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Abstract

The propagation of local signals on one-dimensional systems has been of long standing
interest, even more so over the recent years with the invention of efficient numerical
methods based on Matrix Product States. Existing algorithms for infinite systems how-
ever cannot simulate the evolution of local signals, whereas finite size algorithms suffer
from finite size effects. The present work introduces a method that is able to simulate
the propagation of local signals on a system of infinite size by removing finite size effects
while still working on a finite system at all times. This finite system, conceptually a
part of the infinite system, follows the propagation of a locally induced signal by moving
along with its signal front and is thus called a Comoving Window.

The new method has been tested by investigating several types of locally induced
signals on infinitely large chains of the XX, XXZ and Transverse Ising spin chain models.
These models can also be interpreted as describing interacting spinless fermions. It has
been shown that the new method is indeed able to follow signal fronts of locally induced
signals and to remove finite size effects, such that the propagation of signal fronts can
be studied up to very large simulation times without the distortion by finite size effects.

The computational effort of Matrix Product State simulations is very sensitive to
the entanglement entropy present in the system. Around the origin of locally induced
signals, entanglement entropy however often grows rapidly, whereas around the signal
front it generally grows modestly. By moving along with the signal front and thus
moving away from areas with high entanglement entropy – which are not of interest –
the computational effort for an accurate simulation is significantly reduced.
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Kurzfassung

Die Ausbreitung von lokalen Signalen auf unendlichen, eindimensionalen Systemen ist
schon seit langem Gegenstand großen Interesses, speziell seit der Entwicklung leis-
tungsfähiger, auf Matrixproduktzuständen basierender numerischer Methoden. Beste-
hende Algorithmen für unendliche System sind jedoch nicht in der Lage, die Zeitentwick-
lung lokaler Signale zu simulieren. Algorithmen für endliche Systeme stehen andererseits
vor dem Problem, dass durch die Endlichkeit des Systems Randeffekte auftreten, welche
das Signal beeinflussen. Die vorliegende Arbeit stellt nun eine Methode vor, die durch
Eliminieren dieser Randeffekte in der Lage ist, die Ausbreitung lokaler Signale auf un-
endlichen Systemen zu simulieren, während das tatsächlich simulierte System nach wie
vor endlich ist. Dieses System endlicher Ausdehnung, konzeptionell ein Ausschnitt des
unendlichen Systems, folgt der Ausbreitung eines lokal angeregten Signals, indem es
sich mit dessen Signalfront mitbewegt. Wegen dieser Eigenschaft wird es “Comoving
Window” oder “Mitbewegtes Fenster” genannt.

Die neue Methode wurde getestet, indem verschiedene Signaltypen auf unendlichen
Ketten des XX, XXZ und des Transversalen Ising Spin Modells untersucht wurden.
Diese Modelle können auch so interpretiert werden, dass sie wechselwirkende, spinlose
Fermionen beschreiben. Es wurde gezeigt, dass die neue Methode in der Tat in der Lage
ist, Signalfronten lokal angeregter Signale zu folgen und Randeffekte zu eliminieren. Die
Ausbreitung und Entwicklung von Signalfronten kann dadurch ungestört bis zu sehr
großen Zeiten untersucht werden.

Der Rechenaufwand für auf Matrixproduktszuständen basierende numerische Metho-
den ist empfindlich von der im System vorhandenen Verschränkungsentropie abhängig.
In der Umgebung des Signalursprungs steigt diese für gewöhnlich sehr stark an, während
der Anstieg in der Umgebung der Signalfront in der Regel beschränkt ist. Durch das
Mitbewegen rücken Bereiche großer Verschränkungsentropie – die hier nicht von Inter-
esse sind – aus dem Simulationsfenster. Der Rechenaufwand für eine präzise Simulation
wird daher entscheidend verringert.
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1. Introduction

Ever since the advent of the age of quantum mechanics and its wondrous and often
seemingly strange consequences, many phenomena that could not be understood in clas-
sical physics have been explained on a quantum mechanical level. Especially phenomena
stemming from strong correlation effects between particles in condensed matter, such
as (anti)ferromagnetism or superconductivity, have been understood by means of many
body quantum mechanics. Not only low energy or finite temperature properties, but
also dynamics of quantum systems have always been of particular interest.

The nature and complexity of many body systems however makes it impossible in
most cases to solve the underlying many body Schrödinger equation exactly. A variety
of approximations and restricted solutions, both on the analytical and numerical level,
have been proposed over the last decades. Many of these approximations, relying on
perturbation theory, however cannot describe strongly correlated systems adequately.
Numerical methods have helped much in the understanding of these systems, among
them are e.g. Exact Diagonalization methods, Quantum Monte Carlo methods, Series
Expansions or Coupled Cluster methods. Many of these methods however are severely
limited by systems sizes as their computational effort increases very quickly with system
size.

One numerical method that has had enormous success in the description of one-
dimensional, strongly correlated quantum systems is the Density Matrix Renormaliza-
tion Group (DMRG) [1] and derivatives thereof. In particular, it has been extended to
allow for studying time evolutions of these systems, with methods such as Time Evolving
Block Decimation (TEBD) [2] and time dependent DMRG (tDMRG) [3]. The power
of these methods lies in the ability to describe strongly correlated systems of very large
sizes with very high accuracy, where other methods fail. This ability is due to the special
class of quantum states being used in the DMRG framework, known as Matrix Product
States (MPS) [4] and the entanglement structure of one-dimensional systems.

In recent years it has become possible to realize strongly correlated quantum systems
also experimentally as ultra cold atomic gases in optical lattices [5]. These systems show
extraordinarily long coherence times and – due to the experimental design – a complete
absence of crystal impurities and undesired interactions, thus enabling an almost dissi-
pationless study of quantum systems and the investigation of many theoretical models
and their properties on an experimental level. Careful experimental design even make
systematic external manipulations of individual particles by external fields possible. The
success of experimental realizations of such systems (cf. e.g. [6]) not only enables a bet-
ter understanding of the foundations of nature, but also gives rise to many practical
applications in quantum computing, data storage, cryptography, communications, etc.

Of particular interest is the emergence of quasi particles as elementary excitations of
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1. Introduction

the many body system, such as spin excitations in spin-spin interaction systems, their
properties and especially their evolution over time. For example spin excitations as
quasi particles can propagate as spin waves, their dispersions and propagation proper-
ties strongly depending on the underlying system. A promising application exploiting
propagation properties of spin waves is the field of Spintronics (cf. e.g. [7]).

When investigating the propagation of quasi particles as signals, one is usually inter-
ested in the bulk properties of this propagation, thus describing the signal on a system in
the thermodynamic limit. Despite the fact that time evolution in the MPS framework
is able to efficiently simulate very large systems, finite size effects are always present
when simulating systems of finite size. Existing MPS methods for the thermodynamic
limit however do not allow for local signals, which would break the required translational
invariance. On the following pages, an adaption to the MPS time evolution framework
is introduced that is able to simulate the propagation of local spin signals on infinitely
large systems, thus removing finite size effects. The actual simulation is performed on a
finite system, which is conceptually a part of the underlying infinite system. This finite
system moves along with the propagation front of the signal and the method will thus
be called the Comoving Window (CMW) method.

Chapter 2 gives a short overview of the spin chain models that have been investigated,
their properties and (if possible) their solutions and time evolutions. In Chapters 3 and
4 the underlying MPS framework and MPS methods for time evolution and ground state
search both for finite systems and the thermodynamic limit are explained. In Chapter
5 the CMW method as an extension to ordinary MPS time evolution is introduced.
Chapter 6 then shows application results of the CMW method and the investigation of
the properties of various signal types at large times on spin chain models is explained
in Chapter 2. A summary, conclusion and outlook can be found in Chapter 7.
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2. Quantum Spin Chain Models

The Quantum Models that have been investigated are all special cases of the general one-
dimensional L-site spin-1

2
XYZ chain with nearest neighbor interactions and an external

magnetic field, described by the general Hamiltonian

ĤXY Z = −
L−a∑
j=1

JxŜxj Ŝ
x
j+1 + JyŜyj Ŝ

y
j+1 + JzŜzj Ŝ

z
j+1 −

L∑
j=1

h · Ŝj, (2.1)

where Jx, Jy and Jz control the spin-spin interaction strengths, h = (hx, hy, hz) is the
magnetic field strength along the three spatial dimensions and Ŝj = (Ŝxj , Ŝ

y
j , Ŝ

z
j ) is the

vector of spin operators at site j. In general, all six parameters can be position dependent
as well.

For open boundary conditions (obc) a = 1, for periodic boundary conditions (pbc)
a = 0 and L+ 1 ≡ 1.

2.1. The Jordan-Wigner Transformation to Interacting
Fermions

One-dimensional spin models can be mapped onto systems of spinless fermions by means
of the Jordan-Wigner (JW) transformation [8]. In the particle picture one can interpret
a site in spin up state as a particle sitting on this site, if in spin down state, there is
no particle at this site. A straight forward mapping then would be to interpret the
spin ladder operators Ŝ+

j and Ŝ−j as particle creation and annihilation operators at site
j. While they fulfill the fermionic anticommutator rules on the same site, they do not
on different sites, where they in fact fulfill bosonic commutator rules. Therefore they
neither describe fermions nor bosons. This can be fixed by introducing a preceding phase
factor for the ladder operators, yielding the JW transformation

c†j = e−iπ
∑
n<j Ŝ

+
n Ŝ
−
n Ŝ+

j =
∏
n<j

(
−2Ŝzn

)
Ŝ+
j

cj = eiπ
∑
n<j Ŝ

+
n Ŝ
−
n Ŝ−j =

∏
n<j

(
−2Ŝzn

)
Ŝ−j .

(2.2)

The preceding product of Ŝz operators effectively counts the number N of particles
left of site j and yields a sign (−1)N . By introducing this sign, the JW creation and
annihilation operators c†j and cj now fulfill the fermionic anticommutator rules{

ci, c
†
j

}
= δij

{
ci, cj

}
= 0

{
c†i , c

†
j

}
= 0. (2.3)

3



2. Quantum Spin Chain Models

and can be interpreted as describing interacting spinless fermions.
Exploiting the properties of spin operators, one can derive the following useful iden-

tities

Ŝ+
j Ŝ

+
j+1 = c†jc

†
j+1 Ŝ+

j Ŝ
−
j+1 = c†jcj+1 Ŝzj = n̂j −

1

2
= c†jcj −

1

2

Ŝ−j Ŝ
+
j+1 = −cjc†j+1 Ŝ−j Ŝ

−
j+1 = −cjcj+1.

(2.4)

The inverse transformation then reads

Ŝ+
j = ei

∑
n<j c

†
ncnc†n =

∏
n<j

(
1− 2c†ncn

)
c†j

Ŝ−j = e−i
∑
n<j c

†
ncncn =

∏
n<j

(
1− 2c†ncn

)
cj.

(2.5)

We will always use ~ = 1, as well as the representation of spin operators Ŝxj , Ŝyj , Ŝzj
and the spin ladder operators Ŝ±j = Ŝxj ± iŜ

y
j in the z basis, expressed in terms of Pauli

matrices Sα = 1
2
σα, with

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(2.6)

With the above transformation to interacting spinless fermions, the general XYZ
Hamiltonian (2.1) becomes (in the special case hx = hy = 0)

ĤXY Z =− Jx − Jy

4

∑
j

c†jc
†
j+1 − cjcj+1 −

Jx + Jy

4

∑
j

c†jcj+1 + c†j+1cj

− Jz
∑
j

n̂jn̂j+1 + (Jz − hz)
∑
j

n̂j −
L

4
(Jz − 2hz) (2.7)

In the particle picture, this Hamiltonian now describes a system of interacting spinless
fermions with a hopping term controlled by the hopping parameter Jx+Jy

4
and a particle-

particle interaction term controlled by Jz, which can be positive or negative, i.e. the
interaction can be attractive or repulsive. We also have a chemical potential µ = Jz −
hz, an energy offset Eoff = −L

4
(Jz − 2hz) and a term that changes particle number,

controlled by the parameter Jx−Jy
4

. From this we can immediately see that whenever
Jx = Jy the total number of particles is conserved. The above Hamiltonian holds strictly
only for obc, for pbc see Section 2.2.

2.2. The XX Model without Magnetic Field: Free
Fermions

This model is a special case of the above Hamiltonian with Jx = Jy = J and Jz = 0 in
the homogeneous case and no external field, i.e. h = 0. This turns (2.1) into

ĤXX = −J
∑
j

Ŝxj Ŝ
x
j+1 + Ŝyj Ŝ

y
j+1 = −J

2

∑
j

Ŝ+
j Ŝ
−
j+1 + Ŝ−j Ŝ

+
j+1. (2.8)

4



2.2. The XX Model without Magnetic Field: Free Fermions

The XX model can be solved exactly very easily by performing a JW transformation
and a subsequent Fourier transformation of the JW fermion operators.

Before solving the model, we will look at a few symmetries of the Hamiltonian (2.8). As
we have [ĤXX , Ŝ

z] = 0, with Ŝz =
∑

j Ŝ
z
j the total magnetization in z, there is complete

rotational symmetry around the z axis. Ŝz is therefore a constant of motion and its
eigenvalues thus good quantum numbers. In the particle picture the total magnetization
in z corresponds to the total number operator N̂ =

∑
j n̂j via Ŝz =

∑
j

(
n̂j − 1

2

)
= N̂− L

2

using (2.4), which is then also a conserved quantity.
Next consider a system with L even and a rotation by π about the z axis of every

other spin. This unitary transformation transforms the spin operators Ŝx,y2j → −Ŝ
x,y
2j

and effectively ĤXX → −ĤXX or ĤXX(J) → ĤXX(−J). On the consequences of this
for the time evolution of certain signal types, see Section 6.1.

We will now transform to spinless fermions using a JW transformation. Using the
identities (2.4) we get

HXX = −J
2

∑
j

c†jcj+1 + c†j+1cj +K, (2.9)

where for open boundaries K = 0. However for periodic boundary conditions K 6= 0
stemming from the fact, that

Ŝ+
L Ŝ
−
1 =

L−1∏
n=1

(
−2Ŝzn

)
c†Lc1 6= c†Lc1 (2.10)

Ŝ−L Ŝ
+
1 = −

L−1∏
n=1

(
−2Ŝzn

)
c†1cL 6= −cLc

†
1 (2.11)

Multiplying both equations by −2ŜzL from the left using 2ŜzŜ± = ±Ŝ± then gives

Ŝ+
L Ŝ
−
1 = −

L∏
n=1

(
−2Ŝzn

)
c†Lc1 = (−1)N+1 c†Lc1 (2.12)

Ŝ−L Ŝ
+
1 = −

L∏
n=1

(
−2Ŝzn

)
c†1cL = (−1)N+1 c†1cL, (2.13)

where N is the total number of particles in the system. For the correction factor we
then get

K = −J
2

(
c†Lc1 + c†1cL

) (
(−1)N+1 − 1

)
. (2.14)

As we can see it is a constant of motion since the particle number N is conserved and
it vanishes if N odd, corresponding to true periodic boundary conditions. However if

N even, it takes the value of J
(
c†Lc1 + c†1cL

)
. This term then actually changes the

5



2. Quantum Spin Chain Models

sign of the hopping parameter between sites L and 1, which corresponds to antiperiodic
boundary conditions, i.e. each particle hopping between sites L and 1 does so with a
hopping amplitude of opposite sign. For this case the correction term is however of the
order O

(
1
L

)
and therefore negligible for L→∞ [9, 10].

By comparing (2.9) with the general Hamiltonian (2.7), we see that only the hop-
ping term controlled by J remains, all other terms vanish. The XX model therefore
describes free spinless fermions. The fact that total particle number N is conserved is
also immediately evident in this form.

2.2.1. Exact Solution

In the following we will solve the problem for periodic boundary conditions and neglect
the correction term. A subsequent Fourier transformation of the JW fermion operators

cj =
1√
L

∑
k

cke
ikj c†j =

1√
L

∑
k

c†ke
−ikj, (2.15)

with k = 2πm
L

and m = −L
2
, . . . , L

2
− 1 if L even or m = −L−1

2
, . . . , L−1

2
if L odd then

diagonalizes the Hamiltonian, using∑
j

c†jcj+1 =
1

L

∑
jkk′

c†kck′e
−i(k−k′)eik

′
=
∑
k

c†kcke
ik

∑
j

c†j+1cj =
1

L

∑
jkk′

c†kck′e
−i(k−k′)e−ik =

∑
k

c†kcke
−ik,

(2.16)

to give

ĤXX = −J
2

∑
k

c†kck
(
eik + e−ik

)
= −J

∑
k

cos(k)c†kck, (2.17)

which is clearly diagonal in k-space. JW fermions with momentum k then follow the
dispersion relation εk = −J cos(k). When examining the model in the canonical ensem-
ble with fixed particle number, the ground state can be derived in each particle number
subspace. For the grand canonical ensemble, allowing for all possible particle numbers,
we notice that the chemical potential is zero (since Jz = hz = 0) and the ground state
can be generated out of the vacuum state, which is the all spin down state

|0〉 :=
L⊗
j=1

|↓〉j , (2.18)

by generating particles with momentum |k| < π
2

for J > 0 or π
2
< |k| for J < 0, such

that εk < 0

|ψ0〉 =
∑
|k|<π

2

c†k |0〉 , J > 0 (2.19)

|ψ0〉 =
∑
|k|>π

2

c†k |0〉 , J < 0. (2.20)

6



2.2. The XX Model without Magnetic Field: Free Fermions

This corresponds to half filling and a total magnetization of 〈Ŝz〉 = 0. The ground

state energy per site is E0

LJ
= − 1

L

∑
|k|≤π

2
cos(k)

L→∞−→ − 1
π
≈ −0.31831 in units of J . The

vacuum state itself is also an eigenstate of (2.8) with Evac = 0. It is the ground state in
the zero particle subspace, since it is the only possible zero particle state.

2.2.2. Time Evolution of a Single Spin Flip

The time evolution of the XX-model can easily be described in the Heisenberg picture
in terms of the time dependent JW fermion operators. Inserting into the Heisenberg
equation of motion for operators gives for the annihilation operator

∂

∂t
ck = −i[ck, ĤXX ] = iJ

∑
k′

cos(k′) [ck, n̂k′ ]︸ ︷︷ ︸
ckδkk′

= iJ cos(k)ck. (2.21)

The solution to this differential equation is then

ck(t) = cke
itJ cos(k) c†k(t) = c†ke

−itJ cos(k). (2.22)

Next we will calculate the time evolution of an initial state where we have generated
one quasi-particle at site l out of the vacuum state, i.e. we have flipped one spin from
down to up at site l1

|ψ0〉l = c†l |0〉 =
1√
L

∑
k

c†ke
−ikl |0〉 . (2.23)

The quasi particles in this case are called magnons, the above state is thus a 1-magnon
state. We will now derive its expectation value for the magnetization 〈Ŝzj (t)〉

l
and start

with

〈n̂j(t)〉l = 〈ψ0|l c
†
j(t)cj(t) |ψ0〉l

=
1

N2

∑
mnkq

e−itJ [cos(k)−cos(q)]e−i(k−q)je−i(n−m)l 〈0|cmc†kcqc
†
n|0〉︸ ︷︷ ︸

δmkδqn

=
1

N2

∑
kq

e−itJ [cos(k)−cos(q)]e−i(k−q)(j−l)

=
1

N2

∣∣∣∣∣∑
k

e−itJ cos(k)e−ik(j−l)

∣∣∣∣∣
2

, (2.24)

to get

〈Ŝzj (t)〉
l
=

1

N2

∣∣∣∣∣∑
k

e−it[J cos(k)+k(j−l)]

∣∣∣∣∣
2

− 1

2
. (2.25)

For further insight see also [11, 12].

