÞD E
¼ wjeþibHt bObPe�ibHt jw
� �

: ð275Þ
Starting with jwi, we evolve it up to time t, obtaining jwðtÞi. The expectation value then is calculated by
sandwiching the two operators between hwðtÞj and jwðtÞi, as discussed before. But we can represent
this procedure also as the (approximate) contraction over a two-dimensional tensor network as shown
in Fig. 50, which is then contracted line by line along the time direction, moving inwards.

Assuming t ¼ NDt and n MPOs per Trotter step (e.g. 2 in first order), we have a lattice of
L� ð2nN þ 3Þ sites, i.e. of width L and odd height 2nN þ 3. If we call T ½i;j� the tensor located on the site
in row i and column j (like in a matrix), and if we label indices by up u, down d, left l and right r, and
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Fig. 50. Two-dimensional tensor network contracted for time-dependent expectation values: the top and bottom lines
represent hwj and jwi. The two arrays of MPOs (indicated by brackets) represent eþibHt and e�ibHt in Trotterized form; I do not
distinguish between different local MPOs such as identity operators which show up on some sites of the left- and rightmost
columns. In the central line, we put identity operators (white squares) and the operators to be evaluated. The dashed line
indicates the buildup of contractions in time direction.
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write T ½i;j� in analogy to MPOs with indices T ½i;j�u;dl;r , then we can identify, for example, for i ¼ 1 (location
of the bra state):
T ½1;1�1;d1;r ¼ A½1�d�1;r T ½1;j�1;dl;r ¼ A½j�d�l;r T ½1;L�1;dl;1 ¼ A½L�d�l;1 ; ð276Þ
where 1 < j < L. Similarly for i ¼ 2nN þ 3 (location of the ket state):
T ½2nNþ3;1�u;1
1;r ¼ A½1�u1;r T ½2nNþ3;j�u;1

l;r ¼ A½j�ul;r T ½2nNþ3;L�u;1
l;1 ¼ A½L�ul;1 ð277Þ
and on row i ¼ nN þ 2 (location of the operators):
T ½nNþ2;j�u;d
1;1 ¼

bOu;d on operator location j

du;d else

( )
: ð278Þ
In this row, horizontally the network is a product of scalars, hence the (1,1). On all other rows, the
tensors T ½i;j� are given by local MPOs such that T ½i;j�u;dl;r ¼W ½a�u;d

l;r on all rows nN þ 2 < i < 2nN þ 3 (with
the type a depending on the chosen decomposition) and T ½i;j�u;dl;r ¼W ½a�d;u�

l;r on all rows 1 < i < nN þ 2,
which correspond to the time evolution of the bra.

8.1.1. Light cones in time evolution
Considering the time evolution of bra and ket together in fact allows important simplifications. In

Fig. 51 I have restored the alternating pattern of bond evolutions in a first order Trotter decomposition
and explicitly marked the position of unit operators by white squares. We would like to calculate
hbOðtÞi, where the operator sits on site 2. Let us look at the last Trotter steps (rows 5 and 7). In row
5 there are several evolution operators eþiĥDt with corresponding operators e�iĥDt in row 7. But this
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Fig. 51. Light cone: the diagrams are to be read from left to right, in the top and then the bottom line. On the top left, an
operator is sandwiched between two time-evolved states; taking Trotter evolution into account, identity operators are marked
by white squares. Working our way outward from the center towards the top and bottom, bond evolution operators cancel each
other to identities, provided they do not sandwich the operator or (therefore) surviving bond operators. The result is a light cone
of evolution operators, surrounded by numerically trivial identities.
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means that they cancel each other and can be replaced by unit operators, except in columns 2 and 3
because they have bO interposed. If, in turn, we look now at rows 4 and 8, there are now evolution oper-
ators cancelling each other in columns 5–8; the other ones do not cancel, as they sandwich non-iden-
tity operators. Like this, we work our way towards the bra and ket states, until no cancellation is
possible anymore. The resulting tensor network shows a large degree of replacements of complicated
tensors of bond (row) dimensions larger than 1 by identity tensors with bond dimension 1, which
means that contractions become trivial and no compression is needed. There remains an algorithmic
light cone of evolution operators that ‘‘see’’ the presence of a non-trivial operator bO to be evaluated.
Note that this algorithmic light cone is not to be confused with a physical light cone: if we send
Dt ! 0, the algorithmic light cone becomes infinitely wide for any fixed time t. Physically, the Lieb-
Robinson theorem states that beyond a ‘‘light cone’’ of width x ¼ 2ct, where c is some problem-specific
‘‘velocity’’, correlations decay exponentially fast, as opposed to the hard cut imposed by a relativistic
light cone. The physical light cone and the special decay of correlations is at the basis of very interest-
ing algorithmic extensions of the MPS/tDMRG/TEBD algorithms of the last section by Hastings
[104,115], which I will not pursue here.

While this structure becomes more complicated if we look, e.g. at n-point correlators, we may look
at a huge algorithmic saving, even though we have to pay the price that for different locations of oper-
ators, new networks have to be considered.

What is the prize for calculating at different times, e.g. hbOðt1Þi; hbOðt2Þi and so on? This is a very
natural question, as we might be interested in the time evolution of, say, some local density. If we
do not use the light cone, then we simply calculate the contraction moving inwards, calculate some
average, retrieve the stored result of the contraction up to the line with the operators, add more
Trotter steps, contract, calculate some average, and so on. This is exactly what we have been doing
all along. Of course, the light cone generated by the operator acting at time t2 > t1 is different
from and larger than that generated by the operator acting at time t1. But if the Hamiltonian is
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time-independent, the larger light cone contains the smaller one at its tip. It therefore makes numer-
ical sense to reverse the time evolution, and work from the future towards the past. But this corre-
sponds to nothing else but a switch to the Heisenberg picture.

8.1.2. Heisenberg picture
Mathematically, the switch to the Heisenberg picture is nothing but a rebracketing:
Fig. 52.
set of l
widens
symme
hbOðtÞi ¼ hwðtÞjbOjwðtÞi ¼ hwjeþibHt bOe�ibHt jwi ¼ hwjbOðtÞjwi; ð279Þ
where we have introduced the time-dependent operator
bOðtÞ ¼ eþibHt bOe�ibHt : ð280Þ
If we Trotterize the time evolutions present, we arrive exactly at the light cone structure of the last
section, except that it has not been contracted yet with bra and ket; Fig. 52.

This allows to set up time evolution in the Heisenberg picture [52,53]. Technically, one constructs a
spatially growing MPO from MPO–MPO-multiplications as encountered, e.g. in the calculation of the
action of bH2. If the current MPO of the time-evolved operator consists of local MPOs of the form O

rir0i
ai�1 ;ai

and bond dimension D (on sites i where it actually has to be considered), and if the time evolution
MPO (for e�iĥt) reads W

rir0i
bi�1 ;bi

with bond dimensions DW , then the operator reads after (part of) the time
step
O
ri ;r0i
ðbi�1 ;ai�1 ;ci�1Þ;ðbi ;ai ;ciÞ

¼
X
r00

i

W
r00

i
;ri�

bi�1 ;bi

X
r000

i

O
r00

i
r000

i
ai�1 ;ai

W
r000

i
;r0

i
ci�1 ;ci

0@ 1A ð281Þ
with bond dimensions DD2
W . This operator is then compressed down to bond dimensions D as ex-

plained earlier for MPOs, essentially using the method for compressing MPS.
This sets up a ‘‘conventional’’ time evolution: instead of a state, an operator in MPO form is sub-

jected to time evolution by MPOs, and compressed to manageable matrix dimensions after each time
step. We can basically recycle most of the algorithm.

What are potential advantages and disadvantages of this formulation? First of all, the savings due
to the algorithmic light cone are immediately incorporated. Second, we may hope that truncations are
O

Time evolution of an operator bO in the Heisenberg picture, translated to the MPS/MPO representation. Each symmetric
ayers around the operator corresponds to one time step (more precisely, part of a Trotter time step). The light cone
as a larger and larger section of the lattice is affected by bO. The identity operator (white square) is inserted for reasons of
try, but without explicit function.



U. Schollwöck / Annals of Physics 326 (2011) 96–192 169
smaller: while the network contracted over is identical in the Heisenberg and Schrödinger picture,
truncations in the Schrödinger picture do not take into account the operator and hence are less specific
– one may enviseage that for ‘‘simple’’ operators like local density a lot of the fine structure of the state
evolution is not really needed, and evolving the operator itself tells us which information is needed
specifically for this operator.

A corresponding disadvantage is of course that calculations need to be redone for different opera-
tors, which in the Schrödinger picture may be evaluated whenever one likes, provided the time-
evolved wave function is stored. Of course, here the corresponding advantage is that for different
states one may evaluate whenever one likes, provided the time-evolved operator is stored.

At the moment of writing it seems indeed that for simple operators the reachable time spans can be
extended substantially, but I would find it hard to commit to some rule of thumb.

8.1.3. Transverse contraction and folding
Of course, the iterative build up of the state as it evolves in time appeals to our intuition about the

world, but there is nothing that prevents us to contract the same network in the spatial direction, i.e.
column by column; as the order of contraction may influence efficiency quite strongly, maybe it helps.
In order to recycle existing programs, one may simply rotate the current network by 90� counterclock-
wise, and obtains a lattice of width ð2nN þ 3Þ and height L. If we continue to label tensors T ½i;j� by the
vertical before the horizontal and in the row-column logic of a matrix, then tensors in the new lattice
read
Fig. 54.
same ti
single a

Fig. 53.
refers t
T ½i;j�u;dl;r ¼ T ½Lþ1�j;i�r;l
u;d ; ð282Þ
as can be seen from Fig. 53. Then we can contract again line by line.
As it turns out, a simple rotation (or transverse contraction) does not extend the reachable time-

scale. It is by an additional folding step that a strong extension of the timescale is possible [54]. The
folding happens parallel to the new ‘‘time’’ (i.e. real space) axis, and halves the extent of the new
‘‘space’’ (i.e. real time) domain (see Fig. 54). Instead of sites 1 through 2nN þ 3 we then have double
time

folded  space

|ψ1〉

〈ψL|

The rotated lattice is now folded on the ‘‘space’’ (former time) axis which has 2nN þ 3 � L0 sites. Sites corresponding to
mes come to cover each other (indicated by an ellipse); the line on which operators are evaluated at final time remains
t the bend.

l r

u

d

space [j]

time [i]

rotation by 90°
and reflection
of  time -axis

l
r

u d

  time  [i]

space  [j]

Rotating the lattice for code reusage: Assuming a space–time labeling ½i; j� with time i and space j (which after rotation
o ficticious ‘‘time’’ and ‘‘space’’) tensor indices u;d and l; r exchange places as shown in the figure.
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sites 1 through nN þ 2, where double site 1 comprises old sites 1 and 2nM þ 3, double site 2 comprises
old sites 2 and 2nN þ 2; generally i comprises old sites i and 2nN þ 4� i, up to the pair
ðnN þ 1;nN þ 3Þ. The site nN þ 2 is special: as we are folding an odd number of sites, one site remains
single. This is site nN þ 2, which corresponds to the line that contained the operators to be evaluated
at time t. On all the other sites, we fold tensors onto each other that correspond to ‘‘identical’’ time-
steps, one forward and one backward in time.

The expectation is that this folding of forward and backward timesteps leads to cancellations in
entanglement buildup, such that larger times can be reached (the growth in D is not as fast).

To simplify notation, we define L0 ¼ 2nN þ 3 � 2‘þ 1. If we read the bottom end of the folding as an
MPS, the folded state also starts with an MPS whose matrices are formed as
Mf ½i�Ri

af
i�1

;af
i

¼ M
f ½i�ri ;rL0þ1�i
ðai�1 ;aL0þ1�iÞ;ðai ;aL0�iÞ

¼ T ½L;i�ri
ai�1 ;ai

T
½L;L0þ1�i�rL0þ1�i
aL0�i ;aL0þ1�i

ð283Þ
for all 1 6 i 6 ‘ and
Mf ½‘þ1�R‘þ1

af
‘
;1

¼ Mf ½‘þ1�r‘þ1
ða‘;a‘þ1Þ;1 ¼ T ½L;‘þ1�r‘þ1

a‘ ;a‘þ1
: ð284Þ
We have defined d2 ‘‘fat’’ local states jRii ¼ jriijrL0þ1�ii on each site, except site ‘þ 1, where it remains
of dimension d (for programming, one may of course introduce a dummy site). Similarly, we construct
the new tensors for the folded MPOs.

If we assume that the original lattice and the Hamiltonian acting on it were translationally invari-
ant, at least for translations by an even number of lattice sites, we can write the contractions conve-
niently using a transfer operator. If we call the state on the first line (first ‘‘time’’ slice) of the folded
lattice jwLi (corresponding to site L of the original lattice) and the one on the bottom line (last ‘‘time’’
slice) hw1j, then (i odd for simplicity)
hbOii ¼
hwLjEði�3Þ=2EOEðL�i�1Þ=2jw1i

hwLjE
ðL�2Þ=2jw1i

: ð285Þ
Here, we have introduced the transfer operators E and EO on stripes of length ‘ and width 2, as repre-
sented in Fig. 55 (in unfolded, unrotated form for simplicity of representation). EO is derived from E by
inserting bO instead of the identity at site ‘þ 1.

This can be evaluated by iterative contractions and compressions for spatially finite lattices, but
one can also take the thermodynamic limit. Let us assume an eigenvector decomposition of E as
E ¼
X

i

kijiihij: ð286Þ
Note that E is not Hermitian, hence jii and hij are not adjoint, but distinct right and left eigenvectors.
From the biorthonormality of those,
lim
L!1

EL ¼ lim
L!1

X
i

kL
i jiihij ¼ kL

0jRihLj; ð287Þ
where I have assumed that the largest eigenvalue k0 is non-degenerate (which is usually the case) and
changed notation to jRi and hLj for the associated right and left eigenvectors.

We then obtain in the thermodynamic limit as expectation value
hbOii ¼
hLjEOjRi

k0
; ð288Þ
where k0 ¼ hLjEjRi. Two-point correlators would then be given by
hbOi
bPji ¼

hLjEOErEPjRi
krþ2

0

; ð289Þ
where r is the number of transfer operators between the sites i and j.
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Fig. 55. Representation of the transfer operator E (dashed rectangle; note direction of action) in the unfolded, unrotated
representation of the time evolution network. It repeats throughout the lattice by spatial translation by two sites, except on the
sites with evaluation of an operator, where it is modified accordingly.
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In order to evaluate such expressions, we obviously need k0; jRi and hLj. As the components of E are
explicitly available, we can construct its transpose equally easily, hence reduce all to the determina-
tion of two right eigenvectors. As we are looking for the largest eigenvalue, the power method (iter-
ative application of E to a guess vector) will work. But one can equally read E as the MPO
representation of some non-Hermitian operator, and reuse iterative ground state search techniques,
with two modifications: the search for the lowest eigenvalue is replaced by the highest eigenvalue
and the conventional Lanczos algorithm has to be replaced by non-Hermitian methods, either the
biorthogonal Lanczos algorithm or the Arnoldi method.

While the coding is more involved than for standard time evolution, the timescales reachable are
extended substantially, factors 3–5 seem easily possible.

8.2. Linear prediction and spectral functions

Spectral functions Sðk;xÞ are among the most important theoretical and experimental quantities in
many-body physics. While there are very accurate ways of calculating them directly at T ¼ 0 [9–12],
there is also an indirect approach, pioneered in [50], to calculate real-time real-space correlators likebSþi ðtÞbS�j ð0ÞD E

, and to carry out a double Fourier transform to momentum and frequency space. This

approach has the advantage to extend to finite T seamlessly, but suffers from the limitations of reach-
able length and time scales.

Of these, the limitations in time are much more serious, because of the rapid growth of entangle-
ment in time. The time scales reachable are mostly so limited that a naive Fourier transform gives
strong aliasing or that one has to introduce a windowing of the raw data that smears out spectral
information quite strongly. This limitation can be circumvented however at very low numerical cost
by a linear prediction technique both at T ¼ 0 [116,117] and T > 0 [118] that extends reachable t and
thereby greatly refines results in the frequency domain.
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For a time series of complex data x0; x1; . . . ; xn; . . . ; xN at equidistant points in time tn ¼ nDt (and
maximal time tobs :¼ NDt) obtained by DMRG one makes a prediction of xNþ1; xNþ2; . . .. For the data
points beyond t ¼ tobs, linear prediction makes the ansatz
~xn ¼ �
Xp

i¼1

aixn�i: ð290Þ
The (predicted) value ~xn at time step n is assumed to be a linear combination of p previous values
fxn�1; . . . ; xn�pg. Once the ai are determined from known data, they are used to calculate (an approxi-
mation of) all xn with n > N.

The coefficients ai are determined by minimizing the least square error in the predictions over a
subinterval tn 2 ðtobs � tfit; tobs� of the known data (corresponding to a set X ¼ fnjtobs � tfit <

nDt 6 tobsg), i.e. we minimize in the simplest approach E �
P

n2Xj~xn � xnj2. tfit ¼ tobs=2 is often a robust
choice to have little short-time influence and enough data points. Minimization of E with respect to ai

yields the linear system
R~a ¼ �~r; ð291Þ

where R and ~r are the autocorrelations Rji ¼

P
n2Xx�n�jxn�i and rj ¼

P
n2Xx�n�jxn. Eq. (291) is solved by

~a ¼ �R�1~r.
One may wonder why extrapolation towards infinite time is possible in this fashion. As demon-

strated below, linear prediction generates a superposition of oscillating and exponentially decaying
(or growing) terms, a type of time-dependence that emerges naturally in many-body physics: Green’s
functions of the typical form Gðk;xÞ ¼ ðx� �k � Rðk;xÞÞ�1 are in time-momentum representation
dominated by the poles; e.g. for a single simple pole at x ¼ x1 � ig1 with residue c1, Green’s function
will read Gðk; tÞ ¼ c1e�ix1t�g1t , and similarly it will be a superposition of such terms for more compli-
cated pole structures. Often only few poles matter, and the ansatz of the linear prediction is well sui-
ted for the typical properties of the response quantities we are interested in. Where such an ansatz
does not hold, the method is probably inadequate.

To see the special form of time-series generated by the prediction, we introduce vectors
~xn :¼ ½xn; . . . ; xn�pþ1�T such that (290) takes the form
~~xnþ1 ¼ A~xn ð292Þ
with
A �

�a1 �a2 �a3 
 
 
 �ap

1 0 0 
 
 
 0
0 1 0 
 
 
 0
..
. . .

. . .
. . .

. ..
.

0 
 
 
 0 1 0

26666664

37777775 ð293Þ
with the ai as the elements of the vector~a found above. Prediction therefore corresponds to applying
powers of A to the initial vector ~xN . An eigenvector decomposition of (non-Hermitian) A with eigen-
values ai leads to
~xNþm ¼ ½Am~xN�1 ¼
Xp

i¼1

ciam
i ; ð294Þ
where coefficients ci are determined from~xN and the eigenvectors of A. The eigenvalues ai encode the
physical resonance frequencies and dampings. The connection is given as ai ¼ eixiDt�giDt . Spurious
jaijP 1 may appear, but can be dealt with [118].