1Notice that in this case Ŝ+
j and c†j are equivalent, as there are no particles left of site j.
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2. Quantum Spin Chain Models

2.3. The Transverse Ising Model (TIM)

The Transverse Ising Model (TIM) is more complex than the XX-model, but still a simple
example for a quantum spin model and is often referred to as the Quantum Ising model
(QIM) as well. It is an extension of the classical Ising model with spin-spin interactions
along one spatial direction, including a magnetic interaction along a transverse spatial
direction, hence the name.

The L site homogeneous Transverse Ising spin chain is described by the Hamiltonian

ĤTIM = −J
∑
j

Sxj S
x
j+1 − h

∑
j

Szj

= −J
4

∑
j

(
Ŝ+
j + Ŝ−j

)(
Ŝ+
j+1 + Ŝ−j+1

)
− h

∑
j

Ŝzj . (2.26)

Since Ŝz acts as a spin flip in x, the magnetic field can also be interpreted as a gen-
eral tunneling amplitude in a 2-level quasi-spin system. In fact, in the early 60s, de
Gennes [13] and Blinc [14] used the TIM to model the order-disorder transition in 2
level ferroelectric systems. Also, the pseudo-spin mapping of the BCS Hamiltonian for
superconductivity yields an XY model in a transverse field. In its mean field treatment,
it then becomes like the TIM and also yields the BCS gap equation [15] (cf. [10]).

In one dimension, it can be solved exactly (see below and e.g. [9, 10, 11, 16]) and shows
a zero temperature quantum phase transition at hc = J

2
. There the order parameter

〈Ŝxj 〉 in the ground state for pbc, goes to 0 for h → hc from below with a critical
exponent of β = 1

8
(cf. e.g. [10]). For J > 0 this can e.g. be interpreted as follows:

The Ising interaction along x tends to order all the spins ferromagnetically, while the
tunneling term tends to destroy this ordering and favor paramagnetic ordering. For
h < hc the Ising interaction is still stronger than the tunneling, so one will observe a
finite magnetization along x. For h ≥ hc the tunneling overpowers the ordering tendency
of the Ising interaction and the magnetization vanishes for all h ≥ hc. The TIM is in
fact the simplest quantum model showing a zero temperature quantum phase transition.
Because of its simplicity, but still exhibiting interesting features, the TIM has been a
toy model in the field of quantum computing, quantum information, entanglement, etc.
for many years.

2.3.1. Exact Solution

In the following, we will solve the TIM by first applying a JW transformation to fermionic
operators, transforming to k-space via a Fourier transformation and applying a Bogoli-
ubov transformation to new fermionic operators, such that the Hamiltonian becomes
diagonal. The derivation mainly follows [10, 11, 12], additional information can be
found in e.g. [9, 16]. Applying a JW transformation to (2.26), using the identities (2.4),

8



2.3. The Transverse Ising Model (TIM)

one gets

ĤTIM = −J
4

∑
j

(
c†j − cj

)(
c†j+1 + cj+1

)
− h

∑
j

(
c†jcj −

1

2

)
=
Lh

2
− J

4

∑
j

(
c†j − cj

)(
c†j+1 + cj+1

)
− h

∑
j

c†jcj, (2.27)

where we have again dropped a correction term J
4

(
c†L − cL

)(
c†1 + c1

) (
(−1)N+1 − 1

)
(cf. Section 2.2) to solve for pbc. This solution becomes exact in the thermodynamic
limit only. Due to the presence of terms such as c†jc

†
j+1 and cjcj+1 the total number of

fermions an thus the total magnetization Ŝz =
∑

j Ŝ
z
j is not a conserved quantity. The

Hamiltonian also shows Z2 symmetry, as it is invariant under rotations by π around the
x axis. For consequences of this for the thermodynamic limit ground states see Section
6.3.1.

The Hamiltonian (2.27) is still only quadratic in fermionic operators and can be diag-
onalized in a straight forward way. At first, transform again to momentum space using
(2.15) and the results of (2.16)2 to get

ĤTIM =
Lh

2
− J

4

∑
k

e−ikc†kc
†
−k + e−ikc†kck − e

ik ckc
†
k︸︷︷︸

1−c†kck

−eikckc−k − h
∑
k

c†kck

=
Lh

2
−
∑
k

(
J

2
cos(k) + h

)
c†kck −

J

4

∑
k

e−ikc†kc
†
−k − e

ikckc−k +
J

4

∑
k

eik︸ ︷︷ ︸
=0

.

We will now write the sum for k > 0 only, exploiting
∑

k f(k) =
∑

0<k≤π f(k) + f(−k)3

ĤTIM =
Lh

2
+
∑
k>0

(
−J

2
cos(k)− h︸ ︷︷ ︸

:=Ak

)(
c†kck + c†−kc−k︸ ︷︷ ︸

1−c−kc†−k

)

+ i
∑
k>0

J

2
sin(k)︸ ︷︷ ︸
:=Bk

(
c†kc
†
−k + ckc−k︸ ︷︷ ︸

−c−kck

)

=
Lh

2
+
∑
k>0

Ak

(
c†kck − c−kc

†
−k

)
+ i
∑
k>0

Bk

(
c†kc
†
−k − c−kck

)
+K, (2.28)

where

K =
∑
k>0

Ak = −J
2

∑
k>0

cos(k)︸ ︷︷ ︸
=0

−h
∑
k>0

1︸ ︷︷ ︸
L
2

= −Lh
2
, (2.29)

2the calculations for c†jc
†
j+1 and cjcj+1 work similarly.

3In the thermodynamic limit L → ∞, the missing terms for k = 0 and k = π can be neglected (cf.
e.g. [10]).
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2. Quantum Spin Chain Models

which exactly cancels with the other constant in (2.28) to finally give

ĤTIM =
∑
k>0

Ak

(
c†kck − c−kc

†
−k

)
+ i
∑
k>0

Bk

(
c†kc
†
−k − c−kck

)
. (2.30)

As we can see, this Hamiltonian is still not diagonal due to the second sum in (2.30).
To diagonalize, we will now perform a Bogoliubov transformation of the general form

ηk = akck + ibkc
†
−k η†k = akc

†
k − ibkc−k, (2.31)

where ak and bk are real coefficients, which fulfill the following relations

ak = a−k bk = −b−k a2
k + b2

k = 1. (2.32)

These ensure that the new fermionic operators ηk and η†k again fulfill the fermionic
anticommutator rules. The inverse transformation is then

ck = akηk − ibkη†−k c†k = akηk + ibkη−k. (2.33)

The straight forward way now would be to insert (2.33) into (2.30) and adjust the coef-
ficients such that the Hamiltonian becomes diagonal. We will however choose a slightly
different, but more efficient method to determine ak and bk and check that they ful-
fill (2.32) afterwards. The inverse transformation, including the Fourier transformation
back to real space, then reads

cj =
1√
L

∑
k

e−ikj
(
akηk − ibkη†−k

)
c†j =

1√
L

∑
k

eikj
(
akη

†
k + ibkη−k

)
. (2.34)

To transform (2.30) such that it becomes diagonal, we will first write it in matrix form

ĤTIM =
∑
k>0

(
c†k c−k

)( Ak iBk

−iBk −AK

)
︸ ︷︷ ︸

:=Mk

(
ck
c†−k

)
. (2.35)

We will then diagonalize Mk, its eigenbasis will correspond to a Bogoliubov transforma-
tion, which diagonalizes the Hamiltonian.

The eigenanalysis Mk = UkDkUk
†, with Dk the diagonal matrix containing the eigen-

values and Uk a unitary matrix containing the eigenvectors, yields

λk =
√
A2
k +B2

k =

√
J2

4
+ Jh cos(k) + h2 (2.36)

Dk =

(
λk 0
0 −λk

)
(2.37)

Uk =

(
λk+Ak
Nk,+

i(λk−Ak)
Nk,−

iBk
Nk,+

−Bk
Nk,−

)
(2.38)

Nk,± =
√

2λk (λk ± Ak) (2.39)
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2.3. The Transverse Ising Model (TIM)

The unitary matrix Uk in (2.38) defines the Bogoliubov transformation to the fermionic
operators η†k and ηk(

c†k c−k
)
Mk

(
ck
c†−k

)
=
(
c†k c−k

)
Uk︸ ︷︷ ︸

:=
(
η†k η−k

)
Dk Uk

†
(
ck
c†−k

)
︸ ︷︷ ︸

:=

 ηk
η†−k


→
(
ηk
η†−k

)
= U †k

(
ck
c†−k

)
. (2.40)

Explicitly we get

ηk =
λk + Ak
Nk,+

ck − i
Bk

Nk,+

c†−k η†k =
λk + Ak
Nk,+

c†k + i
Bk

Nk,+

c−k, (2.41)

with ak = λk+Ak
Nk,+

and bk = − Bk
Nk,+

(cf. also [12]). Indeed, one can see, that both ak and bk
fulfill the restrictions for Bogoliubov transformation coefficients by inserting into (2.32).

Plugging into (2.35) then gives

ĤTIM =
∑
k>0

(
c†k c−k

)
UkDkUk

†
(
ck
c†−k

)
=
∑
k>0

(
η†k η−k

)
Dk

(
ηk
η†−k

)
=
∑
k>0

λkη
†
kηk − λk η−kη

†
−k︸ ︷︷ ︸

1−η†−kη−k

=
∑
k>0

λk

(
η†kηk + η†−kη−k

)
−
∑
k>0

λk (2.42)

and switching back to sum over all k we finally get

ĤTIM =
∑
k

λkη
†
kηk −

L

2

∑
k

λk =
∑
k

λk

(
η†kηk −

1

2

)
. (2.43)

As one can see, (2.43) is now diagonal in terms of Bogoliubov operators. An excitation
of one Bogoliubov fermion of momentum k has energy λk, which is always positive. The
vacuum state has a negative energy per site E0

L
= −1

2

∑
k λk and is also the ground state,

since every excited fermion increases the energy.

2.3.2. Time Evolution of a JW Excitation

We will proceed similarly as for the XX model. The time dependent Bogoliubov op-
erators can again be derived from solving the Heisenberg equation of motion, which
gives

ηk(t) = ηke
−iλkt η†k(t) = η†ke

iλkt. (2.44)

Plugging into (2.34) for the time dependent JW fermion operators in real space, we get

cj(t) =
1√
L

∑
k

e−ikj
(
αkηk + βkη

†
−k

)
(2.45)

c†j(t) =
1√
L

∑
k

eikj
(
α∗kη

†
k + β∗kη−k

)
, (2.46)
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2. Quantum Spin Chain Models

where we have defined αk = ake
−iλkt and βk = −ibkeiλkt.

Now consider a single JW excitation to the ground state (i.e. the vacuum state of
Bogoliubov fermions), which is defined as

|ψ0〉l =
(
c†l + cl

)
|0〉 =

1√
L

∑
k

eikl
(
ak + ibk︸ ︷︷ ︸

:=fk

)
η†k |0〉 . (2.47)

Notice that f ∗k = f−k and |fk|2 = 1 due to the properties of ak and bk. The advantage of
a JW excitation over a regular spin flip is that we can easily calculate in terms of JW
fermions without having to worry about any JW phase factor, which we would have for
a simple spin flip, as it would not vanish due to the more complicated structure of the
TIM ground state. We will now again calculate the time dependent expectation value
〈Ŝzj (t)〉

l
of this excited state. Start with

〈n̂j(t)〉l =
1

L

∑
mn

f ∗mfne
−i(m−n)l 〈0| ηmc†j(t)cj(t)η†n |0〉 . (2.48)

Inserting (2.45) and (2.46) and exploiting the fact, that only terms with an equal number
of creation and annihilation operators remain, one gets

〈n̂j(t)〉l =
1

L2

∑
mnkk′

f ∗mfne
−i(m−n)lei(k−k

′)j ×(
α∗kαk′ 〈0|ηmη

†
kηk′η

†
n|0〉︸ ︷︷ ︸

δmkδnk′

+β∗kβk′ 〈0|ηmη−kη
†
−k′η

†
n|0〉︸ ︷︷ ︸

δmnδkk′−δ−k′mδ−kn

)

=
1

L2

∑
kk′

f ∗kfk′e
−(k−k′)(l−j)α∗kαk′ + 1 |fm|2︸ ︷︷ ︸

=1

|βk|2︸︷︷︸
b2k

− f ∗−k′f−k︸ ︷︷ ︸
fk′f

∗
k

e−i(k−k
′)(l−j)β∗kβk′

=
1

L2

(∑
k′

1︸ ︷︷ ︸
=L

∑
k

b2
k +

∑
kk′

f ∗kfk′e
−i(k−k′)(l−j) (α∗kαk′ − β∗kβk′)

)

=
1

L

∑
k

b2
k +

1

L2

∣∣∣∣∣∑
k

eik(l−j)fkαk

∣∣∣∣∣
2

− 1

L2

∣∣∣∣∣∑
k

eik(l−j)fkβk

∣∣∣∣∣
2

. (2.49)

For the magnetization 〈Ŝzj (t)〉
l
= 〈n̂j(t)〉l −

1
2

we get, changing back to ak and bk,

〈Ŝzj (t)〉
l
=

1

L

∑
k

b2
k+

1

L2

∣∣∣∣∣∑
k

ei[k(l−j)−λkt]fkak

∣∣∣∣∣
2

−

∣∣∣∣∣∑
k

ei[k(l−j)+λkt]fkbk

∣∣∣∣∣
2
− 1

2
(2.50)

2.4. The XXZ model

The XXZ model is a widely studied spin chain model with many applications, which
as of today far surpass its original purpose of explaining ferromagnetism. Heisenberg
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2.4. The XXZ model

and Dirac [17] first realized that the quantum mechanical effect of exchange interaction
leads to an effective spin-spin interaction Wij = JijŜi · Ŝj for particles i and j with
overlapping wave functions, where Jij the interaction parameter, which can also be
negative. Thus for the first time the mysterious effect of ferromagnetism, which was
not understood at that time, could be addressed on a quantum mechanical level. The
magnetic properties of many magnetic materials can be described by either isotropic
or anisotropic ferromagnetic or antiferromagnetic Heisenberg interactions, described by
an accordingly modeled three-dimensional XYZ Hamiltonian and ab initio parameters
Jx,y,zij . The homogeneous XXZ chain is a special case of the XYZ chain (2.1) with nearest
neighbor interactions only and Jx = Jy = J . In one dimension, the XXZ model can be
solved exactly by the Bethe ansatz (see Section 2.4.1). Extensions to the Bethe ansatz
also solve the one-dimensional XYZ model.

The general structure of the model itself however allows for the treatment of many
other phenomena that can be described in terms of (or mapped onto) spin operators.
For example, Mott insulators in the Hubbard model can be described with an effective
antiferromagnetic Heisenberg Hamiltonian. Also for the negative-U model, describing
superconductivity, the charge operators can be mapped onto pseudo spin operators,
yielding an anisotropic effective XXZ Hamiltonian with ferromagnetic xy-coupling J > 0
and antiferromagnetic z-coupling Jz < 0, which can describe charge density waves (cf.
e.g. [18]).

The model itself is still a very simple model for a nearest neighbor interaction spin
chain, however a straight forward exact solution as for the other spin chain models above
is not possible. We will consider only magnetic fields in z, parametrized by hz

ĤXXZ = −
∑
j

J
(
Ŝxj Ŝ

x
j+1 + Ŝyj Ŝ

y
j+1

)
+ JzŜzj Ŝ

z
j+1 − hz

∑
j

Ŝzj (2.51)

= −J
2

∑
j

Ŝ+
j Ŝ
−
j+1 + Ŝ−j Ŝ

+
j+1 − Jz

∑
j

Ŝzj Ŝ
z
j+1 − hz

∑
j

Ŝzj (2.52)

= −J
∑
j

1

2

(
Ŝ+
j Ŝ
−
j+1 + Ŝ−j Ŝ

+
j+1

)
+ ∆Ŝzj Ŝ

z
j+1 − hz

∑
j

Ŝzj , (2.53)

where ∆ = Jz

J
. Notice that the isotropic case J = Jz or ∆ = 1 and hz = 0 yields the

conventional isotropic Quantum Heisenberg model

ĤHB = −J
∑
j

Ŝj · Ŝj+1. (2.54)

Again, we consider the case of an L-site chain with pbc. A JW transformation of (2.53),
using Ŝzj = n̂j − 1

2
and Ŝzj Ŝ

z
j+1 = n̂jn̂j+1 − 1

2
(n̂j + n̂j+1) + 1

4
yields

ĤXXZ = −J
2

∑
j

c†jcj+1 + c†j+1cj − Jz
∑
j

n̂jn̂j+1 + (Jz − hz)
∑
j

n̂j, (2.55)

where we have dropped an energy offset of −L
4

(Jz − 2hz) and again a correction term
for pbc (cf. Section 2.2). Comparing with the general XYZ Hamiltonian (2.7) we can
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2. Quantum Spin Chain Models

see that we again have fermion hopping, controlled by the hopping parameter J and
also nearest neighbor particle-particle interaction controlled by Jz, as well as a chemical
potential µ = Jz − hz. Clearly, this Hamiltonian is now quartic in fermion operators,
usual methods of diagonalizing a quadratic Hamiltonian are thus not applicable.

Symmetries and Ground States The XXZ Hamiltonian also preserves total magneti-
zation in Ŝz or total particle number N̂ as the XX chain. Similarly, a rotation of every
other spin by π around the z axis transforms J → −J or ĤXXZ(J,∆)→ ĤXXZ(−J,∆),
but we can also pull out the sign and write ĤXXZ(J,∆)→ −ĤXXZ(J,−∆). On conse-
quences of this for the time evolution of certain signals types, see Section 6.2

The case ∆ = 1 corresponds to the isotropic Heisenberg ferromagnet (FM), whereas
∆ = −1 corresponds to the isotropic Heisenberg antiferromagnet (AFM). The cases
∆ → ±∞ yield the classical Ising (anti)ferromagnet, whereas ∆ = 0 yields the above
described XX model. Furthermore, for J > 0 we get ferromagnetic (FM) behavior for
∆ ≥ 1 for all values of Sz and antiferromagnetic (AFM) behavior for ∆ ≤ −1 and
Sz = 0. For −1 < ∆ < 1 and Sz = 0 the system is paramagnetic (cf. [19]).

For hz = 0 and ∆ 6= 1 the Hamiltonian is also invariant under rotations of π about
any axis in the xy plane. This will result in a 2 fold degeneracy of the FM ground state.
For the Heisenberg FM with ∆ = 1 the ground state is L+ 1 fold degenerate due to the
full rotational symmetry, where Ŝ2 =

∑
j Ŝ

2
j is also a conserved quantity. Energetically,

spin alignment is favored for the FM, the ground state(s) will therefore have long range
magnetic ordering with (generally) finite magnetization Sz.