At T ¼ 0, critical one-dimensional systems exhibit power-law decays in their time-dependent cor-
relators. The superposition of exponential decays is then taken to mimic these power-laws [116]. At
finite temperatures, time-dependent correlators Sðk; tÞ decay typically exponentially for large times
(due to thermal broadening), making linear prediction especially well-suited for this situation. This
is also close to typical experimental situations, like inelastic neutron scattering off one-dimensional
magnetic chains.
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As example, let us consider a field-free Heisenberg antiferromagnet with Jz ¼ 0 (XY-chain) and
Jz ¼ 1. The former case allows for an exact analytical solution. It turns out that prediction allows to
extend time series Sðk; tÞ by over an order of magnitude without appreciable loss of precision. In fre-
quency space, this corresponds to extremely high-precision spectral lineshapes (Fig. 56).

As the dispersion relation of the XY-chain is just a simple magnon line, its self-energy structure is very
simple, hence the prediction method easily applicable. As a more demanding example, we consider the
spinon continuum of an isotropic S ¼ 1=2 chain; Fig. 57. In the zero-temperature limit, results agree ex-
tremely well with Bethe-ansatz results (where remaining differences are hard to attribute: the Bethe-an-
satz here can only be evaluated approximately [119]). At finite temperatures, simulations at different
precision indicate that results are fully converged and essentially exact. This lets us expect that this
method will be a powerful tool in, e.g. simulating the results of neutron scattering experiments.
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Fig. 57. Spectral function of the isotropic Heisenberg chain at two momenta, and four different temperatures. At T ¼ 0, Bethe
ansatz (B.A.) and numerics agree extremely well. Adapted from [118].
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Fig. 56. Lines and dots represent exact analytical and numerical solutions for the lineshape of the spectral function Sþ�ðk;xÞ of
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The dashed lines are the shapes that would optimally be extracted from the b ¼ 10 simulation without prediction using some
windowing of the raw data before Fourier transformation. Adapted from [118].
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8.3. Minimally entangled typical thermal states

Simulating thermal density operators for the calculation of static and dynamic properties works
very well. Theoretically, there are no limits to this method. In practice, one encounters several limita-
tions. On the one hand, simulations become difficult at very low temperatures T ! 0. In this limit, the
mixed state living on the physical system P will evolve towards the pure state projector on the ground
state, q̂P

1 ¼ jw1iP Phw1j (here I use jw1iP as the ground state of the physical Hamiltonian bH, to refer to
b ¼ 1 as in the purification section). But in this limit P is not entangled with the auxiliary system Q
anymore, and we simulate a product of two pure states: assume for simplicity that the ground state
energy is set to 0. Consider now the reduced density operator for the auxiliary system. Up to an irrel-
evant norm,
q̂Q
b!1 ¼ lim

b!1
TrPe�bbH=2jw0ihw0je�bbH=2 ¼ Phw1jw0ihw0jw1iP; ð295Þ
because in the limit b!1 the trace reduces to the ground state contribution, TrP ! Phw1j 
 jw1iP .
With the b ¼ 0 purification of the density operator, jw0i ¼ d�L=2P

rjriPjriQ , the last expression re-
duces, again up to an irrelevant norm, to
q̂Q
b!1 ¼

X
rr0

wr�
1 jriQ Q hr0jwr0

1 ¼ jw1iQ Q hw1j; ð296Þ
where the wr
1 are the expansion coefficients of the ground state. Hence, the zero temperature purifi-

cation is a product state
jw1i ¼ jw1iPjw1iQ ; ð297Þ
where the latter state is just the physical ground state defined on the auxiliary state space. Assuming
that it can be described with sufficient precision using matrix dimension D, the product will be de-
scribed by matrices of dimension D2. Effectively this means that our algorithm scales with the sixth
instead of the third power of the characteristic matrix dimension for the problem under study. On
the other hand, and this is the issue prediction has tried to address, we encounter long-time simula-
tion problems in particular at high temperatures T !1: many states contribute at similar, but not
identical, weight and MPS are not efficient at encoding this wealth of contributing states.

As White [99,120] has pointed out, one can avoid the purification approach entirely by sampling
over a cleverly chosen set of thermal states, the so-called minimally entangled typical thermal states
(METTS). This approach has already been shown to alleviate strongly the first limitation, while not
much is known yet about the second limitation.

A thermal average is given by
hbAi ¼ 1
Z

Tre�bbH bA ¼ 1
Z

X
n

e�bEn hnjbAjni; ð298Þ
where I have chosen, like all textbooks do, the energy representation of the thermal density operator.
As already pointed out by Schrödinger many decades ago, this is mathematically correct, but unphys-
ical in the sense that real systems at finite temperature will usually not be in a statistical mixtures of
eigenstates, as eigenstates are highly fragile under coupling to an environment. But the choice of the
basis for taking the trace is arbitrary, and one may also write
hAi ¼ 1
Z

X
i

hije�bbH=2bAe�bbH=2jii ¼ 1
Z

X
i

PðiÞh/ðiÞjbAj/ðiÞi; ð299Þ
where fjiig is an arbitrary orthonormal basis and j/ðiÞi ¼ PðiÞ�1=2e�bbH=2jii. With PðiÞ ¼ hije�bbH jii, we rec-
ognize j/ii to be normalized. It is easy to see that

P
iPðiÞ ¼ Z, hence the PðiÞ=Z are probabilities. One

can therefore statistically estimate hbAi by sampling j/ðiÞi with probabilities PðiÞ=Z and average over
h/ðiÞjbAj/ðiÞi.

Several questions arise before this can be turned into a practical algorithm. How can we sample
correctly given that we do not know the complicated probability distribution? Can we choose a set
of states such that averages converge most rapidly? Given that an imaginary time evolution will be
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part of the algorithm, can we find a low-entanglement basis fjiig such that time evolution can be done
with modest D, i.e. runs fast?

To address these issues, White chooses as orthonormal basis the computational basis formed from
product states,
jii ¼ ji1iji2iji3i 
 
 
 jiLi; ð300Þ
classical (unentangled) product states (CPS) that can be represented exactly with D ¼ 1. The corre-
sponding states
j/ðiÞi ¼ 1ffiffiffiffiffiffiffiffi
PðiÞ

p e�bbH=2jii ð301Þ
are so-called minimally entangled typical thermal states (METTS): The hope is that while the imaginary
time evolution introduces entanglement due to the action of the Hamiltonian, it is a reasonable expec-
tation that the final entanglement will be lower than for similar evolutions of already entangled states.
While this is not totally true in a strict mathematical sense, in a practical sense it seems to be! Com-
pared to purification, this will be a much faster computation, in particular as the factorization issue of
purification will not appear.

In order to sample the j/ðiÞi with the correct probability distribution, which we cannot calculate,
one uses the same trick as in Monte Carlo and generates a Markov chain of states,
ji1i ! ji2i ! ji3i ! . . . such that the correct probability distribution is reproduced. From this distribu-
tion, we can generate j/ði1Þi; j/ði2Þi; j/ði3Þi; . . . for calculating the average.

The algorithm runs as follows: we start with a random CPS jii. From this, we repeat the following
three steps until the statistics of the result is good enough:

� Calculate e�bbH=2jii by imaginary time evolution and normalize the state (the squared norm is PðiÞ,
but we will not need it in the algorithm).
� Evaluate desired quantities as h/ðiÞjbAj/ðiÞi for averaging.
� Collapse the state j/ðiÞi to a new CPS ji0i by quantum measurements with probability

pði! i0Þ ¼ jhi0j/ðiÞij2, and restart with this new state.

Let us convince ourselves that this gives the correct sampling, following [99]. As the j/ðiÞi follow
the same distribution as the jii, one only has to show that the latter are sampled correctly. Asking with
which probability one collapes into some jji provided the previous CPS jii was chosen with the right
probability PðiÞ=Z, one finds
X

i

PðiÞ
Z

pði! jÞ ¼
X

i

PðiÞ
Z

jj/ðiÞh ij j2 ¼
X

i

1
Z

jje�bbH=2ji
� ����� ����2 ¼ 1

Z
j e�bbH���� ����j� �

¼ PðjÞ
Z
: ð302Þ
This shows that the desired distribution is a fixpoint of the update procedure. It is therefore valid, but
it is of course sensible to discard, as in Monte Carlo, a number of early data points, to eliminate the bias
due to the initial CPS. It turns out that – after discarding the first few METTS, to eliminate effects of the
initial choice – averaging quantities over only a hundred or so allows to calculate local static quantities
(magnetizations, bond energies) with high accuracy.

While we already know how to do an imaginary time evolution, we still have to discuss the col-
lapse procedure. As it turns out, the structure of MPS can be exploited to make this part of the algo-
rithm extremely fast compared to the imaginary time evolution.

For each site i, we choose an arbitrary d-dimensional orthonormal basis fj~riig, to be distinguished

from the computational basis fjriig. From this we can form projectors bP ~ri ¼ j~riih~rij with the standard

quantum mechanical probability of a local collapse into state j~rii given by p~ri
¼ hwjbP ~ri jwi. If we col-

lapse jwi into the CPS jw0i ¼ j~r1ij~r2i 
 
 
 j~rLi, the probability is given by hwjbP ~r1 
 
 
 bP ~rL jwi ¼ jhw0jwij2, as
demanded by the algorithm. After a single-site collapse, the wave function reads
jwi ! p�1=2
~ri

bP ~ri jwi; ð303Þ
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where the prefactor ensures proper normalization of the collapsed state as in elementary quantum
mechanics. To give an example, for S ¼ 1

2 spins measured along an arbitrary axis n, the projectors
would read
bP"n ;#n ¼ 1

2
� n 
 bSi: ð304Þ
Such a sequence of local measurements and collapses on all sites can be done very efficiently, as
pointed out by Stoudenmire and White [99], if one exploits two features of MPS and CPS: (i) local
expectation values can be evaluated very efficiently if they are on explicit sites (in DMRG language)
or on sites between left- and right-normalized sites of a mixed-canonical state (in MPS language)
and (ii) after the collapse, the resulting state is a product state of local states on all collapsed sites
and the uncollapsed remainder.

Assume that jwi is right-canonical (with the relaxation that the normalization on site 1 is irrele-
vant). Then the evaluation of p~r1

¼ hwjbP ~r1 jwi trivializes because the contraction of the expectation va-
lue network over sites 2 through L just yields da1 ;a01

. Hence 2 3

wjbP ~ri jw
D E

¼
X

a1 ;r1 ;r01

Br1�
a1
hr1jbP ~r1 jr01iB

r01
a1
¼
X

a1

X
r1

Br1�
a1
hr1j~r1i

" # X
r01

B
r01
a1
h~r1jr01i4 5: ð305Þ
This expression looks very specific to the first site (because of the open boundary), but as we will see it
is not!

Once the probabilites for the collapse on site 1 are calculated, one particular collapse is chosen ran-
domly according to the distribution just generated, j~r1i. The state after collapse will be of the form
j~r1ijwresti, hence a product state. Therefore, the new matrices (which we call Ar1 ) on site 1 must all
be scalars, i.e. D ¼ 1 matrices. From j~ri ¼

P
rjrihrj~ri ¼

P
rjriA

r they are given by
Ar1
1;1 ¼ hr1j~r1i; ð306Þ
it is easy to see that left-normalization is trivially ensured, hence the labelling by A. But this change in
the dimension of Ar1 means that Br2 has to be changed too, namely
Br2
a1 ;a2
! Mr2

~r1 ;a2
¼ p�1=2

~r1

X
r1 ;a1

h~r1jr1iBr1
a1

Br2
a1a2

: ð307Þ
As the label ~r1 takes a definite value, it is just a dummy index, and the row dimension of Mr2 is just 1,
like for the matrices on the first site. Hence, Eq. (305) generalizes to all sites, and the most costly step
is the update of Br2 , which scales as D2d2, but not as D3, as time evolution does.

To see the substitution, we express bP ~r1 as an MPO, Wr1r01 ¼ hr1j~r1ih~r1jr01i. Hence, the collapsed jwi
reads
p�1=2
~r1

X
r

X
r01

r1j~r1ih~r1jr01iB
r01 Br2 
 
 
 jr

D E
¼
X
r

X
a2

Ar1
1;1

X
r01a1

p�1=2
~r1
h~r1jr01iB

r01
1;a1

Br2
a1 ;a2

0@ 1AðBr3 
 
 
BrL Þa2 ;1
jri;
which yields the substitution.
A few more comments are in order. At each site, the measurement basis can be chosen randomly,

and in order to obtain short autocorrelation ‘‘times’’ of the Markov chain, i.e. high quality of the sam-
pling, this is certainly excellent, but also much more costly than collapsing always into the same basis,
which however generates ergodicity problems. The proposal is to switch alternatingly between two
bases where for each basis projectors are maximally mixed in the other basis (e.g. if we measure spins
alternatingly along the x- and z- (or y-)axis). Autocorrelation times then may go down to five steps or
so [99]. For estimating the statistical error, in the simplest cases it is enough to calculate averages over
bins larger than the autocorrelation time, and to look at the statistical distribution of these bin aver-
ages to get an error bar.

Intriguing questions remain, concerning both the potential and the foundation of the algorithm:
how well will it perform for longer-ranged correlators, as needed for structure functions? Dynamical
quantities can be accessed easily, as the time-evolution of the weakly entangled METTS is not costly –
but will the efficiency of averaging over only a few ‘‘typical’’ states continue to hold?
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8.4. Dissipative dynamics: quantum jumps

Dissipative (i.e. non-Hamiltonian) dynamics occurs when our physical system A is coupling to
some environment B such that A is an open quantum system. This is a very rich field of physics, so
let me review a few core results useful here. The time evolution of the density operator of the system
can always be written in the Kraus representation as
q̂AðtÞ ¼
X

j

bEj
AðtÞq̂Að0ÞbEjy

AðtÞ; ð308Þ
where the Kraus operators meet the condition
X
j

bEjy
AðtÞbEj

AðtÞ ¼ bIA: ð309Þ
If the dynamics is without memory (Markovian), it depends only on the density operator at an infin-
itesimally earlier time, and a master equation, the Lindblad equation, can be derived. In the limit
dt ! 0, the environment remains unchanged with probability p0 ! 1 and changes (quantum jumps)
with a probability linear in dt. If we associate Kraus operator bE0

AðtÞ with the absence of change, a
meaningful ansatz scaling out time is
bE0

AðdtÞ ¼ bIA þ OðdtÞ bEj
AðdtÞ ¼

ffiffiffiffiffi
dt
p bLj

A ðj > 0Þ ð310Þ
or more precisely
bE0
AðdtÞ ¼ bIA þ bK A � ibHA

� �
dt ð311Þ
with two Hermitian operators bK A and bHA. The normalization condition of the Kraus operators entails
bK A ¼ �
1
2

X
j>0

bLjy
A
bLj

A: ð312Þ
These ansatzes allow to derive a differential equation from the Kraus evolution formula, which is the
Lindblad equation
dq̂
dt
¼ �i½bH; q̂� þX

j>0

bLjq̂bLjy � 1
2
fbLjybLj; q̂g

� �
; ð313Þ
where I have dropped the indices A. Indeed, in the absence of quantum jumps (j ¼ 0 only), one recov-
ers the von Neumann equation. At the price of non-hermiticity, this equation can be simplified. If we
introduce bHeff :¼ bH þ ibK , then the last term disappears and we have
dq̂
dt
¼ �i bHeff q̂� q̂bHyeff

h i
þ
X
j>0

bLjq̂bLjy: ð314Þ
The simulation of Lindblad equations is possible quite easily in the MPS formalism, in particular
using MPOs [51], but also in the form of a superoperator formalism [123]. The problem with this
approach is that it is numerically more costly compared to the Hamiltonian evolution of a state.
A very attractive alternative, which allows maximal reusage of available pure state codes, has been
proposed by [124], which combines pure state time evolution with the method of quantum
trajectories.

The method of quantum trajectories has been widely applied in quantum optics [125]. Instead of
using the Lindblad equation directly (which takes into account both the probabilistic distribution of
initial states through q̂ð0Þ and all possible sequences of quantum jumps), the quantum trajectory
approach samples over the distribution of initial states, and for each of this sample states carries
out a pure state time evolution where random quantum jumps occur at random times. They are cho-
sen such that if one averages physical quantities over this distribution of time-evolving states, the
result of the Lindblad equation is recovered. Let us ignore the sampling over initial states, assume
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that it is always the same, and instead focus on the conceptually more difficult averaging over quan-
tum jumps.

The algorithm then proceeds by generating N quantum trajectories in a time interval ½0; T� (where
T is the final time of the simulation) as follows:

� Generate a starting state jwð0Þi; it either samples the t ¼ 0 density operator correctly or is simply
always the same, depending on the physical problem.
� Choose a uniformly distributed random number p0 in [0,1].
� Carry out, using one of our pure state time evolution methods, the time evolution of jwð0Þi underbHeff . As the effective Hamiltonian is non-Hermitian, the norm of the state will decrease over time.

Stop the time evolution at time t1, which is defined by hwðt1Þjwðt1Þi ¼ p0; this is the time of the first
quantum jump. Note that if T < t1, our simulation stops at T and we have a trajectory without
jump, and we normalize the final state.
� To carry out the quantum jump at t1, we calculate
~pj ¼ hwðt1ÞjbLjybLjjwðt1Þi pj ¼
~pjP
j>0~pj

ðj > 0Þ ð315Þ
and choose a j according to the normalized probability distribution fpjg.
� We carry out this jump and normalize the state,
jwðtþ1 Þi ¼
bLjjwðt1Þi
kbLjjwðt1Þik

: ð316Þ
� After this, we continue with finding a new p0, from which time evolution of jwðtþ1 Þi with bHeff gen-
erates t2, the location of the second quantum jump, and so on, until T is exceeded.

Physical quantities up to time T are now averaged over the N quantum trajectories that have been
generated. The correct probabilities are produced if all states are normalized at all times; as this is not
the case in the algorithm, norms at say time t have to be taken into account. Obviously, a careful anal-
ysis of convergence in N!1 has to be carried out, but it seems that for a small number of jump
operators, even a few 100 trajectories may give highly reliable results [124].

The observation that this sampling reproduces the dynamics of the Lindblad equation is part of
the standard literature on quantum trajactories. The proof can be done in two steps, which I just
sketch here. In a first step, one considers fixed time steps dt, and calculates probabilities for no jump

vs. jump j in this time interval pj ¼ dthwðtÞjbLjybLjjwðtÞi; p0 ¼ 1�
P

jpj

� �
. One then either time-evolves

under bHeff over dt and normalizes, or does the jump and normalizes, according to the generated dis-
tribution. One can show that this reproduces the Lindblad equation. In a second step, one shows that
the distributions of quantum jumps generated in this way and the one we use in the algorithm are
identical.