The ground state for the AFM case is much more complicated. Even though anti-
parallel spin ordering is favored by the Ising interaction Jz < 0, the two Néel states as
well as their symmetric and antisymmetric superposition are not eigenstates of ĤXXZ .
Lieb, Schultz and Mattis [9] proved for the Heisenberg AFM (∆ = −1) that the ground
state of the linear chain is non degenerate and has total magnetization Sz = 0 or L

2

particles, i.e. the ground state shows half filling. They further proved that the ground
state has indeed contributions of all states within the subspace of half filling. These
proofs form the foundation of the Lieb-Schultz-Mattis Theorem, stating that the linear
chain with pbc becomes gapless in the thermodynamic limit, i.e. there exist excited
eigenstates with energies going towards the ground state energy with the chain becoming
infinitely long.

2.4.1. Exact Solution: Bethe Ansatz

For the one-dimensional chain with hz = 0 and pbc there exists an exact solution,
proposed by Hans Bethe in 1931, which is known as the famous Bethe ansatz [20]. We
will now take a short look at this solution, a good introduction can be found in [21] and
also in [19]. Consider an L-site chain with pbc and L even. The essence of this ansatz is
the classification of all possible states of an L-site chain by their particle numbers. This
is a good classification since the particle number is a conserved quantity, i.e. applications
of H do not interchange between different particle subspaces. We can therefore solve
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2.4. The XXZ model

the system for eigenvalues and eigenvectors in the respective particle number subspaces
individually.

The following short sketch follows [21] closely. Start with the fully saturated FM
ground state with L particles, i.e. the all spin up state |F 〉 = |↑1 . . . ↑L〉. We can
sequentially remove particles by applying the ladder operator Ŝ−n to yield a L−1 particle
state

|n〉 = Ŝ−n |F 〉 , n = 1, . . . , L (2.56)

Thus a general eigenstate with L− 1 particles can be written as a linear combination of
all L− 1 particle states (2.56)

|ψ〉L−1 =
∑
n

a(n) |n〉 , (2.57)

where the parameters a(n) have to be adjusted such that |ψ〉L−1 is an eigenstate of H.
For L− 1 particles we get

a(n) = eikn, k =
2πm

L
, −L

2
≤ m ≤ L

2
− 1, (2.58)

i.e. L eigenstates with L− 1 particles.
For the general case of L− r particles we write the eigenstates in a similar fashion

|ψ〉L−r =
∑

1≤n1<...<nr≤L

a(n1, . . . , nr) |n1 . . . nr〉 (2.59)

|n1 . . . nr〉 = Ŝ−n1
. . . Ŝ−nr |F 〉 . (2.60)

To adjust the coefficients such, that the above states are eigenstates of H, we take the
ansatz

a(n1, . . . , nr) =
∑
P

exp

(
i

r∑
j=1

kPjnj +
i

2

∑
l<j

ΘPlPj

)
, (2.61)

where P denotes the r! permutations of the labels 1, . . . , r and Θlj are the 2-body
scattering phases, which must fulfill

2 cot
Θlj

2
= cot

kl
2
− cot

kj
2
, l, j = 1, . . . , r. (2.62)

Periodicity demands the additional relation

Lkj = 2πλj +
∑
l 6=j

Θjl, j = 1, . . . , r (2.63)

where λj ∈ {0, 1, . . . , L − 1} are the Bethe quantum numbers, defining the momentum
of the eigenstate as k = 2π

L

∑r
j=1 λj. The energy of the eigenstate is then

E − E0 = J

r∑
j=1

(1− cos(kj)) . (2.64)
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2. Quantum Spin Chain Models

Notice that the total momentum of the eigenstate is in general not the sum of the r
momenta kj.

With this ansatz for the coefficients, which defines the Bethe ansatz, and the above
relations the eigenvalue problem reduces to solving for the r values of the Bethe quantum
numbers and the allowed values of the momenta kj. This task itself can be numerically
demanding. The Bethe ansatz however allows for better identification of different classes
and properties of the eigenstates. Among them are e.g. bound states, where the proba-
bility to find the flipped spins on neighboring sites is strongly enhanced. On the other
hand the Bethe ansatz also allows for (limited) analytic investigation of certain other
properties (cf. e.g. [21]).
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In recent years a special class of quantum states for the description of correlated many
body systems has gained much attention: Matrix Product States (MPS). After the huge
success of the Density Matrix Renormalization Group (DMRG) method [1] and Östlund
and Rommers realization that DMRG produces exactly this kind of ansatz states [4],
MPS have become a very active field of research. While originally developed for one-
dimensional lattice systems, there are also generalizations to e.g. higher dimensions [22],
continuous fields [23] or even applications in statistical mechanics for transfer matrices
[24].

The key feature of MPS is their ability to describe one-dimensional quantum states
and their features by a product of locally defined matrices of relatively small dimension,
with high precision. Consider a general one-dimensional quantum spin system with L
lattice sites, open boundary conditions and local Hilbert spaces {|σi〉} of dimension d
on each site. A general (possibly unnormalized) pure state on this spin system can be
written in terms of the local spin bases as

|ψ̃〉 =
∑
{σ}

cσ1...σL |σ1 . . . σL〉 , (3.1)

where we have in general dL independent, delocalized expansion coefficients cσ1...σL . The
idea is now to find a representation that allows for a local description of this state,
while still keeping its general quantum mechanical, non local features. As will be shown
below, it is indeed possible to decompose the coefficients of (3.1) into a product of site
dependent matrices of the following form

cσ1...σL = Mσ1Mσ2 . . .MσL−1MσL (3.2)

by subsequent decomposition of cσ1...σL , where the spin variables σj are now merely a
labeling for the matrices M , i.e. for each physical site j there is a set of d MPS matrices
for each value of σj. Each of the dL coefficients can now be constructed by taking the
product of the corresponding matrices Mσj for each site. In general these matrices will be
site dependent, so actually a labeling such as M (j),σj is more appropriate. However, for
the sake of brevity we will use this notation only when site dependence is of importance.

In the following Sections 3.2 and 3.4 we will sketch the exact decomposition of a
general state of the form (3.1) into an MPS. For this we will reinterpret the expansion
coefficients cσ1...σL as a rectangular matrix and sequentially perform matrix decompo-
sitions to achieve (3.2). We will see that the dimensions of these matrices will grow
exponentially with each decomposition step going towards the center of the chain.
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3. Matrix Product States (MPS)

In Section 3.3 we will reinterpret the decomposition process as a sequential growth of
an L-site system from a small initial system by sequentially adding sites and performing
a basis transformation to a new basis set of the enlarged system. We will also make the
connection between MPS representations and Schmidt decompositions.

Due to the fact that matrix dimensions grow exponentially, the exact MPS repre-
sentations derived in Sections 3.2 and 3.4 are not very useful for efficient numerical
methods. In Section 3.5 we will introduce a maximum matrix dimension for all MPS
matrices, truncating (most of) the MPS matrices to this maximum dimension. The
resulting MPS is then only an approximation to the originally decomposed state of the
form (3.1). We will however see, that the decomposition procedures of Sections 3.2 and
3.4 then represent an optimal approximation to the original state. This is due to the
entanglement structure in one-dimensional systems. We will also see that most of the
feature derived in the preceding Sections will still hold even for truncated MPS.

The decomposition (3.2) is highly non unique. We will therefore look for a decomposi-
tion with useful features that best serves our needs. In general one could use any matrix
decomposition method to retrieve (3.2), but in order to construct a representation that
is able to optimally describe the entanglement structure of the state, we will use the
singular value decomposition (SVD). For further references, see the very detailed and
complete reviews [25], which we will follow closely in the following derivations.

3.1. Singular Value Decomposition (SVD)

In the following Sections for deriving MPS representations, but also in the context of
MPS methods, we will make extensive use of the singular value decomposition (SVD).
The SVD is a factorization of a real or complex matrix with dimensions m × n into a
product of two matrices and a diagonal matrix of the form

M = UDV †, Mij =
N∑
k=1

UikDkV
†
kj, (3.3)

where N = min(m,n). U is a m × N matrix, containing the orthonormal left singular
vectors of M as its columns and V is a n×N matrix containing the right singular vectors
of M as its columns. D is a diagonal N ×N matrix with the N singular values dk of M
as its diagonal elements, which are real and non negative.

If m < n, U is a unitary square matrix of dimension m×m, hence U †U = UU † = 1,
whereas V is a n×m matrix with V †V = 1 only.

If n < m, V is a unitary square matrix of dimension n×n, with V †V = V V † = 1 and
U is a m× n matrix with U †U = 1 only.

Notice that there are only min(m,n) singular values dk, which are the diagonal ele-
ments of D. For future applications, consider D with its singular values in descending
order, i.e. d1 ≥ d2 ≥ . . ..

For a graphical representation of the two cases m < n and n < m see Figure 3.1.
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3.2. Exact MPS Representations

= =U UM MV  V DD

(i) (ii)

Figure 3.1.: Singular Value Decomposition of a m × n matrix M . (i) If m < n, U is a
square unitary m×m matrix and V is a m× n matrix with V †V = 1 only.
(ii) If n < m, V is a square unitary n×n matrix and U is a n×m matrix with
U †U = 1 only. D is a diagonal matrix of dimensions min(m,n)×min(m,n),
with the singular values of M as its diagonal elements.

The left and right singular vectors u
(k)
i = Uik and v

(k)
i = Vik fulfill the following left

and right singular relations

M †u(k) = dkv
(k) Mv(k) = dku

(k). (3.4)

The SVD can also be understood as a generalized eigen decomposition to factorize
non square matrices. Combining (3.3) and its hermitian conjugate in fact yields the
decomposition of a square matrix in form of an eigen decomposition

MM † = UDV †V︸︷︷︸
1

DU † = UD2U † (3.5)

M †M = V DU †U︸︷︷︸
1

DV † = V D2V †. (3.6)

The columns of U are the eigen vectors of MM †, whereas the columns of V are the eigen
vectors of M †M . Both MM † and M †M have the same spectrum of eigen values d2

k > 0.

3.2. Exact MPS Representations

We will start by reshaping the coefficient cσ1...σL into a d × dL−1 matrix and subject it
to an SVD

cσ1...σL = ψ(σ1)(σ2...σL)
SV D
=

d∑
a1=1

U(σ1)a1λ
(1)
a1
V †a1(σ2...σL). (3.7)

U(σ1)a1 will be a d × d matrix, we will reshape it into Aσ1a1 = U(σ1)a1 and call it the left
boundary matrix. In this form it is a set of d row vectors of length d, now labeled by
the physical index σ1. The vector elements are labeled with a1, which we call auxiliary
indices. In practice it is just a d× d matrix.
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3. Matrix Product States (MPS)

Next we will incorporate λ
(1)
a1 into V †a1(σ2...σL) again and reshape it to form a new matrix

ψ(a1σ2)(σ3...σL) = λ
(1)
a1 V

†
a1(σ2...σL), now of dimension d2 × dL−2. Thus we have

cσ1...σL =
d∑

a1=1

Aσ1a1ψ(a1σ2)(σ3...σL) (3.8)

and we will proceed the same way as above with ψ(a1σ2)(σ3...σL). Decompose via SVD

ψ(a1σ2)(σ3...σL) =
d2∑
a2=1

U(a1σ2)a2λ
(2)
a2
V †a2(σ3...σL) (3.9)

and use U(a1σ2)a2 to again form a set of matrices Aσ2a1a2 , which is now a collection of
d matrices of dimensions d × d2, labeled by σ2. We can again combine and form
ψ(a2σ3)(σ4...σl) = λ

(2)
a2 V

†
a2(σ3...σL) to get

cσ1...σL =
d∑

a1=1

d2∑
a2=1

Aσ1a1A
σ2
a1a2

ψ(a2σ3)(σ4...σL), (3.10)

where Aσ`a`−1a`
will be a collection of d matrices, labeled by σ`, of dimensions d`−1 × d`

while ` ≤ L
2
. For ` < L

2
, ψ(a`σ`+1)(σ`+1...σL) is a rectangular matrix of dimensions m × n

where m < n, making U(a`−1σ`)(a`) a square matrix of dimension d` × d`. For ` > L
2

we
face the fact that now n < m, making U(a`−1σ`)(a`) a rectangular matrix of dimension
d` × dL−`. Aσ`a`−1a`

will therefore be a collection of d matrices of dimensions d`−1 × dL−`.
This is a consequence of the nature of an SVD (cf. Section 3.1). We can repeat these
steps until we reach the last step

cσ1...σL =
∑

a1a2...aL−1

Aσ1a1A
σ2
a1a2

. . . AσL−1
aL−2aL−1

λ(L−1)
aL−1

V †aL−1(σL), (3.11)

where we will reshape one last time and form a column vector ψ(aL−1σL) = λ
(L−1)
aL−1 V

†
aL−1(σL),

which we will subject to one more SVD

ψ(aL−1σL) = U(aL−1σL)λ
(L)V ∗, (3.12)

where U is again a column vector. λ(L), V ∗ are scalars, their product gives the norm

N =
√
〈ψ̃|ψ̃〉 of the original state (3.1), automatically enabling us to normalize the

state. We form the last matrix AσLaL−1
= U(aL−1σL) and write down the coefficients of the

original state as a product of L matrices

cσ1...σL = N
∑

a1a2...aL−2aL

Aσ1a1A
σ2
a1a2

. . . AσL−1
aL−2aL−1

AσLaL−1
(3.13)

= NAσ1Aσ2 . . . AσL−1AσL , (3.14)
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3.2. Exact MPS Representations

 j

A j

a j−1 a j
 j

A j∗

a j−1 a j

A1

a1

1 L

aL−1
A L

 j 

a j a j

Figure 3.2.: Graphical representation of MPS matrices. Matrices are represented by
circles and indices by lines. Vertical lines represent physical indices of cor-
responding sites, horizontal lines represent auxiliary indices connecting ad-
jacent sites. Complex conjugate matrices are depicted by an upside down
version. Singular Values are represented by crosses. They can be viewed
as diagonal matrices with the singular values as their diagonal elements.
Boundary matrices only have one auxiliary index, shown are the left and
right boundary matrix. All graphical representations equally hold for B-
matrices as well.

1 2 3 4 5 6 7 8

A1 A2 A3 A4 B5 B6 B7 B8

4

Figure 3.3.: Graphical representation of an 8 site mixed-canonical MPS. Whenever 2
lines of different matrices are connected, there is an implicit sum over these
indices. Notice that in the depicted MPS matrix network all auxiliary indices
are summed over and the only degrees of freedom are the physical indices σj.
This exactly represents one general coefficient cσ1...σ8 in MPS representation.

A j

 j

A j∗

a j−1

a ' j

a j

=

a j

a j

a j a ' j

B j

 j

B j∗

a j−1

a j = a j−1a ' j−1

a ' j−1

a j−1

a j−1

Figure 3.4.: Graphical representation of the left and right normalization conditions (3.18)
and (3.19). In index notation they each produce a Kronecker-delta in the
remaining auxiliary space. This fact can be widely exploited to calculate
e.g. norms and expectation values (cf. Section 3.6).
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3. Matrix Product States (MPS)

where we have switched to matrix notation in the last line. At last, we can write down
the normalized state as

|ψ〉 =
∑
{σ}

Aσ1Aσ2 . . . AσL−1AσL |σ1 . . . σL〉 . (3.15)

We can construct a similar MPS representation the by starting to decompose from
the right end. In this case we will perform SVDs of the form

ψ(σ1...σ`−1)(σ`a`) =
∑
a`−1

U(σ1...σ`−1)a`−1
λ(`−1)
a`−1

V †a`−1(σ`a`)
, (3.16)

and reshape to form Bσ`
a`−1a`

= V †a`−1(σ`a`)
and ψ(σ1...σ`−2)(σ`−1a`) = U(σ1...σ`−1)a`−1

λ
(`−1)
a`−1 for

the next decomposition. This way we will create an MPS of the form

|ψ〉 =
∑
{σ}

Bσ1Bσ2 . . . BσL−1BσL |σ1 . . . σL〉 , (3.17)

where we have similar dimensionality considerations for the Bσ`
a`−1a`

as for the construc-
tion of (3.15).

Since the matrices Aσi and Bσ` arise from an SVD they automatically fulfill the so
called left- and right-normalization conditions∑

σ`

Aσ`†Aσ` = 1 (3.18)∑
σ`

Bσ`Bσ`† = 1. (3.19)

The state (3.15) is therefore called a left-normalized MPS, which is automatically nor-
malized with all matrices fulfilling (3.18), whereas (3.17) is called a right-normalized
MPS, which is also normalized with all matrices fulfilling (3.19). For a graphical repre-
sentation see Figures 3.2, 3.3 and 3.4.

We can also mix these two representations to form a mixed-canonical state. To this
behalf we perform left-canonized decomposition up to a certain site `, where we have an
intermediate state with coefficients

cσ1...σL =
∑
a1...a`

Aσ1a1A
σ2
a1a2

. . . Aσ`−1
a`−2a`−1

ψ(a`−1σ`)(σ`+1...σL) (3.20)

Now perform right-canonical decomposition of ψ(a`−1σ`)(σ`+1...σL) from the right up to site
`+ 1

ψ(a`−1σ`)(σ`+1...σL) =
∑

a`+1...aL−1

ψ(a`−1σ`)(σ`+1a`+1)B
σ`+2
a`+1a`+2

. . . BσL−1
aL−2aL−1

BσL
aL−1

(3.21)

and plug back into (3.20) to get

cσ1...σL =
∑
a1...a`

a`+1...aL−1

Aσ1a1A
σ2
a1a2

. . . Aσ`−1
a`−2a`−1

ψ(a`−1σ`)(σ`+1a`+1)B
σ`+2
a`+1a`+2

. . . BσL−1
aL−2aL−1

BσL
aL−1

.
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3.3. Basis Transformations and Schmidt Decompositions

(3.22)

Reshape and define Ψ
σ`σ`+1
a`−1a`+1 = ψ(a`−1σ`)(σ`+1a`+1) as the 2-site wave function of sites `, `+

1. We can leave (3.22) like it is or perform one last SVD to get Ψσ`σ`+1 = Aσ`λ(`)Bσ`+1 ,

where λ(`) is a diagonal matrix with the singular values λ
(`)
a` as its diagonal elements. At

last we can write the MPS in its mixed-canonical representation as

|ψ〉 =
∑
{σ}

Aσ1Aσ2 . . . Aσ`−1Ψσ`σ`+1Bσ`+2 . . . BσL−1BσL |σ1 . . . σL〉 (3.23)

|ψ〉 =
∑
{σ}

Aσ1Aσ2 . . . Aσ`−1 . . . Aσ`λ(`)Bσ`+1Bσ`+2 . . . BσL−1BσL |σ1 . . . σL〉 , (3.24)

where the underlined parts correspond to the above mentioned 2-site wave function (in
its decomposed form in (3.24)). Notice that the position of the 2-site wave function is
arbitrary and need not be the center of the chain.