9. DMRG and NRG

9.1. Wilson’s numerical renormalization group (NRG) and MPS

Wilson’s numerical renormalization group (NRG) [58–60] originates in attempts to explain why
metals with a small concentration of magnetic impurities exhibit a non-monotonic behaviour of resis-
tivity. It was found that an adequate minimal model is provided by
bHA ¼

X
kr

�kĉykrĉkr þ
X

kr

Vkðf̂ yrĉkr þ h:c:Þ þ Uðn̂f" � 1=2Þðn̂f# � 1=2Þ: ð317Þ
This single-impurity Anderson model contains an impurity site that can be occupied by up to two elec-
trons (operators f̂ yr) with on-site repulsion U and which couples to a conduction band (operators ĉykr)
with energy dispersion �k through some hybridization function Vk.
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In order to make it tractable, one changes from momentum to energy representation, assuming
that only low-energy isotropic s-wave scattering matters, and introduces logarithmic discretization:
the band is represented by band segments of an energy width that decreases exponentially close to
the Fermi energy �F . This accounts for the observation that the decisive feature of quantum impurity
physics, namely the appearance of a very narrow resonance peak at the Fermi energy in the local
impurity spectral function, is linked exponentially strongly to the states close to the Fermi energy.
Logarithmic discretization is however also required to make NRG work at all on a technical level!

After further manipulations, for which I refer to [58,59], the Anderson Hamiltonian is finally
mapped to a semi-infinite chain of non-interacting sites with the exception of the first one:
bH ¼ Uðn̂f" � 1=2Þ n̂f# � 1=2
� �

þ t�1

X
r

f̂ yrd̂0r þ h:c:
� �

þ
X1
r;n¼0

tn d̂ynrd̂nþ1;r þ h:c:
� �

; ð318Þ
where the d̂r are fermionic operators. The crucial point is that the tn decay exponentially, tn 	 K�n,
where K is the shrinkage factor of the energy bands in the logarithmic discretization, usually a value
of the order 1.5–2. This is obviously a model that is amenable to our methods, e.g. a ground state
search – as the hoppings decay exponentially, we will not have to consider a truly infinite chain.

NRG builds on the observation that the exponential decay leads to a separation of energy scales:
assuming we know the spectrum of the partial chain up to some length, all remaining sites will only make
exponentially small corrections to it because of the exponentially small energy scales further down the
chain. Finding the ground state (and more generally the low lying spectrum) is now achieved by iterative
exact diagonalization: assume that we have an effective D-dimensional eigenspace for some left-end
part of the chain. Then the next-larger chain has state space dimension dD ¼ 4D; in order to avoid expo-
nential growth, we have to truncate down to D states. The NRG prescription is to diagonalize that system
and to retain the D lowest-lying eigenstates. Starting out from very short chains that can still be done ex-
actly, this procedure resolves the lowest-lying states exponentially well and is justified by the separation
of energy scales: the decision which states to retain at some step would not be drastically changed with
hindsight, as all further sites in the chain interact at much smaller energies. The obtained eigenspectra at
different energy scales (chain lengths) can then be used to extract RG flow information or calculate ther-
modynamic or dynamic quantities for the impurity problem.

Given that the building block Ar of an MPS can be interpreted as encoding a decimation step upon
growing a block by one site, irrespective of the decimation prescription, it is immediately obvious that
NRG, like DMRG, can be seen as operating on MPS [61]. This closes a historical loop as in fact the anal-
ysis of failures of NRG naively applied to Heisenberg and Hubbard models gave rise to the develop-
ment of DMRG. A NRG state would look like
ja‘i ¼
X

r1 ;...;r‘

ðAr1 
 
 
Ar‘ Þa‘ jr1; . . . ;r‘i: ð319Þ
At each length ‘, we get a spectrum of D states.
Given that DMRG is variational over the MPS ansatz space, it is reasonable to expect that at least

some improvement must be possible over the NRG method. In fact this is the case [61]; in the next
section, I am going to discuss some improvements which are already firmly established and others
which are more speculative, i.e. where benchmarking on relevant complex problems is still lacking.

9.2. Going beyond the numerical renormalization group

In fact, considering an MPS formulation of NRG helps even without resorting to the connection to
variational methods like DMRG, as exemplified by the strict enforcement of certain sum rules
[126,127], but this is outside the topic of this review paper.

What we can do more, however, is to subject the final MPS construction generated by NRG to
DMRG-like sweeping. This will somewhat improve the quality of the ground state, but above all,
the truncation procedure for high energies (short chains) will learn about truncation at low energies
and vice versa. As opposed to NRG, there is now a feedback between energy scales. In that sense, NRG
for an impurity problem is a similar conceptual step as the warm-up procedure infinite-system DMRG
provides for variational finite-system DMRG.
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For logarithmic discretization, energy scale separation is big enough that this effect is minor and for
a simple single impurity problem with a focus on the Abrikosov–Kondo–Suhl resonance the ultimate
improvement is very limited, as NRG is geared to describe this feature optimally. The essential point is
that energy scale separation can now be abandoned altogether due to feedback, hence also logarithmic
discretization, and we may choose a more fine-grained resolution of the energy band wherever it is
physically suitable. This could find a variety of applications.

In one application, variational calculus over MPS was applied to an impurity problem in an external
field. The external field leads to a splitting of the peak into two spin-dependent ones, shifted above
and below the Fermi energy. In Fig. 58 we consider one of these peaks, using three techniques,
NRG, an analytical approach [128,129], and variational MPS (DMRG) calculus. NRG due to logarithmic
discretization focuses on �F and does not see the field-dependent peak at all. Relaxing logarithmic dis-
cretization and providing sufficiently fine energy intervals around the expected peak positions away
from �F the shifted resonance can be resolved clearly and even in very good agreement with analytics.

A second interesting application of this could be to replace NRG as an impurity solver in the context
of the dynamical mean-field theory (DMFT) [130–134]. In that case, information beyond the metallic
resonance at the Fermi energy is required such that improving spectral resolution on other energy
scales would be highly desirable.

As the semi-infinite chain is non-interacting but on the first site, one can think about unfolding it
into an infinite chain of spin-1=2, with the impurity at the center and the presence or absence of spin-
up or spin-down fermions corresponding to the 2 spin states, the left half of the chain corresponding
to the spin-up fermions and the right half to the spin-down fermions [133]. Similar energies are now
no longer grouped together, but in a DMRG-like approach this does not matter anymore! The intuition
that spins that interact only through the central impurity might be essentially unentangled is corrob-
orated by actual calculations. This is important as this means we will not pay a strong price by in-
creased matrix dimensions. On the contrary: if in the NRG approach we are essentially looking at
two uncoupled spin chains parallel to each other, this means that the corresponding MPS has dimen-
sion OðD2Þ if the spin chain has dimension D. We can therefore expect that a NRG calculation with
state number D can be replaced by a faster DMRG calculation with a state number Oð

ffiffiffiffi
D
p
Þ.

Beyond this speedup, unfolding can of course also be applied if the impurity couples to multiple
bands, where NRG becomes exponentially complex [61]. The central site, of course, remains the same,
and its numerical treatment can become extremely costly, such that new strategies have to be
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designed for that site. Much work remains to be done here, but first interesting follow-ups on these
ideas have been made [121,122].

10. Infinite-size algorithms

10.1. Reformulation of infinite-system DMRG in MPS language

After the extensive discussion of finite-system algorithms, let us now reformulate infinite-system
DMRG entirely in MPS language. It is convenient to label local states a bit differently to account for the
iterative insertion of sites; we call the states jrA

1ijrA
2i 
 
 
 jrA

‘ ijrB
‘ i 
 
 
 jrB

2ijrB
1i. Moreover, it will be very

useful to give two labels to the matrices A and B, because the link between the matrices and the site on
which they were generated will disappear.

Starting from blocks of size 0 (i.e. a chain of two sites), the ground state wave function is
jw1i ¼

P
rA

1rB
1
WrA

1rB
1 jrA

1ijrB
1i. Reading WrA

1rB
1 as matrix ðW1ÞrA

1 ;r
B
1
, it is singular-value decomposed as

W1 ¼ U1K
½1�V y1. From this we read off
Fig. 59.
joined
A
½1�rA

1
1;a1
¼ ðU1ÞrA

1 ;a1
B
½1�rB

1
a1 ;1
¼ ðV y1Þa1 ;rB

1
: ð320Þ
A and B inherit left and right-normalization properties from U and V y, and the state takes the form
jw1i ¼
X
rA

1rB
1

A½1�r
A
1 K½1�B½1�r

B
1 jrA

1r
B
1i: ð321Þ
If we now insert two sites, and minimize the energy with respect to bH, we obtain
jw2i ¼
X

rA
1rA

2rB
2r

B
1

A½1�r
A
1 WrA

2rB
2 B½1�r

B
1 jrA

1r
A
2r

B
2r

B
1i; ð322Þ
where each WrA
2rB

2 is a matrix with dimensions to match those of A and B, implicit matrix multiplica-
tions AWB assumed. Reshaping this set of W-matrices into one,
ðW2ÞðaA
1rA

2 Þ;ða
B
1r

B
2Þ
¼ ðWrA

2rB
2 ÞaA

1 ;a
B
1
: ð323Þ
SVD gives W2 ¼ U2K
½2�V y2, from which we can form
A
½2�rA

2
aA

1
;aA

2
¼ UðaA

1rA
2 Þ;a

A
2

B
½2�rB

2
aB

2 ;a
B
1
¼ V yðaB

1r
B
2Þ;a

B
2

ð324Þ
such that
jw2i ¼
X

rA
1rA

2rB
2r

B
1

A½1�r
A
1 A½2�r

A
2 K½2�B½2�r

B
2 B½1�r

B
1 jrA

1r
A
2r

B
2r

B
1i: ð325Þ
At the ‘th step, the wave function will read
jw‘i ¼
X

rA
1 


r

A
‘
rB
‘
;...;rB

1

A½1�r
A
1 
 
 
A½‘�r

A
‘ K½‘�B½‘�r

B
‘ 
 
 
B½1�rB

1 jrA
1 
 
 
rA

‘ r
B
‘ 
 
 
rB

1i ð326Þ
and look like in Fig. 59.
Of course, at each step we discard the smallest singular values and their associated singular vectors

once matrix dimensions exceed D, which is nothing but the density-matrix based truncation in the
Λ[ ]

MPS structure generated by infinite-system DMRG at step ‘: a string of left-normalized A, a string of right-normalized B,
by a diagonal singular value matrix K½‘� . Note that structurally the central unit does not repeat.
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original formulation. At each step (new chain length) we can write down bH for that length as an MPO
and do the energy minimization. Other operators find similar representations as in the finite-size case.