The hermitian conjugate of this state is derived by just taking the complex conjugate
of the matrix product. For future calculations it is convenient to reverse the matrix
product for the hermitian conjugate state, requiring hermitian conjugates of the MPS
matrices in turn

〈ψ| =
∑
{σ}

BσL† . . . Bσ`+1†Ψσ`+1σ`†Aσ`−1† . . . Aσ1† 〈σ1 . . . σL| (3.25)

〈ψ| =
∑
{σ}

BσL† . . . Bσ`†λ(`)Aσ`† . . . Aσ1† 〈σ1 . . . σL| . (3.26)

3.3. Basis Transformations and Schmidt Decompositions

The MPS matrices represent basis transformations from a product space of an auxiliary
and a physical space to another auxiliary space

|aL` 〉 =
∑
σ`a`−1

Aσ`a`−1a`
|aL`−1〉 |σ`〉 , (3.27)

|aR` 〉 =
∑
σ`a`+1

Bσ`
a`a`+1

|σ`〉 |aR`+1〉 . (3.28)

|aL`−1〉 and |aR`+1〉 describe states on blocks containing sites left or right of site `, i.e.
[1, . . . , `− 1] and [`+ 1, . . . , L] respectively. Due to the normalization conditions (3.18)
and (3.19) the new states |aL` 〉 and |aR` 〉 form orthonormal basis sets if {|aL`−1〉 |σ`〉}
and {|σ`+1〉 |aR`+1〉} were orthonormal basis sets too. Starting with a single site one can
construct block states for blocks containing L sites by sequentially adding sites to the
left or to the right and transforming onto new block states using (3.27) or (3.28) (cf.
Figure 3.5). Since the basis transformations represented by Aσ`a`−1a`

and Bσ`
a`a`+1

connect
blocks of spins and additional single spin, one can interpret the auxiliary indices a` as
living on the bonds between sites. This fact is included in the graphical representations
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3. Matrix Product States (MPS)

a j−1
L

 j
L

a j
L

Aa j−1a j
 j a j1

R
 j
R

a j
R

Ba j a j1
 j

jj−1j−2j−3j−4 j j1 j2 j3 j4(a) (b)

Figure 3.5.: (a) Block enlargement from the left. A block containing `−1 sites is enlarged
by adding one site to the right. From the old block states |aL`−1〉 and the local
spin states |σ`〉 for the added site, new block states |aL` 〉 for the enlarged
block are constructed via (3.27). (b) Block enlargement from the right.
Similarly, block states can be generated by adding sites to the left using
(3.28).

of MPS matrices, as auxiliary indices are represented by horizontal lines connecting two
MPS matrices sitting on adjacent sites (cf. Figure 3.3).

We will now show how the mixed canonical representation corresponds to a Schmidt
decomposition of |ψ〉 at bond `, ` + 1. Consider a general splitting of a state in terms
of basis states defined on two sublattices, which are the two parts of the lattice left and
right of bond `, `+ 1

|ψ〉 =
∑
ij

Cij |ψLi 〉 |ψRj 〉 , (3.29)

where {|ψLi 〉} and {|ψRj 〉} are orthonormal basis sets defined on the sublattice L con-
taining sites [1, . . . , `] and sublattice R containing sites [`+ 1, . . . , L]. Cij is a matrix of
expansion coefficients. In general, dimensions of both Hilbert spaces are not equal, so
Cij is a rectangular matrix.

A Schmidt decomposition is a special case of such a split up, where the overall state is
written as in (3.29), but choosing basis sets for the left and right sides in such a way that
the expansion coefficient matrix only contains diagonal elements. This can be achieved
by performing an SVD of the expansion coefficient matrix Cij = UikλkV

†
kj. Matrices

U and V then correspond to basis transformations onto new orthonormal basis sets on
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3.3. Basis Transformations and Schmidt Decompositions

both sublattices, so that one can write

|ψ〉 =
∑
ijk

UikλkV
†
kj |ψ

L
i 〉 |ψRj 〉 =

∑
k

λk

(∑
i

Uik |ψLi 〉

)
︸ ︷︷ ︸

=:|φLk 〉

(∑
j

V ∗jk |ψRj 〉

)
︸ ︷︷ ︸

=:|φRk 〉

(3.30)

=
∑
k

λk |φLk 〉 |φRk 〉 . (3.31)

(3.31) is then a Schmidt decomposition, the weights λk are called Schmidt values and
correspond to the singular values of Cij. The vectors {|φLk 〉} and {|φLk 〉} are called left
and right Schmidt vectors, which again form orthonormal basis sets. As one can see,
there is only one sum over basis states and each left Schmidt vector only gets paired
with one right Schmidt vector, i.e. there is no mixing as in (3.29).

We will now assume that the block states for blocks L and R generated sequentially by
(3.27) and (3.28) are indeed Schmidt vectors of a Schmidt decomposition at bond `, `+1
and show that by sequentially decomposing the block states into local spin states, the
Schmidt decomposition in fact corresponds to the mixed-canonical representation (3.24).
The Schmidt decomposition of |ψ〉 at bond `, `+ 1 then reads

|ψ〉 =
∑
a`

λ(`)
a`
|aL` 〉 |aR` 〉 . (3.32)

We can now recover the representation of the Schmidt vectors |aL` 〉 of the left sublattice
in the local spin bases by recursively using the basis transformations (3.27)

|aL` 〉 =
∑
σ`a`−1

Aσ`a`−1a`
|aL`−1〉 |σ`〉 (3.33)

=
∑
σ`σ`−1
a`−1a`−2

Aσ`−1
a`−2a`−1

Aσ`a`−1a`
|aL`−2〉 |σ`−1〉 |σ`〉 (3.34)

= . . . (3.35)

and equivalently (3.28) for |aR` 〉 to finally get

|aL` 〉 =
∑
σ1...σ`

(Aσ1 . . . Aσ`)a` |σ1 . . . σ`〉 (3.36)

|aR` 〉 =
∑
σ`...σL

(Bσ` . . . BσL)a` |σ`+1 . . . σL〉 . (3.37)

Plugging both of these expressions back into (3.32) exactly yields the MPS in mixed-
canonical representation (3.24). This means that the mixed-canonical representation
at sites `, ` + 1 with matrices A and B fulfilling (3.18) and (3.19) in fact represents a

valid Schmidt decomposition at that bond and that the singular values λ
(`)
a` of (3.24) are

indeed the Schmidt values of the corresponding Schmidt decomposition.
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3. Matrix Product States (MPS)

From the Schmidt decomposition we can also easily construct the reduced density
operators for blocks L and R, yielding

ρ̂
(`)
L = TrR |ψ〉 〈ψ| =

∑
a`

λ(`)
a`

2 |aL` 〉 〈aL` | (3.38)

ρ̂
(`)
R = TrL |ψ〉 〈ψ| =

∑
a`

λ(`)
a`

2 |aR` 〉 〈aR` | , (3.39)

where TrR and TrL denote the partial traces over block states of blocks R and L respec-
tively.

We can see that the Schmidt vectors are the eigenvectors of the reduced density oper-

ators with eigenvalues λ
(`)
a`

2
, which fulfill the necessary constraint

∑
a`

= λ
(`)
a`

2
= 1 for a

statistical operator if the state is normalized. This also means that the singular values
λ

(`)
a` of (3.32) quantify the bipartite entanglement entropy between blocks L and R via

the von Neumann entropy

SLR = −Tr ρ̂L log2 ρ̂L = −Tr ρ̂R log2 ρ̂R
(3.38),(3.39)

= −
∑
a`

λ(`)
a`

2
log2 λ

(`)
a`

2
. (3.40)

3.4. Canonical Representation

In Section 3.2 we have already encountered several MPS representations. These repre-
sentations focus on sequential system growth by iterative application of MPS matrices as
basis transformations. This is essentially the viewpoint used in DMRG (cf. Section 4.1.1
and [1, 4]). Another slightly different representation of MPS, whose focus lies more on
the Schmidt decomposition, is used in the TEBD algorithm (cf. Section 4.2.2 and [2]).
The aim of this representation is to easily access all possible Schmidt decompositions
at all bonds at all times. As we have shown above, the Schmidt decomposition at bond
`, ` + 1 (3.32) can be written as a mixed canonical MPS (3.24). However in this form
this is the only accessible Schmidt decomposition, since only the Schmidt values and
Schmidt vectors at this bond are available. Thus we need a representation that gives us
access to all Schmidt values and Schmidt vectors at all bonds simultaneously. This can
be done by slightly modifying the decomposition procedure described in Section 3.2.

We will again start with (3.7) and reshape U to define Γσ1a1 = U(σ1)a1 , thus we have

Aσ1a1 = Γσ1a1 . (3.41)

We will then keep proceeding according to (3.9), but we will remember λ(1). After
performing an SVD on ψ(a1σ2)(σ3...σL) and remembering that we have included λ(1) in its

formulation we can now again reshape U(a1σ2)a2 = Aσ2a1a2 and redefine Aσ2a1a2 = λ
(1)
a1 Γσ2a1a2 .

Proceed with the decomposition, remember all singular values λ(`) and redefine all

Aσ`a`−1a`
= λ(`−1)

a`−1
Γσ`a`−1a`

, (3.42)

also for ` = L.
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3.4. Canonical Representation

We can proceed similarly when decomposing from the right, where we will then rede-
fine

BσL
aL−1

= ΓσLaL−1
(3.43)

Bσ`
a`−1a`

= Γσ`a`−1a`
λ(`)
a`
. (3.44)

We can now either replace all A-matrices in (3.15), replace all B-matrices in (3.17) or
even replace both kinds in (3.24) and write in matrix notation

|ψ〉 =
∑
{σ}

Γσ1λ(1)Γσ2λ(2)Γσ3 . . .ΓσL−2λ(L−2)ΓσL−1λ(L−1)ΓσL |σ1 . . . σL〉 . (3.45)

There is no distinction between left- or right-canonization anymore, we will therefore
call this form the canonical representation of an MPS.

1 2 3 4 5 6 7 8


1 

 2 
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 4 
5 

6 
7 

8

4321 5 6 7

Figure 3.6.: Graphical representation of an MPS in canonical representation. Γ-matrices
are depicted the same way as A- and B-matrices, but with blue color cod-
ing (cf. Figure 3.2). Schmidt values are represented by crosses. Again,
connected lines imply sums, open ends imply degrees of freedom.

We can now easily access all Schmidt decompositions of all bonds, since the singular
values λ(`) exactly correspond to the Schmidt values at all bonds. For any bond `, `+ 1
we can write according to (3.32)

|ψ〉 =
∑
a`

λ(`)
a`
|aL` 〉 |aR` 〉 , (3.46)

where we can now write the Schmidt vectors as

|aL` 〉 =
∑
σ1...σ`

(
Γσ1λ(1)Γσ2 . . . λ(`−1)Γσ`

)
a`
|σ1 . . . σ`〉 (3.47)

|aR` 〉 =
∑

σ`+1...σL

(
Γσ`+1λ(`+1) . . .ΓσL−1 . . . λ(L−1)ΓσL

)
a`
|σ`+1 . . . σL〉 . (3.48)

We can also see that the boundary matrices are identical in both the mixed-canonical
and the canonical representation (cf. (3.41) and (3.43)). Comparing the definitions
(3.42) and (3.44) to the normalization conditions for A- and B-matrices (3.18) and (3.19),
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3. Matrix Product States (MPS)

we can immediately derive normalization conditions for the canonical representation∑
σ`

Γσ`†λ(`−1)2
Γσ` = 1 (3.49)∑

σ`

Γσ`λ(`)2
Γσ`† = 1, (3.50)

defining λ(0) = λ(L) = 1.
Similarly, the fact that we can write any of the three representations introduced in

Section 3.2 in the canonical form enables us to translate between A- and B- matrices

Aσ`λ(`) = λ(`−1)Bσ` = λ(`−1)Γσ`λ(`). (3.51)

For this, see also Section 4.1.3 and Figure 4.6 therein, where this property is used for a
substantial speedup to the finite size DMRG algorithm in form of a prediction algorithm.

For the 2-site wave function in (3.23) we then get

Ψσ`σ`+1 = λ(`−1)Γσ`λ(`)Γσ`+1λ(`+1). (3.52)

This also enables us to reformulate the normalization conditions in terms of reduced
density matrices. Using (3.38) and (3.39) we see that we can write them in their eigen-

basis representations just as ρ
(`)
L = ρ

(`)
R = λ(`)2

. Now multiply each side of (3.49) with
λ(`) from both sides which yields∑

σ`

λ(`)Γσ`†︸ ︷︷ ︸
Bσ`†

λ(`−1)2︸ ︷︷ ︸
ρ
(`−1)
R

Γσ`λ(`)︸ ︷︷ ︸
Bσ`

= ρ
(`)
R , (3.53)

and similar for (3.50) to give the following relations

ρ
(`)
R =

∑
σ`

Bσ`†ρ
(`−1)
R Bσ` (3.54)

ρ
(`−1)
L =

∑
σ`

Aσ`ρ
(`)
L A

σ`†. (3.55)

3.5. Truncation

Up until now we have considered the MPS matrices A and B to be unitary basis trans-
formations without truncation. This means that every state can be exactly decomposed
into an MPS without information loss. But it also means that the transformed basis
sets grow exponentially in dimension the further we go into the center of the chain. The
Hilbert spaces of {|aL` 〉} and {|aR` 〉} are thus of dimension d` and dL−` respectively. This
is not exactly useful for a practical representation of the state (3.1), as we will then
have to deal with a very large amount of numbers, which is in general more than the
dL coefficients in (3.1)! It is therefore useful to introduce a maximum dimension m for
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3.5. Truncation

the MPS matrices and cutting all matrices of larger size to that maximum dimension.
Truncated MPS matrices will then generally be a collection of d matrices of dimension
m×m. By doing this, we will obviously discard information of the MPS decomposition
and the derived MPS will generally only be an approximation of the original state.

Even after truncation, condition (3.18) is still fulfilled for A-matrices and (3.19) still
holds for B-matrices. Remember that A- and B-matrices are constructed from (the
hermitian conjugate of) matrices stemming from an SVD, which consist of orthonormal
vectors as their columns. The normalization conditions just reflect the orthonormality of
the kept eigenstates from the SVD, which always holds, no matter how many states are
discarded. The same reasoning also holds for MPS in canonical representation, where
(3.49) and (3.50) still hold.

The basis transformations represented by the MPS matrices described in Section 3.3
now turn into reduced basis transformations generally from a d×m dimensional product
space of an auxiliary space and a single spin to another auxiliary space of dimension m.
These reduced basis transformations will correspond to the renormalization group (RG)
transformations performed during the DMRG algorithm explained in Section 4.1.1. As
we will see, DMRG is optimizing this truncation in a way, such that the norm of the
residual between the true and the approximate state is minimal. However there are also
states that can be exactly expressed in MPS form with very low dimension, the most
notable of these being the ground state of the AKLT model [26].

If the decomposition into an MPS is performed via consecutive SVDs, as described
above, the optimal truncation method of the DMRG algorithm can already be used.
The procedure is very simple. We introduce an upper limit m for the dimensions of the
MPS matrices. Every time we perform an SVD of ψ = UλV †, we only use the first m
left and right singular vectors – corresponding to the m largest Schmidt values – if the
matrix dimensions exceed m. This means we will only use the first m columns of U and
the first m rows of V † and discard the rest.

By limiting all MPS matrix dimensions to a maximum of m, we will now have to deal
with an amount of O (Lm2) numbers in stead of 2L coefficients. Thus memory effort
now scales linearly with system size, as opposed to exponentially for a state of the form
(3.1). Due to the entanglement nature of one-dimensional systems, truncated MPS are
still very good approximations, even for small matrix dimensions m. In one dimension,
bipartite entanglement between the left and right block, which make up a system of
certain size, is at most ∝ log(L), with L the system size. This holds for critical systems,
for non critical systems, the bipartite entanglement does not scale with system size, but
is constant everywhere. For further interpretation and truncation errors see remarks in
Section 4.1.1 or cf. [25].

Decomposing a state of the form (3.1) into its MPS form following the above procedure
is hardly applicable, since the coefficients cσ1...σL are generally unknown. The procedure
thus serves a conceptional purpose only. An efficient way to construct a mixed canonical
representation of low energy states of an L site chain is the DMRG algorithm, described
in Section 4.1.1.
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3. Matrix Product States (MPS)

3.6. Norms and Expectation Values

The local structure of MPS and the normalization conditions for MPS matrices allows
for a very efficient calculation of norms and expectation values of local observables. The
following derivations closely follow [25], where details on the below calculations can be
found.

Consider an MPS in mixed-canonical form (3.24). Its norm 〈ψ|ψ〉 can be written using
(3.26)

〈ψ|ψ〉 =
∑
{σ}

(
BσL† . . . Bσ`†λ(`)Aσ`† . . . Aσ1†

) (
Aσ1Aσ2 . . . Aσ`λ(`)Bσ`+1 . . . BσL−1BσL

)
.

(3.56)

By sequentially using normalizations conditions (3.18) and (3.19), rearranging and re-
bracketing in the process one finds for the norm

〈ψ|ψ〉 =
∑
a`

λ(`)
a`

2
, (3.57)

where λ
(`)
a` are the diagonal elements of λ(`). This corresponds to the fact that the eigen-

values of the reduced density operators sum up to 1 if the state is properly normalized
(cf. Figure 3.7).

We can extend the above result to calculate expectation values of local operators.
Consider a local Operator on site j in its local spin basis representation

Ôj =
∑
σ′jσj

Oσ′jσj |σ′j〉 〈σj| . (3.58)

Its expectation value in a state in mixed-canonical MPS form can be written as follows

〈Ôj〉 = 〈ψ|Ôj|ψ〉

=
∑
σ′j

∑
{σ}

(
Aσ1 . . . Aσ

′
jλ(j)Bσj+1 . . . BσL

)†
Oσ′jσj

(
Aσ1 . . . Aσjλ(j)Bσj+1 . . . BσL

)
.

(3.59)

Notice, that only matrices Aσj and Aσ
′
j are summed over different local states σ′j and

σj. One can now go back from matrix notation to summing over all auxiliary indices of
MPS matrices. By rearranging and exploiting the normalization conditions (3.18) and
(3.19) one finds that all MPS matrices except for Aσj and Aσ

′
j cancel out and one is left

with the following expression by defining the center matrix Mσj = Aσjλ(j)

〈Ôj〉 =
∑
σ′jσj

Oσ′jσj Tr
(
Mσ′j

†
Mσj

)
. (3.60)
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Figure 3.7.: Calculating the norm of a state in MPS form. By exploiting the nor-
malization conditions of MPS matrices (cf. Figure 3.4) sequentially from
the outside, one finds that all matrix products cancel out and one is left
with the sum over the square of the Schmidt values of the current Schmidt
decomposition.
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Figure 3.8.: Calculation of the expectation value 〈Ôj〉 of a local operator. Exploiting
the normalization conditions of the MPS matrices and shifting the center
part of the mixed-canonical representation or using the 2-site wave function
yields the four possible results in the second line, where A- and B-matrices
are depicted in green and Γ-matrices in blue.
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3. Matrix Product States (MPS)

By comparing with (3.51) we can see that the center matrix M can be equally written
as

Mσj = Aσjλ(j) = λ(j−1)Bσj = λ(j−1)Γσjλ(j) (3.61)

We can see, that all one needs are the MPS matrices at site j and the adjacent Schmidt
values instead of dL general coefficients in the case of states like (3.1)! We can also
formulate the expectation value in terms of the 2-site wave function Ψσjσj+1

〈Ôj〉 =
∑

σ′jσjσj+1

Oσ′jσj Tr
(

Ψσj+1σ
′
j
†
Ψσjσj+1

)
. (3.62)

For all these expressions cf. Figure 3.8. For expectation values of operators defined on
multiple sites and correlations see [25].
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4. MPS Methods

4.1. Density Matrix Renormalization Group (DMRG)

Renormalization group methods have been an instrument for solving models in statistical
mechanics for decades. Applications in numerics are e.g. Wilson’s Numerical Renormal-
ization Group (NRG) [27], which is also applicable to quantum models. In fact even
today it still represents one of the best methods to solve quantum impurity models such
as the Anderson Impurity Model [28, 29].

By far the most powerful and successful method for determining ground states and low
energy states of one-dimensional strongly correlated, slightly entangled systems however
is the Density Matrix Renormalization Group (DMRG) [1]. It is a variational method, its
general principle is to find a state |Ψ〉 in a certain class of ansatz states (mixed-canonical
MPS in the case of DMRG) that minimizes the energy expectation value

E =
〈Ψ| Ĥ |Ψ〉
〈Ψ|Ψ〉

. (4.1)

Like all renormalization group methods, it relies on constructing an underlying system
site by site by subsequent reduced basis transformations, projecting onto important
degrees of freedom. A renormalized Hilbert space of the underlying system is generated
step by step, which will be of significantly lower dimension.

The major success of DMRG lies within the efficient projection method it uses. In
every step it projects onto a (generally fixed) number of states, which are the most
prominent eigenstates of the reduced density matrix of the system of current size (hence
the name). After L steps one is left with an effective Hamiltonian for the underlying
L site system, but with significantly reduced Hilbert space dimension. This procedure
yields by far better results for strongly correlated one-dimensional models than project-
ing onto e.g. low energy states of the system of current size (NRG). The ground state
(and possibly the first few excited states) of this Hamiltonian can then easily be de-
termined by the use of efficient iterative eigensolvers such as the Lanczos or Davidson
method. As a matter of fact this step is performed in every DMRG iteration, so at the
end one automatically gets an approximate representation of the L-site system ground
state. We will see that these states have MPS structure.

In the following, the concept of DMRG is explained in short, more information can
be found in the very detailed reviews [25] or in the original publications [1], which we
will mainly follow. Essentially there are two versions of the DMRG, namely infinite size
DMRG and finite size DMRG.
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4. MPS Methods

4.1.1. Infinite Size DMRG (iDMRG)

This algorithm was originally merely a tool to give a good starting point for the finite
size DMRG algorithm explained in 4.1.3. Its essential purpose is to generate an effective
Hamiltonian and an approximate ground state in MPS form for an L-site system, which
is then further optimized in one or more sweeps of the finite size algorithm. However
recently its potential to derive thermodynamic limit ground states has been rediscovered
by optimizing the algorithm through an efficient prediction algorithm and by giving an
efficient measure of convergence for the algorithm [30] (cf. Section 4.1.2).

For the sake of concreteness let us consider an isotropic spin-1
2

Heisenberg chain of
length L and obc with the Hamiltonian

Ĥ = −J
L∑
i=1

1

2

(
Ŝ+
i Ŝ
−
i+1 + Ŝ−i Ŝ

+
i+1

)
+ Ŝzi Ŝ

z
i+1 =

L∑
i=1

ĥi,i+1 (4.2)

ĥi,i+1 = −J
2

(
Ŝ+
i Ŝ
−
i+1 + Ŝ−i Ŝ

+
i+1

)
− JŜzi Ŝzi+1. (4.3)

We will construct the system of size L by starting with a system of very small size `,
calling it the initial system block S. We will embed this system block in an environment,
represented by an environment block E, which is constructed the same way as the system
block S. We will then iteratively enlarge both blocks at the same time, effectively
inserting 2 sites between blocks S and E to form a superblock B = S • •E of size
2` + 2. We will then determine the superblock ground state and apply reduced basis
transformations (see below). We iterate this procedure until 2`+2 = L. The superblock
Hamiltonian and the superblock ground state will then be a good approximation for the
L-site system.

We will start off with a block S of some small initial size `. The Hamiltonian ĤS
` and

its constituting operators Ŝα,Sj≤` are assumed to be known exactly in terms of the local

spin basis {|aS` 〉} ≡ {|σS1 . . . σS` 〉}. Initially, this basis is of dimension MS = d`, where d
is the dimension of the local physical Hilbert space on each site (for spin-1

2
d = 2) and

MS < m with m the reduced Hilbert space dimension specified a priori (cf. Section 3.5).
Construct the initial block E the same way. Then proceed according to the following
steps.

(1) Enlarge block S by adding one site to form block S ′ = S• of size `′ = `+1, enlarging
the Hilbert space dimension to MS′ = dMS. Determine ĤS′

`+1 = ĤS
` + ĥ`,`+1 in the

basis {|aS` 〉 |σS`+1〉} of block S ′. To generate ĥ`,`+1, both the surface spin operators

of block S, Ŝα,S` , and the spin operators Ŝα`+1 on the single site `+ 1 in the basis of

S ′ are required. Equivalently, enlarge E to form E ′ = •E and ĤE′

`+1 the same way.

(2) Form the superblock B = S • •E = S ′E ′ and the superblock Hamiltonian

ĤB = ĤS′

`+1 + ĥS′E′ + ĤE′

`+1, (4.4)

with ĥS′E′ = J
2

(
Ŝ+,S′

`+1 Ŝ
−,E′
`+1 + Ŝ−,S

′

`+1 Ŝ
+,E′

`+1

)
+ JŜz,S

′

`+1 Ŝ
z,E′

`+1 the 2-site Hamiltonian con-

necting blocks S ′ and E ′. The superblock Hamiltonian is of dimension MB =
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4.1. Density Matrix Renormalization Group (DMRG)

d2MSME. Use an iterative eigensolver to determine the superblock ground state

|Ψ〉 =
∑

aS` σ
S
`+1σ

E
`+1a

E
`

Ψ(aS`+1σ
S
` )(σE`+1a

E
` ) |aS` σS`+1〉 |σE`+1a

E
` 〉 =

∑
ij

Ψij |i〉 |j〉 , (4.5)

using |i〉 = |aS` σS`+1〉 and |j〉 = |σE`+1a
E
` 〉. Notice, that we can write the coefficients

of the superblock ground state as a MS′ ×ME′ matrix Ψ.

a4
S

5
S

a5
S '

a4
E

5
E

a5
E '

hS ' E 'h45
S ' h45

E ' H 4
EH 4

S

H 5
S ' H 5

E '

S E

1 2 3 4 5 5 4 3 2 1

S'

S

E'

Figure 4.1.: Enlarging both blocks S and E by inserting one site for each block in be-
tween. The superblock B = S ••E and its Hamiltonian ĤB = ĤS

` + ĥS`,`+1 +

ĥS′E′ + ĥE`,`+1 + ĤE
` is formed.

(3) From the derived superblock ground state, form the reduced density operators ρ̂S
′
=

TrE′ |Ψ〉 〈Ψ| and ρ̂E
′

= TrS′ |Ψ〉 〈Ψ|, with TrE′ ,TrS′ the trace over the basis states
of E ′ and S ′ respectively. Represented in the basis states of S ′ and E ′ the reduced
density matrices read

ρS
′

ii′ =
∑
j

ΨijΨ
∗
i′j ρE

′

jj′ =
∑
i

ΨijΨ
∗
ij′ , (4.6)

or in matrix form

ρS
′
= ΨΨ† ρE

′
= ΨTΨ∗. (4.7)

Notice that they are hermitian matrices of dimensions MS′ ×MS′ and ME′ ×ME′ ,
which can be exactly diagonalized easily. Both matrices have the exact same spec-
trum of at most min(MS′ ,ME′)1 nonzero eigenvalues dα and can be written in terms

1For the infinite size algorithm we always have MS′
= ME′

, but this will generally not be the case for
the finite size algorithm. For the sake of generality, we will already consider this case here.
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of an eigen decomposition as

ρS
′

ij =
∑
α

UiαdαU
†
αj (4.8)

ρE
′

ij =
∑
α

ViαdαV
†
αj, (4.9)

with U, V unitary matrices containing the eigenvectors of ρS
′

and ρE
′

respectively.
Their eigenvalues sum up to unity

∑
α dα = 1 if the superblock ground state was

properly normalized, i.e. each block is in state U (α) and V (α) with a probability
dα < 1. The matrices U and V represent basis transformations onto the eigenbases
of the reduced density operators and we will use them to transform all relevant
operators, such as the block Hamiltonians and the surface spin matrices to this new
basis sets (see below).

However, if MS′ ,ME′ > m, we will only use the first m eigenvectors of U and V ,
corresponding to the m largest eigenvalues of the density operators. We are thus
projecting onto the m eigenstates of the respective reduced density operators con-
tributing the most to the superblock ground state, avoiding an exponential growth
of Hilbert space dimensions. This truncation means that the transformation is not
exact anymore and represents thus an approximation. The quadratic norm of the
deviation of the approximate state |Ψ̃〉 from the exact state |Ψ〉 is controlled by the
discarded weight ε (cf. e.g. [25, 1])

ε =
∣∣∣|Ψ〉 − |Ψ̃〉∣∣∣2 = 1−

m∑
α=1

dα (4.10)

Thus, if the weights dα decay fast enough, the approximation is very good. This is
usually the case for systems not close to critical points, where the dα will generally
decay exponentially and ε is usually of the order O(10−10) or lower. This truncated
basis transformation is the heart of success of the DMRG method, since it represents
an optimal renormalization scheme for representing the states of S ′ and E ′ as part
of the system as a whole. In the case MS′ < m and/or ME′ < m no truncation
is necessary and the basis transformation does not correspond to an information
loss. We will include this case (e.g. in the first few steps of the iteration) and call
NS′ = min(MS′ ,m) and NE′ = min(ME′ ,m).

We are therefore left with transformation matrices U tr, V tr of dimensions dNS×NS′

and dNE×NE′ respectively, where tr denotes the truncated version of the matrices.
They represent reduced basis transformations to the new block basis sets (cf. also
Section 3.3 and Figure 4.2)

|aS′`+1〉 =
∑
aS` σ

S
`+1

U tr
(aS` σ

S
`+1)(aS

′
`+1)
|aS` σS`+1〉 (4.11)

|aE′`+1〉 =
∑

aE` σ
E
`+1

V tr
(aE` σ

E
`+1)(aE

′
`+1)
|aE` σE`+1〉 . (4.12)
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= x xOS ' , tr

O S '

U tr+

U tr

Figure 4.2.: Renormalization Group (RG) transformation for block S ′. For every relevant
operator, transform to the truncated Hilbert space of reduced dimension,
using (4.11). RG-transformation for block E ′ works the same according to
(4.12).

(4) Transform the block Hamiltonians and all relevant operators in blocks S ′ and E ′

according to this reduced basis transformations

OS′,tr = U tr†OS′U tr OE′,tr = V tr†OE′V tr. (4.13)

The transformed and truncated matrices are now of dimensions NS′ × NS′ and
NE′ × NE′ . Use these renormalized matrix representations of operators for block
enlargement in the next DMRG step.

(5) Call S = S ′, E = E ′ and ` = `′, go back to (1) and iterate or stop if ` = L/2.

After the last step we have an approximate description of the Hamiltonian for the
L-site system in a reduced Hilbert space, given by the last superblock Hamiltonian
HB = HS′

L
2

+ ĤE′
L
2

and for the ground state, given by the last superblock ground state.

Remarks and Relation to MPS

• Forming and diagonalizing the reduced density operators corresponds to a Schmidt
decomposition of the superblock ground state, which is calculated by performing
an SVD of Ψij in (4.5) (cf. also Section 3.3)

Ψij =
∑
α

PiαλαQ
†
αj (4.14)

|Ψ〉 =
∑
α

λα

(∑
i

Piα |i〉

)(∑
j

Q∗jα |j〉

)
=
∑
α

λα |φS
′

α 〉 |φE
′

α 〉 (4.15)

with P,Q again unitaries and |φS′α 〉 and |φE′α 〉 the left and right Schmidt vectors. λα
is a diagonal matrix, containing the (real) singular values of Ψ. They correspond
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to the eigenvalues of ρS
′/E′ via λα =

√
dα and we can also identify P = U as well

as Q∗ = V . This can be seen by considering

ρS
′ (4.14)

= ΨΨ† = PλQ†Q︸︷︷︸
1

λP † = Pλ2P †
(4.8)
= UdU † (4.16)

ρE
′ (4.14)

= ΨTΨ∗ = Q∗λP TP ∗︸ ︷︷ ︸
1

λQT = Q∗λ2QT (4.9)
= V dV † (4.17)

Thus the RG transformation (4.13) transforms onto the Schmidt basis sets of blocks
S ′ and E ′.

• In Section 3.3 we have shown that a Schmidt decomposition can be expressed
as a mixed canonical MPS in the form of (3.23). We have also shown how to
retrieve the reduced density matrices from a Schmidt decomposition in (3.38) and
(3.39). We have constructed the mixed canonical representation by using reshaped
versions of P and Q and the fact that MPS-matrices correspond to reduced basis
transformations. By comparing (3.27) and (3.28) to the RG transformations (4.11)
and (4.12) and remembering the fact, that we have constructed the MPS-matrices
A and B from an SVD, we can identify, using the above

A
σS`
aS`−1a

S
`

= U tr
(aS`−1σ

S
` )(aS` ) (4.18)

B
σE`
aE` a

E
`−1

= V trT
(aE` )(σE` a

E
`−1). (4.19)

This means that the DMRG algorithm produces mixed canonical MPS per con-
struction due to its iterative nature.

• We can write the final approximate superblock ground state exactly in the form
(3.23). The superblock ground state in the reduced Hilbert space is then the 2-site
wave function defined for (3.23). This fact was not discovered by Östlund and
Rommer [4] until some years after White’s proposal of the DMRG algorithm in
1992 [1].

• The set of eigenvalues of the reduced density matrices also describe a measure for
the entanglement present between the two blocks via the von Neumann entropy

SS′E′ = −Tr ρ̂S
′
log2 ρ̂

S′ = −Tr ρ̂S
′
log2 ρ̂

S′ (4.8)(4.9)
= −

∑
α

dα log2 dα (4.20)

Thus the truncation prescription of DMRG preserves the maximum amount of
entanglement of the blocks with the system, by discarding only the smallest eigen-
values of the reduced density matrices. From this point of view it makes sense
to use a setup of 2 interacting blocks S and E, since truncation is controlled by
the entanglement between these 2 blocks. Historically, White named block S the
system block, which is “embedded” in an environment represented by block E,
hence the names.
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4.1.2. iDMRG State Prediction and Convergence

The infinite size algorithm described above is a good tool for finding thermodynamic
limit ground states of strongly correlated one-dimensional quantum systems. For finite
size systems, the finite size algorithm described below gives much better results, however
in the infinite case we will see that we can define a good convergence criterion in form
of a fixed point relation. In the process we will also find a state prediction scheme
to give a much better starting point for the eigensolver to find the superblock ground
state. This following reinterpretation of the infinite size algorithm – or iDMRG – and
the proposal of a good state prediction (which already existed for the finite size case for
some time) was not done until recently by McCulloch [30]. As a matter of fact, other
prediction methods for the iDMRG case had been proposed earlier [31], however the
following prediction method yields by far the best results, as it can also be used as a
tool for forming a convergence criterion.

As we have seen above, iDMRG produces states in the mixed canonical MPS form
(3.23) or (3.24). For a translationally invariant infinite size MPS (iMPS) the matrices
should be site independent. One should therefore be able to find a 2-site unit cell of
MPS matrices and the iMPS is then an infinite repetition of this unit cell.2 Consider an
MPS generated by iDMRG after ` steps

|Ψ`〉 =
∑
{σ}

Aσ
S
1 . . . Aσ

S
` λ(`)BσE` . . . BσE1 |σS1 . . . σS` σE` . . . σE1 〉 (4.21)

or in its canonical representation

|Ψ`〉 =
∑
{σ}

Γσ
S
1 λ(1) . . . λ(`−1)Γσ

S
` λ(`)Γσ

E
` λ(`−1) . . .Γσ

E
1 |σS1 . . . σS` σE` . . . σE1 〉 (4.22)

We now take the central two Γ, λ pairs to define a 2-site unit cell

Φ
σS` σ

E
`

UC = λ(`−1)Γ(`S)σS` λ(`)Γ(`E)σE` = A(`)σS` λ(`)B(`)σE`
(
λ(`−1)

)−1
, (4.23)

where UC stands for unit cell. We now have introduced a distinct labeling of A-, B-
and Γ-matrices by the site they were originally defined on, with `S being site ` in block
S and equivalently for block E.

After a sufficient amount of DMRG iterations the unit cell in the center should be a
good description of the infinite system. This of course has to be quantified in form of
a convergence criterion, which we will elaborate below. Suppose iDMRG has reached
convergence, then the unit cell (4.23) is sufficient to describe the translationally invariant
ground state of the infinite system in form of an iMPS

|Ψ〉 =
∑

σ−∞...σ∞

( ∞∏
i=−∞

Φ
σ2i−1σ2i
UC

)
|σ−∞ . . . σ∞〉 . (4.24)

2Actually, an iMPS which is invariant under translation by one site requires only a 1-site unit cell
its description. However, for iDMRG state prediction we need a 2-site unit cell, since 2 sites are
inserted in every iDMRG step (see below).
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Figure 4.3.: Construction of a 2-site unit cell for state prediction in the next iDMRG
step, using the central part of the MPS in the current step. A- and B-
matrices are depicted in green, Γ-matrices in blue, for which position l is
also classified by block, with lS being site l in block S and equivalently for
block E.

Notice that we only need 2 distinct Γ and λ matrices to describe the entire iMPS. Also,
since we will use the same matrices on different sites, we have introduced a distinct

labeling for MPS matrices, just like for λ-matrices. Notice also that we can relate Φ
σS` σ

E
`

UC

to the 2-site wave function in (3.23) via

ΨσS` σ
E
` = Φ

σS` σ
E
`

UC λ(`−1). (4.25)

Now in each DMRG step we insert 2 sites between S and E, effectively adding 2 sites
to the system. In standard iDMRG one would now construct the block Hamiltonian
and compute its ground state from scratch, i.e. use a some (generally random) initial
vector for the iterative eigensolver. In terms of faster convergence and better algorithm
performance it would be convenient to have a good estimate for the ground state of
the enlarged superblock. Recall that the superblock ground state is computed by the
eigensolver in the reduced Hilbert space and corresponds thus exactly to the 2-site wave
function defined in (3.23). We now approximate the superblock ground state for the
enlarged system by inserting the center unit cell of the `-site system (4.21) once more
into (4.21) as a repetition of the center part to give

|Ψ̃`+1〉 =
∑
{σ}

A(1)σS1 . . . A(`−1)σS`−1

(
A(`)σS` λ(`)B(`)σS`+1

(
λ(`−1)

)−1
)
×(

A(`)σE`+1λ(`)B(`)σE`
(
λ(`−1)

)−1
)
λ(`−1)B(`−1)σE`−1 . . . BσE1 |σS1 . . . σS`+1σ

E
`+1 . . . σ

E
1 〉 .