Let me briefly go through the reformulation of this algorithm in the CK-notation. In the first step
we simply rename A and B into C, in line with the translation of boundary sites in the finite-system
case:
Fig. 60
possibl
jw1i ¼
X
rA

1rB
1

C½1�r
A
1 K½1�C½1�r

B
1 jrA

1r
B
1i: ð327Þ
We then minimize WrA
2rB

2 in
jw2i ¼
X

rA
1rA

2rB
2rB

1

C½1�r
A
1 WrA

2rB
2 C½1�r

B
1 jrA

1r
A
2r

B
2r

B
1i ð328Þ
and decompose it – as before – into A½2�r
A
2 K½2�B½2�r

B
2 . Now we define (and due to the labelling, there is a

slight change for the B-matrices compared to the finite-system setup)
K½1�a C
rA

2
ab ¼ A

½2�rA
2

ab C
rB

2
ab K½1�b ¼ B

½2�rB
2

ab ð329Þ
to arrive at
jw2i ¼
X

rA
1rA

2rB
1rB

2

C½1�r
A
1 K½1�C½2�r

A
2 K½2�C½2�r

B
2 K½1�C½1�r

B
1 jrA

1r
A
2r

B
2r

B
1i; ð330Þ
as represented in Fig. 60.
We can now ask two questions: (i) in DMRG, finding the ground state by an iterative solver like

Lanczos is the most time-consuming part. Can we find a speed-up by providing a good initial guess?
In finite-system DMRG the MPS formulation automatically yielded White’s prediction method,
whereas attempts at speeding up infinite-system DMRG have been made in the past, meeting with
mixed success [135,136]. (ii) Can we use the information at the chain center to build a translationally
invariant state (up to period 2) in the thermodynamic limit, find its ground state or evolve it in time?

The answer is yes to both questions, and builds on the identification of a two-site repetititve struc-
ture in the states. As opposed to the A;B-notation, where the central unit does not repeat itself even in
the thermodynamic limit, it is very easy to read off a two-site repeat unit in the CK-notation, given by
K½‘�1�C½‘�r
A
‘ K½‘�C½‘�r

B
‘ : ð331Þ
Using the translation rules it can be translated into the A, B-language:
A½‘�r
A
‘ K½‘�B½‘�r

B
‘ K½‘�1�
� ��1

: ð332Þ
This result can also be obtained directly from the A;B notation, but the argument is more complicated
than in the CK notation. It is of course to be understood that repeating these state fragments does not
generate the state they were taken from; the claim is just that in the thermodynamic limit ‘!1,
when all sites are created equal, this repetition can come close. In any case, they are an educated guess
about what the state will look like!

We will now put this state fragment to multiple use, first on finite systems generated by infinite-
system DMRG and then on thermodynamic limit states, both in the context of ground state searches
and time evolutions. In the former case, it will provide a highly efficient guess for the next quantum
state; the evaluation of observables on this state proceed exactly as in the other finite systems. In the
Λ[1] Λ[1]Λ[ ] Λ[2]Λ[ -1]

. MPS structure generated by infinite-system DMRG at step ‘ in the CK-notation: C and K matrices alternate, and a
e identification of a (repetitive) two-site building block is given.
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second case, both ground state and time evolution algorithms can be formulated (iDMRG and iTEBD),
which however necessitate both an (identical) analysis of the issue of orthonormality of states in the
thermodynamic limit.

10.2. State prediction in infinite-system DMRG

The identification of the ‘‘unit cell’’ of the state allows us to define a good initial guess for infinite-
system DMRG [64], which avoids all the problems encountered by previous authors and leads to a
dramatic speed-up even for small chains, where the underlying assumption that the chain center is
representative of the physics of the thermodynamic limit state is certainly wrong: in order to grow
the chain, we simply insert one unit cell, even though for small chains the idea that the state is just
a repetition of these unit cells is not well verified – but even then so much better than a random guess.
Starting from
jw‘i ¼
X
r

A½1�r
A
1 
 
 
A½‘�1�rA

‘�1 A½‘�r
A
‘ K½‘�B½‘�r

B
‘ ½K½‘�1���1

� �
K½‘�1�B½‘�1�rB

‘�1 
 
 
B½1�rB
1 jri; ð333Þ
where the repeat unit has been bracketed out, the guess will then read
jwguess
‘þ1 i ¼

X
r

A½1�r
A
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A½‘�1�rA

‘�1 � A½‘�r
A
‘ K½‘�B½‘�r

A
‘þ1 K½‘�1�
h i�1

� �
A½‘�r

B
‘þ1 K½‘�B½‘�r

B
‘ K½‘�1�
h i�1

� �
�K½‘�1�B½‘�1�rB

‘�1 
 
 
B½1�rB
1 jri ð334Þ
or, multiplying out,
jwguess
‘þ1 i ¼

X
r

A½1�r
A
1 
 
 
A½‘�r

A
‘ K½‘�B½‘�r

A
‘þ1 K½‘�1�
h i�1

A½‘�r
B
‘þ1 K½‘�B½‘�r

B
‘ B½‘�1�rB

‘�1 
 
 
B½1�rB
1 jri: ð335Þ
In this ansatz, we can now identify a guess for WrA
‘þ1r

B
‘þ1 as
W
rA
‘þ1r

B
‘þ1

guess ¼ K½‘�B½‘�r
A
‘þ1 K½‘�1�
h i�1

A½‘�r
B
‘þ1K½‘�: ð336Þ
From this ansatz, we can then iteratively find the WrA
‘þ1r

B
‘þ1 that minimizes the energy in the infinite-

system DMRG framework, generating from it A½‘þ1�rA
‘þ1 , K½‘þ1�, and B½‘þ1�rB

‘þ1 .
Alternatively, the ansatz can be brought into in a more elegant form. At the moment, B-matrices

show up on the A-side of the lattice and vice versa. But we can exploit our ability to canonize MPS,

and canonize K½‘�B½‘�r
A
‘þ1 by SVD to A½‘þ1�rA

‘þ1 K½‘�R , where A is derived from U and K from DV y in the way

described before KaBr
ab ¼ Mar;b ¼

P
kUar;kDkðV yÞk;b ¼ Ar

akKkb

� �
. Similarly, we do a canonization from

the right on A½‘�r
B
‘þ1K½‘� to obtain K½‘�L B½‘þ1�rB

‘þ1 , where B is from V y. Then we have an ansatz
jwguess
‘þ1 i ¼

X
r

A½1�r1 
 
 
A½‘þ1�r‘þ1K½‘þ1�
guessB

½‘þ1�r‘þ1 
 
 
B½1�r1 jri; ð337Þ
where
K½‘þ1�
guess ¼ K½‘�R K½‘�1�

h i�1
K½‘�L : ð338Þ
From this ansatz, we can then iteratively find the K½‘þ1� that minimizes the energy, slightly modifying
the minimization part of variational MPS for a single site. In general, the result will not have the diag-
onal form resulting from an SVD, because KR and KL are not diagonal to begin with. But an SVD on it
yields two unitaries that can be absorbed into the neighbouring A and B without affecting their nor-
malization properties, such that the final K½‘þ1� is diagonal. In this form, the algorithm can be repre-
sented as in Fig. 61.

As shown by McCulloch [64], this prediction leads to a dramatic speedup of infinite-system DMRG
which complements nicely prediction algorithms of finite-system DMRG: the overlap between the
predicted and calculated state often approaches unity up to 10�10 or so!
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Fig. 61. Summarizing representation of the infinite system algorithm including prediction. At each step, two more sites are
introduced, with an ansatz (white) calculated from the last iteration, leading to a new singular value decomposition (black).
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10.3. iDMRG: variational ground state search in the thermodynamic limit

Using the ideas of the preceding sections, it is very simple now to turn infinite-system DMRG into a
performing and precise algorithm, called iDMRG, referring to the thermodynamic limit version of
DMRG:

� Set up an infinite-system DMRG algorithm.
� Add the prediction procedure of the last section to the minimization algorithm.
� Run the modified algorithm until convergence is achieved. Convergence of the wave function to the

thermodynamic limit can be judged by considering the relationship Eq. (119)
X
r‘

A½‘�r‘q½‘�A A½‘�r‘y ¼ q½‘�1�
A ; ð339Þ
where q½‘�A ¼ K½‘�K½‘�y and q½‘�1�
A ¼ K½‘�1�K½‘�1�y are the reduced density operators of the left half of the sys-

tem. Note that while this relationship holds always between reduced density operators in the same
finite system, here they originate from systems of two different lengths 2ð‘� 1Þ and 2‘, such that this
relationship is expected to hold only as a fixed point relationship for ‘!1. Following the same argu-
ment as for generating the ansatz for the larger system, we may transform A½‘�r‘K½‘� to K½‘�L B½‘þ1�r‘ . Then
the left-hand side of the fixed point relationship simplifies, using right normalization, to K½‘�L K½‘�yL � q̂½‘�L ,
and it becomes q̂½‘�L ¼ q½‘�1�

A . If this relationship holds to high accuracy, the thermodynamic fixed point
has been reached. One way of measuring the closeness of the two density operators is given by the
fidelity [64]
F q̂½‘�L ; q̂
½‘�1�
A

� �
¼ Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂½‘�L

q
q̂½‘�1�

A

ffiffiffiffiffiffiffi
q̂½‘�L

qr
: ð340Þ
Inserting the definitions and using cyclicity properties of the trace, one can show that

F q̂½‘�L ; q̂
½‘�1�
A

� �
¼
P

isi, where si are the singular values of K½‘�L K½‘�1�y.