(4.26)

Notice that we now have matrices sitting on different sites than where they were orig-
inally defined. This is because we have not split up the originally defined unit cell to
insert the new sites in the center, but rather inserted the new unit cell next to the old
one. This follows the presumption, that in the thermodynamic limit the iMPS is just an
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Figure 4.4.: Extraction of an initial guess for the 2-site wave function after inserting the
2-site unit cell to generate an MPS containing 2 additional sites. Notice
that there are now A matrices sitting on the right and B matrices sitting
on the left of the center.

infinite repetition of this unit cell. We can now, re-bracket and identify a good initial
guess for the 2-site wave function for the enlarged system

|Ψ̃`+1〉 =
∑
{σ}

A(1)σS1 . . . A(`)σS`

(
λ(`)B(`)σS`+1

(
λ(`−1)

)−1
A(`)σE`+1λ(`)

)
︸ ︷︷ ︸

Ψ̃
σS
`+1

σE
`+1

×

B(`−1)σE`−1 . . . BσE1 |σS1 . . . σS`+1σ
E
`+1 . . . σ

E
1 〉 ,

(4.27)

where

Ψ̃σS`+1σ
E
`+1 = λ(`)B(`)σS`+1

(
λ(`−1)

)−1
A(`)σE`+1λ(`) = λ(`)Γ(`E)σS`+1λ(`−1)Γ(`S)σE`+1λ(`) (4.28)

is now a good initial guess for the eigensolver (cf. Figure 4.4). This is especially the case
for already large chains, where the MPS structure is already close to the translationally
invariant iMPS structure. However, this also works well for small chains, where the
state structure is still far from translationally invariant since the above state prediction
is still much better than a random initial vector and leads to a huge overall speedup in
iDMRG.

At last we need a good convergence criterion to check if iDMRG has indeed produced
a translationally invariant thermodynamic limit ground state. The fixed point relation
we will be using is just the formulation of the left normalization condition for MPS-
matrices in terms of reduced density operators (3.55)3 This relation is strictly defined
for finite size MPS matrices only. In the iDMRG case the matrices are defined on chains
of different length, the relationship however holds again in the thermodynamic limit, for
which we then demand

ρ
(`−1)
S

!
=
∑
σ`

Aσ
S
` ρ

(`)
S A

σS`
†

(4.29)

3The convergence criterion using the right normalization condition (3.54) can be derived in a similar
way.
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We will now combine Aσ
S
` λ(`) = MσS` , decompose via SVD into MσS` = UDV σS`

†
and

redefine V σS`
†

= BσS` and UD = Λ
(`−1)
L to give

Aσ
S
` λ(`) = UDV σS`

†
= Λ

(`−1)
L BσS` . (4.30)

Notice that Λ
(`−1)
L is not a diagonal matrix and the identity (3.51) does in general not

hold here, which stems from the following fact. In each iDMRG step, where the 2-site
wave function is first computed using an iterative eigen solver and then decomposed as

Ψ
σS` σ

E
`

aS`−1a
E
`−1

=
∑
a`

A
σS`
aS`−1a`

λ(`)
a`
B
σE`
a`a

E
`−1
, (4.31)

the basis {|a`〉} is the eigen basis of the reduced density matrices ρ
(`)
S,E, hence ρ

(`)
S,E = λ(`)2

in this basis. The basis sets {|aS`−1〉} and {|aE`−1〉} however are in general not the same

basis sets and also not the eigen bases of the reduced density matrices ρ
(`−1)
S,E from the

last step. One way to transform these basis sets (and thus the matrices Aσ
S
` and BσE` ) to

the eigen basis of ρ
(`−1)
S,E , while preserving the normalization conditions (3.18) and (3.19),

is the canonization procedure described in Appendix A.1. For the interpretation of this
procedure in terms of A- and B-matrices see also [30].

This canonization procedure is however not necessary here if we use (4.30) to extract

BσS` from Aσ
S
` and λ(`). Using ρ

(`)
S = λ(`)2

(see above) and inserting (4.30) into (4.29)
gives ∑

σ`

Aσ`ρ
(`)
S A

σ`† =
∑
σ`

Aσ`λ(`)2
Aσ`† = Λ`

L

∑
σ`

Bσ`Bσ`†

︸ ︷︷ ︸
1

Λ`
L

†
= Λ`

LΛ`
L

†
=: ρ

(`)
L (4.32)

Thus the fixed point relation becomes

ρ
(`−1)
S

!
= ρ

(`)
L . (4.33)

As this relation will never be fulfilled exactly in numerical simulations, we want the
two density matrices in (4.33) to become as close to each other as possible. The closeness
of the 2 density matrices can be quantified by the orthogonality fidelity [30, 32]

F
(
ρ

(`−1)
S , ρ

(`)
L

)
= Tr

√√
ρ

(`−1)
S ρ

(`)
L

√
ρ

(`−1)
S =

∥∥∥∥√ρ
(`)
L

√
ρ

(`−1)
S

∥∥∥∥
tr

, (4.34)

where ‖. . .‖tr is the trace norm, defined as the sum over the argument’s singular values.
Using this form of the fidelity we get F =

∑
i di with di the singular values of Λ`

Lλ
(`−1).

It holds that 0 ≤ F ≤ 1 and the fidelity is 1 if and only if the two density matrices
are identical. We can therefore use the quantity 1 − F as a good convergence criterion
and ask that it drops below a certain threshold. At this point iDMRG has converged
by fulfilling (4.33) to a certain accuracy and the current MPS matrices Aσ

S
` and BσE`
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4.1. Density Matrix Renormalization Group (DMRG)

are good MPS matrices together with the current Schmidt values λ(`), to describe the
translationally invariant iMPS of the infinite system. For further references see [30, 25].

The converged Aσ
S
` and BσE` and λ(`) can be used to define an iMPS unit cell for

subsequent simulations, such as time evolution for infinite systems (cf. Section 4.2.4) or
the Comoving Window method (cf. Section 5). One can define a canonical iMPS unit
cell {ΓA, λ(A),ΓB, λ(B)}, where e.g.

λ(A) = λ(`) ΓA = λ(`−1)−1
Aσ

S
` (4.35)

λ(B) = λ(`−1) ΓB = BσE` λ(`−1)−1
. (4.36)

The resulting Γ- and λ-matrices will in general not fulfill both left and right normalization
conditions (3.49) and (3.50) due to the reason explained above. A way to properly
canonize an arbitrary, but normed iMPS is described in Appendix A.1.

4.1.3. Finite Size DMRG

For many finite systems, infinite size DMRG doesn’t yield satisfactory results, as in its
first few iterations, the system is still dominated by boundary effects. Thus the boundary
strongly affects the bulk behavior of the resulting state, but not vice versa. One can
say the system is not yet properly “thermalized”. The finite size DMRG algorithm
presents a method to further improve the infinite size DMRG ansatz for finite systems
to account for this problem. Starting point is the superblock ground state in its MPS
form for L sites. Finite size DMRG will further increase the quality of the ground state
MPS matrices by successive sweeps through all sites of the system, further increasing
the accuracy of the ground state. For this purpose, all blocks of all sizes for S and E
and their matrix representations for operators and MPS matrices must be stored.

The initial setup for one sweep is the last superblock configuration SE = S ′ • •E ′
from infinite size DMRG, with E and S of equal size ` and 2` = L.

(1) Enlarge block S of size ` by adding one site, forming S ′ of size ` + 1. At the same
time, “shrink” block E by regenerating E ′ from a previously stored block E of size
`−2, enlarged by one site to size `−1. Block enlargement is done according to step
(1) of Section 4.1.1.

(2) Proceed with steps (2) - (4) of Section 4.1.1, but only calculate the updated left
normalized MPS matrix Aσ`+1 and apply RG transformations only for block S ′. Call
S = S ′ and repeat this step until block E has reached a minimal size (usually until
matrix dimensions are smaller than m).

(3) Reverse the procedure of the above steps (1) and (2) by enlarging E and shrinking
S, this time only calculating the updated right normalized MPS matrices Bσ`+1

and applying RG transformations for block E ′. Again, repeat this step until S has
reached a minimal size.

(4) Once more, reverse the above process and repeat steps (1) and (2) until the initial
configuration S • •E with blocks E and S of equal size ` is reached again.

43



4. MPS Methods

Steps (1) - (4) are called a finite size DMRG sweep (cf. Figure 4.5). As a convergence
criterion one could watch the overall energy or other observables such as local magne-
tizations. For slightly entangled systems far away from critical points, usually 2 sweeps
are enough, but this also depends on the number of kept states m.

S E S E

. . .

. . .
. . .

Figure 4.5.: One full DMRG sweep. Block S grows while E shrinks until E reaches a
minimal size. The process is reversed until S reaches minimal size. Again
the process is reversed until both blocks are of the same size again.

Prediction algorithm

Similar to the iDMRG case there exists a prediction algorithm to get a good initial
guess for the 2-site wave function in each DMRG step [33]. Actually, this prediction
method was proposed much earlier than for the iDMRG case. The basic idea is to
“shift” the representation of the current 2-site wave function 1 site to the right or to the
left, depending on the current position in the sweep, to give a good initial guess for the
iterative eigensolver in the next step.

Regard the same finite size MPS in two distinct mixed-canonical representations
(3.23), with the 2-site wave functions being on sites j − 1, j and j, j + 1 respectively.
Both MPS only differ in their representation on sites j−1, j and j+ 1. Thus, by setting
these 2 parts equal we get

Ψσj−1σjBσj+1 = Aσj−1Ψσjσj+1 (4.37)

Exploiting the normalization conditions of MPS matrices we can shift the 2-site wave
function to the left and to the right by

Ψσj−1σj =
∑
σj+1

Aσj−1Ψσjσj+1Bσj+1† (4.38)

Ψσjσj+1 =
∑
σj−1

Aσj−1†Ψσj−1σjBσj+1 (4.39)
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A j−1 A jA j−2 B j+1 B j+2


 j−1 j


 j j+1
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Figure 4.6.: Graphical representation of finite size DMRG state prediction. Consider
two equivalent mixed-canonical MPS representations with their 2-site wave
functions on sites j− 1, j and j, j+ 1 respectively. The representations only
differ on sites j−1, j, j+1 (in between the two vertical dashed lines). Setting
both parts equal and exploiting normalization conditions gives a method to
shift the 2-site wave function to the left and to the right.

4.2. Time Evolution using MPS

Cazalilla and Marston were the first to propose time evolution using DMRG results [34].
Their approach was to use a fixed point Hamiltonian and its ground state generated by
iDMRG, adding a time dependent perturbation to the Hamiltonian and integrating the
time dependent Schrödinger equation (4.40) numerically. This approach is not optimal,
since the reduced Hilbert space generated by DMRG is not optimal for the resulting
excited state after a short period of time and this state will generally have its main con-
tributions from different parts of the total Hilbert space. This approach thus represents
a non-adaptive MPS time evolution method. Its accuracy breaks down fairly quickly
depending on the excitation. In the following years however, two very powerful adaptive
time evolution methods were proposed: TEBD [2] and shortly thereafter tDMRG [3].
They are both mathematically equivalent, but differ in their numerical implementation,
both having advantages and disadvantages. They both rely on the Suzuki-Trotter de-
composition (see below) and deliver the time evolution of the total system in discrete
time steps τ , while constantly adapting the reduced Hilbert space in order to optimally
approximate the true time dependent quantum state.
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4.2.1. The Suzuki-Trotter Decomposition

Time evolution of quantum mechanical states is governed by the time dependent Schrö-
dinger equation

i
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 , (4.40)

with |Ψ(t)〉 the time dependent state of the system and Ĥ the system Hamiltonian. In
terms of the time evolution operator Û , the above equation can be written as

i
∂

∂t
Û(t) = ĤÛ(t), (4.41)

|Ψ(t)〉 = Û(t) |Ψ(0)〉 . (4.42)

In the case of not explicitly time dependent Hamiltonians, the solution to (4.41) for Û(t)
is

Û(t) = e−itĤ . (4.43)

The time evolution can be split up into an arbitrary amount of sequential time evolutions
of smaller time intervals, e.g. in N equally spaced intervals τ

Û(t) = e−itĤ =
(
e−iτĤ

)N
= Û(τ)N , (4.44)

with N = t
τ
.

Furthermore, consider Hamiltonians of an L-site lattice with L even, consisting of
nearest neighbor interactions only, giving Ĥ =

∑
i ĥj,j+1, with ĥj,j+1 2-site Hamiltonians,

connecting sites j, j+ 1. In general, these 2-site Hamiltonian will not commute with one
another, therefore a straight forward decomposition of (4.43) in a product of exponentials
of 2-site Hamiltonians is not possible. However, it can be approximately decomposed
using the Suzuki-Trotter decomposition of first order [35]

Û(τ) = e−iτĤ = e−iτĤoe−iτĤe +O
(
τ 2
)

(4.45)

with Ĥ = Ĥo + Ĥe and Ĥo and Ĥe the parts of the overall Hamiltonian containing only
odd and even bonds respectively

Ĥo =

L
2∑
j=1

ĥ2j−1,2j, Ĥe =

L
2
−1∑

j=1

ĥ2j,2j+1. (4.46)

Applying Û(τ) in (4.45) N = t
τ

times to perform time evolution up to t according to
(4.44) costs one order of τ for the approximation error (cf. [35])

Û(t) = Û(τ)N =
(
e−iτĤoe−iτĤe

)N
+O (τ) (4.47)
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Since all 2-site Hamiltonians in Ĥo and Ĥe commute with each other respectively, one
can now exactly decompose Ĥo and Ĥe into a product of 2-site time evolution operators

Ûo(τ) = e−iτĤo =

L
2⊗
j=1

e−iτ ĥ2j−1,2j =

L
2⊗
j=1

û2j−1,2j(τ) (4.48)

Ûe(τ) = e−iτĤe =

L
2
−1⊗

j=1

e−iτ ĥ2j,2j+1 =

L
2
−1⊗

j=1

û2j,2j+1(τ), (4.49)

where we have defined ûj,j+1(τ) = e−iτ ĥj,j+1 . As can be seen from (4.45), the approxi-
mation error for a small interval τ is of the order O(τ 2). With τ sufficiently small, this
error can be kept very small, even for first order. Higher orders of the Suzuki-Trotter
decomposition yield better behavior of the time step error, but require a more sophisti-
cated decomposition structure, however second order decomposition is still very similar
to first order

Û(τ) = e−iτĤ = e−i
τ
2
Ĥoe−iτĤee−i

τ
2
Ĥo +O

(
τ 3
)
. (4.50)

Especially when measurements are performed every n steps, the intermediate time steps
technically become first order, since Ûo(

τ
2
)Ûo(

τ
2
) = Ûo(τ). When using second order,

start with an initial odd update Ûo(
τ
2
). Then perform first order like even and odd bond

updates in full time steps τ until step n, where one performs one half time odd update
Ûo(

τ
2
) before measuring and one half time odd update Ûo(

τ
2
) after measuring. As one

can see, computational effort is hardly increased, whereas one gains one order of τ in
accuracy.

In the following, only first and second order Suzuki-Trotter decomposition is consid-
ered.

4.2.2. Time Evolving Block Decimation (TEBD)

Proposed by Vidal in 2003, TEBD was the first adaptive time evolution algorithm using
MPS [2]. It first introduced the canonical representation of MPS described in Section 3.4.
Its focus on easy access to all possible Schmidt decompositions of the system is most
suitable for the task of Suzuki-Trotter like time evolutions. The algorithm generally
provides a method for updating a finite size MPS after applying 1- or 2-site unitary
operators onto it. However, it is especially tailored for evolving a quantum mechanical
state in MPS form in time, i.e. it provides an efficient method for applying the Suzuki-
Trotter time evolution operator to a finite size MPS.

The basic concept is to deliver time evolution up to time t by applying Û(τ) sequen-
tially to an initial state in canonical MPS form (cf. Section 3.4) for N times, adapting
reduced Hilbert spaces on each bond at every step. This ensures an optimal approxima-
tion of the state at all times, given a certain finite matrix dimension m throughout the
time evolution process.4 For first order Suzuki-Trotter decomposition, one Trotter time

4TEBD language uses the Greek letter χ for the matrix dimension m.
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step consists of first applying Ûo(τ) to all odd bonds and then Ûe(τ) to all even bonds
(or vice versa). For a graphical representation see Figure 4.7.

(1) Start with odd bonds and set j = 1.

(2) To apply ûj,j+1 to bond j, j+1 construct the 2-site wave function according to (3.52)

Ψσjσj+1 = λ(j−1)Γσjλ(j)Γσj+1λ(j+1), (4.51)

with λ(0) = λ(L) = 1.

(3) ûj,j+1 has matrix representation u
σjσj+1

σ′jσ
′
j+1

in the local 2-site Hilbert space. Apply this

time evolution matrix to Ψσjσj+1 to get

Ψ̃σjσj+1 =
∑
σ′jσ
′
j+1

u
σjσj+1

σ′jσ
′
j+1

Ψσ′jσ
′
j+1 . (4.52)

(4) In Reference [2] it is shown, that applying a unitary 2-site operator on neighboring
sites j, j + 1 only requires updating the connecting Schmidt values λ(j) and the
matrices on both sites Γσj and Γσj+1 . We therefore need to extract the updated
versions λ̃(j), Γ̄σj+1 and Γ̄σj+1 from (4.52), while λ(j−1) and λ(j+1) remain unaffected
by this step. We can do this by recomputing the Schmidt decomposition at the
current bond using an SVD

Ψ̃σjσj+1 = Uσj λ̃(j)V σj+1†, (4.53)

which immediately gives us the updated Schmidt values λ̃(j). Notice that both MPS
matrices are not fully evolved by one time step yet, since they each lack an update
“from the other side”. We will extract Γ̃σj+1 and Γ̃σj+1 by dividing out the Schmidt
values λ(j−1) and λ(j+1), which we included to form Ψσjσj+1 in the beginning

Γ̃σj = λ(j−1)−1
Uσj (4.54)

Γ̃σj+1 = V σj+1†λ(j+1)−1
. (4.55)

As mentioned above, λ(j−1) and λ(j+1) are not affected by the application of ûi,i+1.
However, we need them to preserve the proper normalization conditions for Γ̃σj and
Γ̃σj+1 , since Uσj is left-normalized and V σj+1† right-normalized per construction.
This concludes the update for the current bond j, j + 1. Set j → j + 2

(5) Repeat steps (2) - (4) while j < N , i.e. for all odd bonds

(6) After updating all odd bonds, switch to even bonds by setting j = 2 and repeating
steps (2) - (4) while j < N , i.e. for all even bonds. This concludes one full Trotter
time step, i.e. one application of Û(τ).

Full time evolution up to time t is achieved by applying the above procedure N times
to the initial state. Measurements can be carried out after each Trotter step or every
few Trotter steps, yielding an observable time line.

48



4.2. Time Evolution using MPS
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Figure 4.7.: TEBD update for a single bond. (i) Form the 2-site wave function Ψσjσj+1

and apply the 2-site time evolution operator u
σjσj+1

σ′jσ
′
j+1

to get Ψ̃σjσj+1 . (ii)

Decompose via SVD to get Ψ̃σjσj+1 = Uσj λ̃(j)V σj+1† and extract updated
λ̃(j), Γ̃σj and Γ̃σj+1 using (4.54) and (4.55).

Remarks

• There are two main sources of errors, namely the Trotter error, controlled by τ (see
above) and the truncation error, controlled by m (cf. remarks in Section 4.1.1).
An additional error, which is arises from computer arithmetics, comes from the
division by small Schmidt values in (4.54) and (4.55) (see below).

For first order Suzuki-Trotter decomposition a value of τ of the order O(10−3)
should suffice in most cases, second order Suzuki-Trotter of course behaves better
and gives access to more efficient simulations.

The matrix dimension m can either be kept constant to watch the evolution of
the truncation error (4.10). However (4.10) can also be used as a threshold to
dynamically adjust m, e.g. by choosing m large enough after each SVD so that
the truncation error doesn’t rise above a certain value. Usual threshold values
range from 10−14 to 10−10. A rise in truncation error is also always connected
to a rise in bipartite entanglement entropy (4.20), both being a function of the

corresponding Schmidt values λ
(`)
a` .
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4. MPS Methods

Typically, time evolutions of highly excited states generate a rapid growth in en-
tanglement entropy and thus rapid growth in m to keep the same accuracy. Of
course, m only needs to be large around areas of high entanglement. However
simulations quickly become either inefficient or inaccurate due to the propagation
of entanglement entropy. This fact is one of the major limitations of MPS time
evolution.

• The canonical representation is especially useful for TEBD time evolution, since
all Schmidt decompositions and thus all 2-site wave functions of the system are
accessible at all times. This also enables easy parallelization of the algorithm, by
parallelizing odd and even updates separately. The feasibility of parallelization is
one of the advantages of the TEBD algorithm.

• The multiplication by the inverse of the Schmidt values in (4.54) and (4.55) is
numerically problematic when dividing by very small numbers. This is often the
case, since Schmidt values usually decay exponentially for systems not at their
critical point. One way to circumvent this problem is to exclude small singular
values below a certain threshold value altogether and to set corresponding MPS
matrix rows or columns to zero as well. There is however an elegant workaround
to this problem proposed by Hastings, which essentially connects TEBD with the
tDMRG algorithm (described in 4.2.3), avoiding the division by Schmidt values
altogether [36].

4.2.3. Adaptive Time Dependent DMRG (tDMRG)

Shortly after Vidal’s proposal of the TEBD algorithm in 2003, White and Feiguin pro-
posed a modification of finite size DMRG to do time evolution, called adaptive time
dependent DMRG or tDMRG [3]. Mathematically there is no difference between TEBD
and tDMRG, although they use different MPS language (with tDMRG sticking to the
usual mixed-canonical representation). However they both have their advantages and
disadvantages from a numerical point of view.

The basic idea of tDMRG is the same as in TEBD. Again, time evolution operators,
which can be Suzuki-Trotter decomposed, are addressed and time evolution is delivered
by a sequential application of time evolution for even and odd bonds in small discrete
time steps τ by the time evolution operator Û(τ).

The algorithm exactly follows steps (1) - (4) of finite size DMRG in Section 4.1.3, with
one modification: Instead of computing block and superblock Hamiltonians to derive a
new optimized superblock ground state (i.e. 2-site wave function), the existing 2-site
wave function is subjected to time evolution by u

σjσj+1

σ′jσ
′
j+1

according to (4.52). This means

that the prediction algorithm (4.38) and (4.39) to shift the 2-site wave function has now
become a necessity. One time step by τ then corresponds to one full sweep through the
system.

(1) Start with odd bond evolution and an initial block configuration • •E (i.e. block S
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4.2. Time Evolution using MPS

containing 0 sites) with an initial state in mixed-canonical MPS form (3.23)

|ψ0〉 =
∑
{σ}

Ψσ1σ2Bσ3 . . . BσL |σ1 . . . σL〉 (4.56)

and set j = 1.

(2) Apply u
σjσj+1

σ′jσ
′
j+1

to the 2-site wave function according to (4.52).

(3) Decompose either via SVD Ψ̃σjσj+1 = Ãσj λ̃(j)B̃σj+1 or perform a reduced density
matrix analysis. For right sweeping, store updated Ãσj .5

(4) Shift the 2-site wave function to the right by applying (4.39), already using the
updated Ãσj .

(5) Perform another SVD of the shifted 2-site wave function Ψ̃σj+1σj+2 to get an updated
Ãσj+1 . Again shift to to right, using the just derived updated Ãσj+1 , now yielding
the updated 2-site wave function Ψ̃σj+2σj+3 , shifted to the right by 2 sites in total.

(6) Perform steps (2) - (5) while j < L− 1, applying 2-site time evolution operators to
odd bonds only. The final configuration after a full right sweep is then S • • with E
containing 0 sites, similar to above.

(7) Perform steps (2) - (5) now shifting to the left while j > 1, now only storing updated
B-matrices. Apply 2-site time evolution operators to even bonds only.6 The final
configuration is again • • E with all B-matrices and the 2-site wave function fully
updated by one time step.

The initial state can be specified in different ways. One can also use a mixed-canonized
MPS only containing A-matrices or start from the standard symmetric finite size DMRG
configuration. Measurements are best taken on the fly while sweeping back, only using
the fully updated MPS-matrices and (3.60).

Remarks

• As mentioned, tDMRG is mathematically equivalent to TEBD. Its advantage lies
in the fact that it avoids the numerically problematic division by possibly small
singular values. However it has the disadvantage that after each bond update one
has to perform two costly SVDs in order to shift to second next bond for the next
update. Notice that a preliminary SVD is necessary before every shift in tDMRG.
In this manner the Canonical Representation of TEBD is clearly better. One
way to combine the advantages of both methods is the mentioned modification by
Hastings [36].

5Since an SVD is a costly decomposition, a density matrix analysis or even a QR decomposition (if
Schmidt values are of no interest) is to be favored from a numerical point of view.

6If L is even, a preliminary shift to the left after completing odd bond updates is necessary to switch
to even bonds. If L is odd a preliminary shift to the right once more is necessary.
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4. MPS Methods

• It is important that measurements are taken after MPS matrices have been fully
evolved from both sides, i.e. both odd and even bond updates have been performed.
If not, MPS matrices are not fully evolved yet and measured timelines will yield
wrong results. It is also possible to perform a separate measurement sweep after
one time step instead of measuring on the fly.

• Other than that, general remarks of TEBD (e.g. concerning Suzuki-Trotter and
truncation errors) apply as well.

4.2.4. Infinite Size TEBD (iTEBD)

So far we have dealt with time evolutions for finite systems only. In many cases however,
one is interested in (time-dependent) bulk properties of the system. On finite systems,
one always faces finite size effects such as boundary effects. One approach to extract
information about the thermodynamic limit in this case would be to gradually simulate
systems with growing system size and then extrapolate to the thermodynamic limit. A
certainly much more favorable approach would be to simulate the time evolution of an
infinitely large system from the beginning.

In 2007 Vidal proposed a variation of the TEBD algorithm to simulate real and imag-
inary time evolution in the thermodynamic limit [37]. This algorithm turns out to be
very simple and efficient due to the following assumptions:

• The Hamiltonian in the thermodynamic limit is translationally invariant

• The initial state of the infinite system is translationally invariant

• The Hamiltonian couples only nearest neighbor sites, such that the updates for
even and odd bonds are parallelizable, e.g. all even and odd updates can be
performed at the same time respectively.

This enables one to describe the thermodynamic limit state in terms of an iMPS
using a single unit cell containing 2 sites (cf. remarks about iMPS in Section 4.1.2). In
TEBD language, this means that only two individual MPS-matrices ΓA and ΓB and two
individual sets of Schmidt values λA and λB are necessary, making the unit cell

ψ
σ`σ`+1

UC = ΓA,σ`λAΓB,σ`+1λB (4.57)

The full iMPS is then an infinite repetition of this unit cell (cf. (4.23) and (4.24) of
Section 4.1.2).7

Similarly, the time evolution is described by two individual 2-site evolution operators,
one for odd bonds and one for even bonds (cf. (4.48) and (4.49)).

Ûo(τ) =
⊗
`∈Z

ûA2`−1,2`(τ), Ûe(τ) =
⊗
`∈Z

ûB2`,2`+1(τ). (4.58)
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Figure 4.8.: One Suzuki-Trotter time step for an infinite size, translationally invariant
MPS (iMPS). With the assumptions on page 52 it is sufficient to construct
two 2-site wave functions (cf. (4.59) and (4.60)) and perform 2-site time
evolution as for the TEBD algorithm (cf. also Figure 4.7) using the 2-site
operators uA and uB for one complete time step for the infinite system.

For one time step it is necessary to perform time evolution on this unit cell only,
remembering that the iMPS is an infinite repetition of this unit cell and all even, as well
as all odd bond updates can be performed at the same time respectively. For simplicity
we will call odd sites σ2`−1 = σA and even sites σ2` = σB.

(1) odd bonds: Construct the odd bond 2-site wave function

ΨσAσB = λBΓσAλAΓσBλB. (4.59)

Apply odd bond time evolution using ûA and compute updated Γ̄A, Γ̄B and λ̃A by
following steps (3) - (4) from Section 4.2.2 (cf. also Figure 4.7). Notice that λ̃A is
already fully evolved while Γ̄A, Γ̄B still lack the update from the even bonds.

(2) even bonds: Using the updated matrices and Schmidt values from above, construct
the even bond 2-site wave function

ΨσBσA = λ̃AΓ̄σBλBΓ̄σAλ̃A. (4.60)

Perform even bond time evolution using ûB and again compute updated Γ̃A, Γ̃B and
λ̃B (cf. Figure 4.7). Now both MPS matrices and both sets of Schmidt values are
fully evolved and one time step is completed.

7The concept is easily generalized to unit cells containing more than 2 sites by defining a corresponding
number of individual MPS matrices and sets of Schmidt values. The 2-site case however is natural
for 2-site time evolution operators.

53



4. MPS Methods

Notice that this algorithm can only simulate the time evolution of an initial state
under a Hamiltonian, which are both translationally invariant over two sites. Local
disturbances break translational invariance and in order to simulate their time evolution
an extension to the above procedure is needed. A possible way for simulating local
signals and their time evolutions in a finite part of an infinite system is presented in
Chapter 5.
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5. The Comoving Window

In many applications, signal propagation in the bulk of a one-dimensional system is of
interest. In order to properly simulate this scenario, one has to either use very large
systems or better yet turn to infinite systems to avoid finite size effects. The standard
way to simulate the behavior of local signals (e.g. spin flips or domain walls) is to
introduce the signal into the center of finite system and simulate its time evolution using
either TEBD (cf. 4.2.2) or tDMRG (cf. 4.2.3). However, often one needs to use a very
large system in order for boundary effects not to reach the origin of the signal in the first
place. Also, propagating signals will get distorted due to immediate boundary effects
(e.g. Friedel oscillations) when propagating towards the boundaries and eventually get
reflected at the boundaries and start interfering with themselves. The system size will
thus effectively limit the accessible simulation times, during which signals can be studied
undistorted by finite size effects.

In order to avoid these boundary effects one could introduce periodic boundary con-
ditions, but then again, signals will travel around the face and start interfering with
themselves after some time. Therefore a truly infinite system as background is to be
favored. We have already introduced iTEBD as a method for simulating the time evo-
lution of an infinite system in Section 4.2.4. This algorithm however requires complete
translational invariance for the evolving state, as well as the underlying system Hamil-
tonian at all times. This fact unfortunately makes it impossible to use it to simulate the
propagation of local signals.

In the following, a method is presented, which combines both the ability of finite
systems to simulate local signals without boundary effects on infinite systems. It will be
able to accurately simulate the time evolution of a local signal up to very high simulation
times (which are not limited by system sizes), free from finite size effects.

We will consider systems of infinite size with nearest neighbor interactions only, ini-
tially in a translationally invariant state. We will then focus on the time evolution of
signals generated by local excitations, such as one or more spin flips confined to a small
area. For finite range interactions, the wave front of this type of signals can at most
propagate with the system’s characteristic maximum velocity, which is given by the Lieb-
Robinson bound [38] and is essentially dependent on the interaction strengths present
in the system. Therefore information and also entanglement from the signal source can
only propagate within the signal’s light cone. This fact is important, as the translational
invariance in front of the signal front (i.e. outside the light cone) is necessary for the
presented method (see below). Although correlations may reach beyond the light cone,
they are exponentially suppressed there [39].

For many initial conditions (e.g. domain walls), bipartite entanglement will grow
rapidly around the origin of the signal. A dramatic increase in entanglement entropy also
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5. The Comoving Window

requires an increase in matrix dimension m for MPS simulations of the same accuracy,
although these parts of the system are far away from the signal front. On the other
hand, entanglement entropy can only spread with the system’s maximum velocity as
well. Entanglement entropy around the signal front will therefore be significantly lower
and vary only little over time.

Comoving Window

Figure 5.1.: Motivation for the Comoving Window. The time evolution of a single spin
flip (magnon) excitation on a 50 site ferromagnetic XXZ chain with J =
Jz = 1 and obc is shown. The signal hits the boundaries at t ≈ 25, gets
reflected and starts interfering with itself. The purpose of the Comoving
Window is to follow the signal along its propagation path on an infinite
system, removing all finite size effects.

Consider an infinite system that is initially in a translationally invariant state. The
idea is to describe a part of this system by means of a finite system, which will be called
the Comoving Window (CMW). We will induce a local signal inside this window and
simulate its propagation using time evolution methods for finite systems such as TEBD
or tDMRG. The CMW is connected to the remaining parts of the infinite system on
both ends. The boundaries of the window must connect smoothly to the remaining
infinite system, i.e the infinite parts must be an infinite repetition of these boundaries.
It is therefore crucial that the boundaries be sufficiently translationally invariant. This
also means that the CMW must move along with the signal as it propagates, such
that translational invariance at the boundaries is not broken by the signal itself. The
time evolution of the infinite parts of the system and their influence on the CMW are
simulated by a special connection update for the both ends of the CMW.

However, an immediate problem arises from the fact, that general excitations will
generate signals, which travel to both sides. The CMW can only follow one branch
though, with the other branch hitting the rear boundary of the CMW after some time,
generating reflections and interferences there. In most cases, the signal front of an
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5.1. Defining the Comoving Window

induced signal travels with the system’s characteristic maximum velocity. Thus if one
moves the CMW along with this maximum velocity, the reflections and perturbations
created at the rear end can never travel far into the CMW and distort the signal of
interest. In fact, as soon as this happens, one can neglect the rear infinite system
altogether, treat the rear boundary of the CMW with open boundary conditions and
focus on the connection at the front boundary only. In practice one can just stop
performing the connection update at the rear boundary at this point.

Conversely, due to the infinite continuation at the front end, finite size effects are
removed there and one can follow the signal unperturbed up to very high simulation
times, which are now only limited by the truncation error or the Suzuki-Trotter error.

left infinite
system

right infinite
system

Comoving Window

(ii) translational        
     invariance

(i) signal front hitting 
    rear boundary

Figure 5.2.: Comoving Window moving along with a right going signal. (i) As soon
as a part of the signal hits the rear boundary, the left infinite system can
be disregarded. (ii) Around the front boundary a sufficiently large area of
translational invariance is necessary.

5.1. Defining the Comoving Window

In this Section we will define the Comoving Window in terms of MPS language. As
mentioned above, we will describe it as a finite part of the state of the infinite system.
Consider a translationally invariant initial state of the infinite system in iMPS form,
described by a single site unit cell {Γ̂, λ̂}, i.e. the iMPS consists of an infinite repetition
of this unit cell.1 For an L-site CMW we will now group together L MPS matrices and
L− 1 Schmidt values to form a set of finite size Schmidt states

|ΨCMW
αβ 〉 =

∑
σ1...σL

(
Γ̂σ1λ̂ . . . λ̂Γ̂σL

)
αβ
|σ1 . . . σL〉 , (5.1)

so that we can write the state of the overall system |Ψ〉 as a Schmidt decomposition on
bonds 0, 1 and L,L+ 1. We rename λ̂ on bond 0, 1 to λ(l) and on bond L,L+ 1 to λ(r)

to get

|Ψ〉 =
∑
αβ

λ(l)
α λ

(r)
β |Ψ

CMW
αβ 〉

(
|Ψl

α〉 |Ψr
β〉
)
. (5.2)

1The extension to multi-site unit cells is straight forward.
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The states |Ψl
α〉 and |Ψr

β〉 correspond to states defined on the remaining parts of the
infinite system to the left and right of the CMW

|Ψl
α〉 =

∑
σ−∞...σ0

(
. . . λ̂Γ̂σ−1λ̂Γ̂σ0

)
α
|σ−∞ . . . σ0〉 , (5.3)

|Ψr
β〉 =

∑
σL+1...σ∞

(
Γ̂σL+1λ̂Γ̂σL+2λ̂ . . .

)
β
|σL+1 . . . σ∞〉 . (5.4)

We will identify the set of Schmidt states |ΨCMW
αβ 〉 for the L-site system together

with the Schmidt values λ(l) and λ(r) on the connection bonds as the L-site CMW. The
MPS matrices and Schmidt values inside the window are now generally site dependent
(especially after having induced a signal inside the CMW), save around the boundaries,
where we require translational invariance. The time evolution of the signal inside the
window can now be simulated as for regular finite systems. Finite size effects will be
removed by connecting the CMW to the infinite systems to the left (and to the right).
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Figure 5.3.: Definition of the CMW by means of a Schmidt decomposition on two bonds.

5.2. Connection Updates

After initializing the CMW in a translationally invariant state and inducing a local signal
inside, the time evolution of the CMW will be simulated by using conventional methods
for finite size systems, such as TEBD or tDMRG. In finite systems, the lack of a second
bond connected to the edge sites and the lack of the corresponding bond update with
every time step causes boundary effects. In order to prevent this from happening for the
CMW, we will need special connection updates to amend for the lacking bond update
in finite size time evolution.

5.2.1. iTEBD Method (Method I)

After one TEBD time step (cf. Section 4.2.2) the boundary matrices Γσ1 and ΓσL as
well as the Schmidt values λ(l) and λ(r) on the connection bonds lack one bond update
to complete the time step. As a straight forward approach, one can use separate iTEBD
systems as update partners for the connections. These systems represent the infinite
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5.3. Moving the Window

systems to the right and to the left of the CMW and are described by 2-site unit cells
{ΓA, λA,ΓB, λB}, which are initially in the same translationally invariant state as the
right and left boundary. Notice that for different initial states at the boundaries two
separate iTEBD systems are necessary.2

We will investigate the case of the right boundary, the procedure for the left bound-
ary works similarly. For one connection update, form the 2-site wave function at the
connection using the iTEBD system as a partner

ΨσLσA = λ(L−1)ΓσLλ(r)ΓσAλA, (5.5)

apply ûL,L+1 to ΨσLσA , decompose via SVD and extract the updated Γ̃σL , λ̃r. Perform a
separate time update for the iTEBD system (cf. Section 4.2.4), not using the updated
Γ̃σA from the last step. By means of this connection update, the influence of the infinite
system on the CMW has been accounted for and boundary effects are removed. For a
graphical representation see Figure 5.4.