Of course the algorithm can be stopped at any time, but then we have a finite system result which
definitely can be improved by using finite-system DMRG. The convergence criterion given really gives
us access to the thermodynamic limit state, which we might write down formally as
jwi ¼
X
r


 
 
A½‘�ri K½‘�B½‘�riþ1 K½‘�1�
h i�1

A½‘�riþ2 K½‘�B½‘�riþ3 K½‘�1�
h i�1

A½‘�riþ4 K½‘�B½‘�riþ5 K½‘�1�
h i�1


 
 
 jri; ð341Þ
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where we take ‘ to be the iteration step when the convergence criterion is met. The question is now
how to evaluate expectation values. Obviously, we cannot write down a finite network contraction as
before; it will be of infinite size and therefore cannot be contracted naively. A contraction can only
work if we can reduce the number to a finite number of contractions. For finite-system networks
we saw that left- and right-orthonormality allow to eliminate most contractions: For observables
on sites i and j, one only had to consider the contractions on and between these two sites. There is
however no reason why the thermodynamic limit state should meet normalization criteria; in fact,
usually it does not. We therefore need an orthonormalization procedure. After that, expectation values
can be evaluated as for a finite lattice with left- and right-orthonormalization. Because this procedure
is also important for the next algorithm and conceptually a bit more advanced, I postpone it to an ex-
tra section.

At this point it should be mentioned that iDMRG can be related to earlier algorithmic approaches
under the name of PWFRG (product wave function renormalization group) [137–139] which already
contain part of the above ideas; iDMRG takes them to their natural completion [140,141].

10.4. iTEBD: time evolution in the thermodynamic limit

In this section, I switch to the CK notation, although the formulae can be easily translated into the
A;B-formulation. Using our state fragment K½‘�1�C½‘�r

A
‘ K½‘�C½‘�r

B
‘ , we can set up an infinite chain
jwi ¼
X
r


 
 
 KACAriKBCBriþ1

� �
KACAriþ2KBCBriþ3

� �

 
 
 jri; ð342Þ
just like in the previous section, where CAr ¼ C½‘�r
A
‘ ;CBr ¼ C½‘�r

B
‘ ;KA ¼ K½‘�1� and KB ¼ K½‘�. The fragment

may be the result of a converged ground state calculation or from some simple starting state that one
can construct exactly.

We can now write down a time evolution in the Trotter form by applying an infinitesimal time step
to all odd bonds (which I will refer to as AB) and then on all even bonds (which I will refer to as BA).
The bond evolution operators will be exactly as in the tMPS/tDMRG/TEBD cases, I will refer to them as
UAB ¼

P
rArBr0Ar0B

U
rArB ;r0Ar0B
AB jrArBihr0Ar0Bj and similarly UBA.

As we have already seen [cf. Eq. (336)], a full two-site fragment consists of a product of five matri-
ces, KACArA KBCBrB KA. Then time evolution on bond AB yields a set of matrices
MrArB ¼
X
r0

A
r0B

U
rArB ;r0Ar0B
AB KACAr0A KBCBr0B KA: ð343Þ
Upon the by now standard reshaping we obtain by SVD
MrArB ¼ ArA KBBrB ; ð344Þ
where the new KB (and correspondingly ArA and BrB ) are truncated as in tDMRG or TEBD, to replace
the old one. Using KA (still from the last iteration), we can define new CArA and CBrB (via
ArA ¼ KACArA and BrB ¼ CBrB KA). This defines a new ‘‘unit cell’’.

If we write it down and attach another one, we can read off the bond BA in the center of the two AB
unit cells as KBCBrB KACArA KB, for which time evolution gives
NrBrA ¼
X
r0Br

0
A

U
rBrA ;r0Br

0
A

BA KBCBr0B KACAr0AKB: ð345Þ
Reshaping and SVD gives us
NrBrA ¼ ArB KABrA ; ð346Þ
where again KA (and correspondingly the other matrices) are truncated and replace the old ones.
Using KB (still from the last iteration), we can define new CBrB and CArA (via BrA ¼ CArA KB and
ArB ¼ KBCBrB ). The problematic division by small singular values can be avoided by the simple mod-
ification already discussed for TEBD [104].
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By applying sequences of infinitesimal bond evolution operators we can therefore set up a real or
imaginary time evolution for the thermodynamic limit. This algorithm is referred to as iTEBD, because
it provides the infinite-size generalization of TEBD [62].

Again, the question of orthonormality arises [63]. Let us assume that the initial state was meeting
orthonormality criteria. A pure real-time evolution generates a sequence of unitaries acting on the
state, which preserves orthonormality properties. But the inevitable truncation after each time step
spoils this property, even though truncation may only be small. To turn this method into a viable algo-
rithm, we have to address the issue of orthogonalization in the thermodynamic limit, as for iDMRG,
after each step.

Let me mention here that McCulloch [64] has shown that iDMRG can be turned into iTEBD by
replacing the minimization on the central bond by a time-evolution on the central bond, with some
conceptual advantages over the original iTEBD algorithm.

Let me conclude this section by a few words on extrapolation. In finite-system DMRG (or MPS), the
recipe was to extrapolate for each finite length L results in D to maximize accuracy, and then to extrap-
olate these results in L to the thermodynamic limit. Here, we are working directly in the thermody-
namic limit (assuming that iDMRG has been taken to convergence), and the extrapolation in D
remains. Interestingly, at criticality, this extrapolation in D has profound and useful connections to
entanglement entropy scaling and critical exponents [142]. Effectively, the finite matrix dimension
introduces a finite correlation length into the critical system, not unlike the finite-system DMRG case,
where the length scale on which the MPS-typical superposition of exponentials mimicks a power-law
properly also scales with some power of D [143].

10.5. Orthogonalization of thermodynamic limit states

Within iDMRG on a finite system, A- and B-matrices retain left- and right-normalization; this im-
plies that the left and right block states are orthogonal among each other, as shown previously. We
will call a state with this property orthogonal in a slight abuse of conventional usage. As we have seen
in the previous section, we may use a fragment
A½‘�r
A
‘ K½‘�B½‘�r

B
‘ K½‘�1�
� ��1

ð347Þ
that we can repeat to build up an infinitely long chain,
jwi ¼
X
r


 
 
AriK½‘�Briþ1 K½‘�1�
� ��1

Ariþ2 K½‘�Briþ3 K½‘�1�
� ��1

Ariþ4K½‘�Briþ5 K½‘�1�
� ��1


 
 
 jri; ð348Þ
where I have simplified the notation of A, B. The problem with these states is that, for an arbitrary
bipartition into two blocks, the states on the left and right blocks will in general not be orthogonal:
if we transform K½‘�B into eAK½‘�R as described above, the chain will read
jwi ¼
X
r


 
 
Ar1 eAr2 PAr3 eAr4 PAr5 eAr6 P 
 
 
 jri; ð349Þ
where P ¼ K½‘�R K½‘�1�
� ��1

. If we absorb P into the eA to its left, eAP ! A, the normalization condition
becomes
X

r
AryAr ¼ Py

X
r

eAryeArP ¼ PyP: ð350Þ
In general, however, PyP – I. This is not only the case if ‘ is small and we are far from the infinite-sys-
tem fixed point. It is also the case at the fixed point as long as the discarded state weight is finite,
which is usually the case in DMRG calculations, even if it is very small.

As pointed out by Orus and Vidal [63] – in the presentation I follow [64] – a condition to detect
orthonormality is to check whether the expectation value of the unit operator between two block states
jai; ja0i is da;a0 (see Fig. 62). Let us consider an expectation value contraction as for a finite system and
assume we have carried it out up to site 0, coming from the left, �1. The result will be a matrix-like



= =

A Λ[ ] (Λ[ -1])-1B A Λ[ ](Λ[ -1])-1 B

Fig. 62. If matrices are properly normalized, the thermodynamic limit ansatz generates both a left- and right-normalization
condition. Note that the two transfer operators are defined on two differing two-site unit cells of the thermodynamic limit state.
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object Ca0a, corresponding to the open legs. Let us now consider the operation ELðCÞ, which carries the
contraction two steps further, i.e. over sites 1 and 2. This transfer operator reads [cf. Section 4.2.2]
ELðCÞ ¼
X
r1r2

PyeAr2yAr1yCAr1 eAr2 P: ð351Þ
For an orthonormal state, we want that ELðIÞ ¼ I, which is just the expectation value matrix the unit
operator produces for orthonormal block states. What we get, however, is, using the left-normaliza-
tion condition, ELðIÞ ¼ PyP. As the system extends to infinity, ELðIÞ ¼ I must be associated with the larg-
est eigenvalue; normalizability of the entire state implies that the largest eigenvalue must be 1. The
‘‘quadratic’’ form of EL implies that the associated eigenmatrix VL is Hermitian and non-negative.
An eigenvalue or singular value decomposition allows to decompose VL ¼ XyX, where X is invertible.
We can insert X�1X after each P, such that the unit cell becomes XAr1 eAr2 PX�1 and the new transfer
operator reads
E0LðCÞ ¼
X
r1r2

X�1yPyeAr2yAr1yXyCXAr1 eAr2 PX�1: ð352Þ
Then
E0LðIÞ ¼ X�1yVLX�1 ¼ I ð353Þ
from the eigenmatrix properties of VL with respect to EL. (If the largest eigenvalue of EL happens not to
be 1, X must be suitably scaled.)

Inserting the definition of P in XAr1 eAr2 PX�1, undoing the transformation to eA, and transforming

Ar1 K½‘� ! K½‘�L
eBr1 , the unit cell becomes XK½‘�L

eBr1 Br2 K½‘�1�
� ��1

X�1. Shifting the starting point of the unit

cell it becomes K½‘�1�
� ��1

X�1XK½‘�L
eBr1 Br2 ¼ QeBr1 Br2 , where Q ¼ K½‘�1�

� ��1
X�1XK½‘�L ¼ K½‘�1�

� ��1
K½‘�L ,

independent of X. Calculating a contraction from the right leads to a transfer operator
ERðCÞ ¼
X
r1r2

QeBr1 Br2 CBr2yeBr1yQ y: ð354Þ
The same eigenvalue/eigenmatrix argument as before leads to the dominant eigenmatrix VR ¼ YYy; Y
invertible, and a unit cell Y�1QeBr1 Br2 Y . This in turn leads to E0RðCÞ with E0RðIÞ ¼ I.

If we insert the definition of Q into the unit cell, return from eBr1 to Ar1 and make Q explicit, the unit
cell reads Y�1ðK½‘�1�Þ�1X�1XAr1 K½‘�Br2 Y , shifting its origin we obtain
XAr1K½‘�Br2 YY�1ðK½‘�1�Þ�1X�1; ð355Þ
which can be brought back to the original form of the unit cell by setting Ar1  XAr1 ; Br2  Br2 Y and
K½‘�1�  XK½‘�1�Y , but now with proper left- and right-normalization ensured.

More precisely, the new unit cell leads to ELðIÞ ¼ I and ERðIÞ ¼ I. But note that EL and ER are con-
structed from slightly shifted unit cells, namely Ar1 K½‘�Br2 ðK½‘�1�Þ�1 for EL and ðK½‘�1�Þ�1Ar1 K½‘�Br2 for
ER, as shown in the pictorial representation. We can lump together the first and second unit cells into
left- and right-normalized two-site matrices Ar1r2 and Br1r2 . These can now be decomposed into left-
and right-normalized matrices in the standard way, giving A½1�r1 A½2�r2 and B½1�r1 B½2�r2 . Note that these
matrices are of course different from those we had originally.
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The thermodynamic limit state can now be written as
Fig. 63.
that can
jwi ¼
X
r


 
 
A½1�r1 A½2�r2 A½1�r3 A½2�r4 
 
 
 jri ð356Þ
or analogously using B½1;2�, for left- and right-canonical form. Of particular interest for expectation val-
ues is the mixed-canonical form, with A-matrices on the left and B-matrices on the right. If we con-
sider the two underlying unit cells, we see that at the boundary, both want to incorporate the same

K½‘�1�
� ��1

to generate A and B-matrices. This problem can be solved by inserting the identity

I ¼ K½‘�1�ðK½‘�1�Þ�1 after the problematic K½‘�1�
� ��1

. Then we can immediately write down a mixed-

canonical form as
jwi ¼
X
r


 
 
A½1�r1 A½2�r2 A½1�r3 A½2�r4 K½‘�1�B½1�r5 B½2�r6 B½1�r7 B½2�r8 
 
 
 jri: ð357Þ
10.5.1. Calculation of expectation values in the thermodynamic limit
In finite systems, we have seen how an expectation value can be calculated by transferring an ob-

ject C½i�, starting as a dummy scalar C½0� ¼ 1 from C½i� to C½iþ1� by means of a transfer operator E½i�O , where
Ô is the locally acting operator in the expectation value structure (mostly the identity, except, say, two
sites if we are looking at a two-point correlator). In the case of the identity operator, for left-normal-
ized matrices, the transfer operator mapping from left to right maps the identity to the identity; sim-
ilarly, the transfer operator mapping from right to left maps the identity to the identity if formed from
right-normalized matrices.

The same structure has been found in the last section for the thermodynamic limit state and its two
two-site transfer operators EL and ER. This allows a direct transfer of the old results. Assume we want
to calculate hwjbO1

bOijwi; then we bring the state into the mixed-canonical form of Eq. (357), with A-
matrices up to site i or iþ 1 (depending on the odd–even structure), then K½‘�1�, followed by B-matrices
up to infinity. Contracting from the left over all A-matrices up to 0 and from the right all B-matrices,
we obtain a remaining finite network as in Fig. 63. This expectation value is then evaluated as in a fi-
nite network; if we use the C½i� and transfer operator notation, it starts from C½0� ¼ I. The difference is
that at the end, K½‘�1� shows up in the contraction and the final reduction to a scalar is done by the
closing daa0 line (which can be read as a trace): assuming the last site is i, then the final expectation
value is given in the last step as
wjO1 � 
 
 
Oijw
D E

¼ TrK½‘�1�yC ½i�K½‘�1� ¼ TrK½‘�1�K½‘�1�yC ½i� ¼ TrqAC ½i�; ð358Þ
where we have used the relationship between K-matrices and reduced density operators in canonical
representations.

This calculation can be reduced easily to the case of the overlap of two states, which is just the ma-
trix element of the unit operator between them. Assume that both states are in translationally invari-
ant form, e.g. by using left-normalized matrices A½1� and A½2� (and eA½1�; eA½2� respectively). We now carry
forward an infinite overlap calculation by two sites (say 1 and 2) towards the right using EL: If the cur-
rent overlap matrix is C, it is carried forward as
ELðCÞ ¼
X
r1r2

eA½2�r2yeA ½1�r1yCA½1½r1 A½2�r2 : ð359Þ
Exploiting left- and right-normalization, the evaluation of an infinite contraction can be reduced to a finite contraction
be dealt with as for any finite MPS.
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If we decompose C in the eigenmatrices of EL, in the thermodynamic limit only the largest eigenvalue
contribution will survive. For an orthonormal state, for the overlap with itself, C ¼ I and k ¼ 1 are the
dominant eigenpair. A smaller k in the overlap of two states can be interpreted as an overlap per site,
while of course the two states are orthogonal with respect to each other in the thermodynamic limit
(overlap limL!1kL ¼ 0). Such thermodynamic overlaps (or fidelities) per site can be used very nicely to
detect quantum phase transitions by overlapping ground states for two Hamiltonians with slightly dif-
ferent parameters [64].

11. Conclusion: other topics to watch

After moving through this long list of topics, focussing on the fundamental algorithmic building
blocks, ground state searches, thermodynamic limit algorithms and a wealth of real and imaginary
time methods at zero and finite temperature, the possibilities of DMRG and MPS-based algorithms
are far from being exhausted. A few topics that I have not touched upon, but which I would like to
mention briefly (again in a non-exhaustive list), are: transfer matrix DMRG methods (cf. the introduc-
tory section for references), DMRG and MPS with periodic boundary conditions, and as the most recent
addition, MPS for continuous space [65], which emerge as a beautiful generalization of coherent states
and should allow for interesting applications in field theories. For periodic boundary conditions quite a
lot of results already exist, so let me give just a brief overview. PBC have already been treated in the
DMRG framework by introducing one long-ranged interaction between sites 1 and L on an open-
boundary chain (see, e.g. [144–147]; however, the scaling of accuracy was consistently found to be
much worse than for open boundary conditions. The underlying reason is (roughly speaking) that
on a ring the surface between A and B doubles, hence the entanglement; given the exponential rela-
tionship to the MPS dimension, this means that resources have to go up from D to up to D2, meaning
that for similar accuracy, the algorithm needs the square of time (sometimes referred to as D6-scaling,
referring to the open boundary condition D). The physically adequate ansatz for MPS for periodic
boundary conditions is given by Eq. (75); one needs roughly the same D as for OBC, but rerunning
the variational ground state search algorithm on it scales as D5 (because the simplification of vectors
instead of matrices on sites 1 and L does not occur) [56]. At the same time, the simplification of the
generalized to a standard eigenvalue problem does not occur, which may lead to bad conditioning.
A nice feature of the MPS representation for PBC is that one can generate eigenstates of momentum:
For k ¼ nð2p=LÞ and a (non-translationally invariant) MPS jwi ¼

P
rTrðA½1�r1 
 
 
A½L�rL Þjri, the following

state is a translationally invariant eigenstate of momentum k: [148]
jwki ¼
XL�1

n¼0

eiknTr A½1�r1þn 
 
 
A½L�rLþn
� �

jri: ð360Þ
Recently, interesting proposals to improve the D5 scaling have been made [57,149], and this is a field
of ongoing interest. Ref. [68] discusses this topic quite extensively.

I think one may conclude by saying that while the fundamental framework of MPS is by now very
well established, and while DMRG has come of age as one of the most powerful numerical methods
available for strongly correlated quantum systems, even in the well-established field of one-dimen-
sional systems many of the algorithms presented will still allow further improvement, bringing
new applications into our reach. It is in fact quite surprising that for quite a few of the methods pre-
sented (and also the others) very little is known about their detailed behaviour in real-world prob-
lems, analyzing which might give interesting further ideas. Also, the ratio between applications
done and applications doable seems very favourable for future exciting research.
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