5.2.2. Copy Method (Method II)

Another interpretation of the above procedure is the following. As above, after one
regular TEBD step inside the CMW the last pair ΓσL , λ(r) is lacking the connection bond
update to complete one time step. At the same time this pair has served as an update
partner for the second last pair ΓσL−1 , λ(L−1), which in turn has received one complete
time step update. Since translational invariance is required around the boundary, one
can use the updated second last pair and copy it over the last pair, which will then
again serve as an update partner for the second last pair in the next time step. In the
viewpoint of the above iTEBD method, the effective boundary between CMW and the
infinite system has thus shifted to the left by one bond.

This procedure also works for unit cells containing more than one site, as long as there
is translational invariance in a sufficiently large area around the boundaries. In this case
one would copy the pair ΓσL−n , λσ(L−n) over ΓσL , λ(r), with n being the number of sites in
the unit cell. However, for the sake of numerical stability, it is better to copy 2n-tuples
in stead of pairs. Overall, the use of 2-site unit cells has proved to give best results,
since this unit cell size is natural to the Suzuki-Trotter decomposition.

While Method I is straight forward conceptually, Method II is numerically lighter
and more efficient. There is no significant difference in results when comparing both
methods, however Method II is faster. A graphical representation of this procedure is
shown in Figure 5.4.

5.3. Moving the Window

In order to retain translational invariance around the front boundary, the CMW has
to move along with the signal front, so that no information of the signal can disturb

2This might happen when the initial excitation is e.g. a domain wall. Both boundaries are then in a
different state, but are still translationally invariant there.
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Figure 5.4.: Connection update methods. (i) Use a separate iTEBD system to form the
2-site wave function ΨσLσA at the connection bond. Apply ûL,L+1, decom-
pose via SVD and extract updated Γ̃σL , λ̃(r). Perform a separate time step
update for the iTEBD system. (ii) After one regular TEBD step, pair 2 has
served as an update partner for pair 1, which is fully evolved by one time
step. Translational invariance allows for copying pair 1 over pair 2 after one
time step to remove boundary effects.

the front boundary. Conceptually, window movement e.g. to the right is performed by
simply redefining the finite part of the infinite system represented by the CMW. A shift
by 2 sites then corresponds to redefining the CMW from containing sites [1, . . . , L] to
containing sites [3, . . . , L+ 2].

Technically, a shift to the right by one unit cell is performed by

(1) Discarding the leftmost unit cell of the CMW,

(2) Copying all remaining MPS matrices (and Schmidt values) to the left by one unit
cell,

(3) Introducing a new unit cell at the front boundary out of the infinite system. This
is done by either extracting the unit cell from the iTEBD system (Method I) or
reusing the former rightmost unit cell (Method II).

The window movement can be triggered with the propagation of the signal front
by watching the value of a certain observable or better yet the bipartite entanglement
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Figure 5.5.: Moving the window to the right by one site. Redefine the finite part of the
infinite system described by the CMW by copying all MPS matrices (and
Schmidt values) to the left by one site, discarding the leftmost unit cell. A
signal around site 4 has then effectively moved to the left by one site inside
the CMW. (i) When using Method I, introduce a new unit cell at the front
boundary out of the iTEBD system. (ii) When using Method II, reuse the
former rightmost unit cell to again be the rightmost unit cell.

entropy at a certain site (or bond) inside the CMW and moving the window, whenever
the watched value changes by a significant amount.

Alternatively, if the signal front’s velocity v0 is known beforehand (the system’s max-
imum velocity in most cases), the window can be moved along with this velocity by
performing a shift every certain amount of time steps n = ∆ts

τ
and ∆ts = ∆xUC

v0
the time

span between shifts, where ∆xUC the length of the unit cell.

Depending on the correlation lengths present in the system one has to carefully ad-
just the margin between the signal front and the front boundary of the CMW. This
effectively governs the choice of the site (or bond) for the quantity to watch when trig-
gering the window shift. For systems, which show phase transitions, correlation lengths
increase drastically close to their critical point. Therefore the margin between signal
front and front boundary of the CMW has to be adequately large. This fact actually
limits the effectiveness of the CMW method, as the necessary size of the CMW increases
dramatically when getting close to the critical point.

5.4. Gauge Freedom and Phase Convention

The definition of the CMW in Section 5.1, together with the Connection Updates from
Section 5.2 and the Window Movement from Section 5.3 describe the basic framework
of the CMW method. Before implementing and testing there is however an essential
technical detail one has to take care of.
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Ground state search methods (DMRG), as well as time evolution methods (TEBD,
tDMRG) make extensive use of SVD. Whenever one performs such a decomposition,
there is the freedom of phase for every pair of left and right singular vector. Let us
consider the case of an SVD of a general matrix

Mαβ =
∑
γ

UαγDγVγα
†, (5.6)

with U and V again unitaries, where the columns of U are the left singular vectors of
M and the columns of V are the right singular vectors of M . D is a diagonal matrix
containing the singular values of M as its diagonal elements. When choosing another
gauge, one can multiply each singular value Dγ with unity, expanded as 1 = eiϕγe−iϕγ ,
giving

Dγ = eiϕγDγe
−iϕγ . (5.7)

For every singular value one can choose an individual phase ϕγ. Inserting (5.7) into (5.6)
then defines new unitary matrices, containing left and right singular vectors, now in a
different gauge

Mαβ =
∑
γ

Uαγe
iϕγ︸ ︷︷ ︸

:=Ũαγ

Dγ e
−iϕγVγα

†︸ ︷︷ ︸
:=Ṽ †γβ

= ŨαγDγṼ
†
γβ, (5.8)

which is of course also a valid SVD of M . The key point is that, even though one is
free to choose an individual phase for all pairs of left and right singular vectors, they
are always connected by this phase. Thus only changing gauge for one kind of singular
vectors (left or right) gives a wrong decomposition as the different phase factors don’t
cancel out(

Uαγe
iϕ̃γ
)
Dγ

(
e−iϕγVγα

†) = Uαγ e
iϕ̃γe−iϕγ︸ ︷︷ ︸
6=1

Vγα
†Dγ 6= Mαβ. (5.9)

This fact is of importance when considering the numerical realization of the Con-
nection Update Methods introduced in Section 5.2, since both methods rely on joining
matrices, originally defined in different auxiliary spaces, together to form a 2-site wave
function.

In the case of Method I, time evolution for the CMW and the iTEBD system is done
separately. When performing the actual connection update, two MPS matrices stemming
from independent numerical SVDs are put together to form (5.5). In the case of Method
II, (at least) one matrix from a different site and thus also stemming from a different
numerical SVD is copied and again joined to form a 2-site wave function. A possible
difference in phase conventions can then yield a wrong result for the formed 2-site wave
function resulting in perturbations traveling into the window as artificial signals.

In practice, when applying SVDs numerically by means of a software package, the cor-
responding routine necessarily has a certain phase convention mechanism implemented.
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5.4. Gauge Freedom and Phase Convention

Consider a CMW initially in a completely translationally invariant state, i.e. before
a signal has been induced. When doing time evolution without a signal, translational
invariance is preserved, thus the same phase convention will be chosen by the software
package everywhere. If one now introduces a local signal somewhere, the phase conven-
tion mechanism of the package might then switch to a different phase convention around
the signal at some point. Due to the nature of the Suzuki-Trotter expansion this new
phase convention will then spread with an unphysical velocity of 2 sites per time step
τ . As it is a numerical effect and has no physical meaning, this fact does not conflict
with the Lieb-Robinson bound and the existence of a maximum velocity (cf. beginning
of Section 5). As soon as this new phase convention reaches the front boundary, where
matrices stemming from different SVD are put together, it will happen, that a matrix
coming from an SVD already using the new phase convention will be joined with a matrix
still using the old phase convention. At this point, artificial signals will be generated,
which travel into the window, distorting the signal front of interest.

To circumvent this problem one can manually fix the phase convention for all SVDs
by e.g. requesting that for every left singular vector the component with largest absolute
value be real and positive. This effectively protects the area around the front boundary
from any new phase conventions coming from inside the CMW. This procedure has
shown to fix the above issue, whereas the generation of perturbations has been observed
when no phase convention was implemented. These perturbations are strong enough
to distort the signal front of interest considerably, thus causing the break down of the
method. The implementation of a phase convention is therefore necessary for the CMW
method to work properly.
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6. Results

The CMW method has been tested for several signal types on infinite one-dimensional
spin chain models as introduced in Section 2. The general procedure is to initialize the
system in one of its eigenstates (not necessarily the ground state), induce a local signal
inside the CMW and follow its fastest right going branch. While following the signal
front, various observables are measured and various properties are investigated.

For the time evolution of all signals, the CMW method with second order Suzuki-
Trotter decomposition (cf. Section 4.2.1) and connection update method II (copying, cf.
Section 5.2) has been used. Since all initial states are translationally invariant at both
boundaries, copying has also been performed at the rear boundary up to the impact of
the left going branch. From this moment on obc were imposed there.

Window movement has been triggered with the relative growth of bipartite entangle-
ment entropy (3.40) above a small threshold εS = 0.5% at a certain specified bond inside
the CMW, unless stated otherwise. The CMW hence moves along with the propagation
front of signal information, which is generally the system’s maximum velocity.

6.1. XX Model

For an initial test of the CMW, the following very simple scenario has been chosen. The
infinite XX spin chain with J > 0 has been initialized in the magnon vacuum state |0〉
(2.18), i.e. in the all spin down state. As a signal, a single spin in the center of the
CMW has been flipped to spin up, i.e. a 1-magnon state

|ψ〉j = c†j |0〉 (6.1)

with j = L
2

has been induced. This excitation decays into 2 signal branches going left
and right. Subsequently, the right going branch of the signal has been followed with
the CMW, where window movement has been triggered with the growth in bipartite
entanglement entropy (3.40) around the signal front. The signal has been followed up to
very large times to compare the measured magnetization 〈Ŝzj (t)〉 with the analytic result
(2.25) to give a first estimate of the performance of the CMW method. Additionally,
the dependence of the signal propagation velocity on the interaction parameter J has
been studied.

It can be shown that for product states the expectation values of hermitian operators
are the same under time evolutions of ĤXX(J) and ĤXX(−J) (cf. Section 2.2 and [40]),
therefore the sign of parameter J is of no importance. This is exactly the case for the
investigated spin flip initial state. Therefore only the case J > 0 has been considered.
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6. Results

6.1.1. Initial State

The all spin down state is in fact very simple to encode as an iMPS, since the state is
one of the local spin basis product states and in theory an MPS dimension of m = 1
would suffice. However, the vacuum state iMPS wa¡s initialized directly with the MPS
dimension m used throughout the rest of the simulation. One way to encode the all spin
down state this way is to use a 1-site unit cell with

Γ↑kl = 0, Γ↓kl = δ1kδ1l, λk = δ1k. (6.2)

An L-site CMW was then filled with this unit cell and a single spin in the center at
site j was flipped according to (A.17), giving

Γ
(j),↑
kl = δ1kδ1l, Γ

(j),↓
kl = 0, (6.3)

i.e. Γ(j),↑ and Γ(j),↓ switched places on site j.

......

window

1 L
L
2

Figure 6.1.: Initial state with a 1-magnon excitation out of the all spin down vacuum
state. The single flipped spin induces a signal splitting into a left and a
right going branch.

Notice that because the initial state with one flipped spin is again a local spin basis
product state, entanglement entropy is zero everywhere in the system. During time
evolution, the decaying excitation in the center will cause a rise in bipartite entanglement
inside the signal’s light cone. Sufficiently outside the light cone, entanglement entropy
will remain zero at all times.

6.1.2. Propagation Velocity of Spin Flip Signals

The group velocity for wave packets of free fermions can easily be derived from the
dispersion relation εk = −J cos(k)

v(k) =
dεk
dk

= J sin(k). (6.4)

When generating a general wave packet of free fermions centered around a certain mo-
mentum k, it will stay the most stable around momentum regimes, where the dispersion
relation is close to linear, i.e. around k = ±π

2
and all momenta in this regime move
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6.1. XX Model

roughly with the same velocity v
(
±π

2

)
= ±J , which is then also the system’s maximum

velocity from this viewpoint (cf. Figure 6.2 and also [40]). From this considerations
one can expect that a general signal’s propagation front will always be the most promi-
nent part of the signal, moving with v0 = ±J , even though the signal is not of wave
packet character. Indeed this is also the case for the investigated single spin flip magnon
excitation. This can also be seen in the shape of the signal in Figure 6.4.

ε k=−J cos (k )

v (k )=J sin (k )

regimes of linear dispersion

Figure 6.2.: Dispersion relation and group velocity for free fermions. Around k = ±π
2

the
dispersion relation is closest to linear. On the other hand the group velocity
has its maximum/minimum v0 = ±J there, resulting in a high density of
states with that velocity.

For the case of the XX model, the linear dependence v0 ∝ J can be understood very
easily, as J is the only experimental parameter and a multiplicative factor for the entire
Hamiltonian. A change in J corresponds to a rescaling of the energy levels and thus of
the time scale as well. A system evolved to time t with a parameter J will look like a
system with J twice as large at half the time.

6.1.3. Time Evolution of Single Spin Flips

Notice that the nature of the initial state is such, that there would be no finite size
boundary effects in a finite system either, i.e. the all spin down state is also an eigenstate
of the finite system with obc. Therefore a connecting infinite system to the right and to
the left are actually not necessary.

However, as a first test for the connection updates, simulations have been done both
with and without connection updates for J = 1 with τ = 0.01 and m = 8 up until
t = 200.1 Time evolutions of the magnetization and the bipartite entanglement entropy

1Due to the very simple structure of this signal an MPS dimension as low as m = 8 already gives a
truncation error ε < 10−14
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6. Results

(3.40) for both cases up to t = 100 can be seen in Figure 6.3. Magnetization has been
measured on each site j according to (3.60) and bipartite entanglement entropy has been
measured on each bond j, j + 1 according to (3.40). The latter quantity describes the
bipartite entanglement between the left and right part of the system, which has been cut
at bond j, j + 1. As can be seen, the CMW follows the right going signal front perfectly
in both cases and no boundary effects are introduced at the front boundary. The signal
and its evolution during propagation can therefore be studied unhindered up to very
large times, which are now only limited by truncation errors or Trotter-Suzuki errors.
The simulated CMW results will be compared to the exact solution (2.25) below.

There are also no significant differences between the timelines of the observables mag-
netization 〈Ŝzj (t)〉 and the bipartite entanglement entropy Sent(t) (cf. (3.40)) for both
simulations. Largest deviations arise at the point where the left going signal branch
hits the rear boundaries and the simulation using connection updates switches to obc.
There, relative deviations are of the order O(10−5), everywhere else relative deviations
are at most of the order O(10−10).

As a next test, the magnetization 〈Ŝzj (t)〉 has been compared to the exact result
(2.25) at times t = 100, 150, 200. The simulated data is in very good agreement with the
exact solutions, even at large times. Largest relative deviations again occur at the rear
boundary after the impact of the left going signal branch and are of the order O(10−3).
From this moment on, reflections from the rear boundary are constantly sent into the
CMW, but since they propagate with the same velocity as the signal front and hence the
CMW itself, they can never travel far into the window. In fact, perturbations from the
rear boundary are restricted to the first few sites into the window at all times, as can
be seen in Figure 6.4. Inside the window, relative deviations are of the order O(10−6).

6.2. XXZ Model

The CMW method has also been tested for the XXZ chain (cf. Section 2.4). Two
kinds of signal types have been investigated: (1) Single and double spin flips to the all
spin down state with no magnetic field as for the XX chain and (2) the evolution of the
ground state of the antiferromagnet (AFM) under a time dependent Hamiltonian, where
a local magnetic field has been turned on at t = 0. Whereas case (1) yields results very
similar to those of the XX chain, case (2) caused serious problems, which were as of now
not possible to be overcome.

Again, magnetization timelines 〈Ŝzj (t)〉 and bipartite entanglement entropy timelines
Sent(t) (cf. (3.40)) have been simulated for several values of Jz up to very large times,
where J = 1 at all times.2 The evolution of the shape of the resulting signal front has
been investigated.

2A change in J would again correspond only to a rescaling of the energy with a rescaled parameter
Jz in turn. It is therefore sufficient to investigate only variations in Jz.
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6.2. XXZ Model

Figure 6.3.: Single magnon excitation of the XX chain for J = 1 with τ = 0.01 and m =
8. The timelines for the magnetization 〈Ŝzj (t)〉 and bipartite entanglement
entropy Sent(t) (cf. (3.40)) for the simulations with (on the left) and without
connection updates (on the right) show no significant difference. Largest
deviations are of the order O(10−5) at the point, where the left signal branch
hits the rear boundary. This is due to the switch to obc for the simulation
using connection updates.

6.2.1. Time Evolution of Single Spin Flips for the FM

For the investigation of signal front shapes of spin flip signals, the initial state has again
been encoded into an MPS according to (6.2) and (6.3). For the ferromagnetic (FM)
case Jz > 0 and ∆ > 1 in the thermodynamic limit, the all spin down state is one of
the degenerate ground states, however for the antiferromagnetic (AFM) case Jz < 0 and
∆ < 1 it is in fact a high energy eigenstate. For further details on ground states for
other values of J and ∆ see e.g. [19].
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Figure 6.4.: Comparison of the magnetization 〈Ŝzj (t)〉 of a single magnon excitation with
the exact result (2.25) for J = 1. Comparisons have been made at times
t = 100, 150, 200 and show very good agreement. Largest relative deviations
arise at the rear boundary and are of the order O(10−3). Everywhere else
relative deviations are of the order O(10−6).
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6.2. XXZ Model

Again, the expectation values of hermitian operators (such as magnetizations) for time
evolution of product states under ĤXXZ(J,∆), ĤXXZ(−J,∆) and ĤXXZ(J,−∆) are the
same [40]. For J = 1 only the magnitude of ∆ is thus of importance. Simulations have
therefore been performed for Jz > 0.

As a matter of fact, the simulations for single spin flips yield the exact same results in
terms of magnetization and bipartite entanglement entropy as single spin flips to the XX
chain up to order O (10−14). This can be understood in the particle picture, as the Ising
interaction controlled by Jz is a particle-particle interaction. With no other particle in
the system, there is no interaction, but only a constant energy shift, which makes the
XXZ Hamiltonian equivalent to the XX Hamiltonian for a single particle. The time
evolution of single spin flips in the XXZ chain is therefore independent of the value of
Jz.

xl xr

x0

d

M

Figure 6.5.: Determination of position, width and magnitude of the signal front for a
single magnon signal front on the XXZ chain at Jz = 1. The particle
density 〈nj〉 = 〈Ŝzj 〉 + 1

2
is shown. The width of the signal is taken as the

full width at half maximum d(t) = xr(t)−xl(t). The magnitude M(t) of the
signal is taken as the maximum of the spline interpolation within the signal
front. Its position is used as the position x0(t) of the signal front. One can
see that the splines work best around xl(t) and xr(t).

As a first characterization, the shape of the signal front of a single spin flip has
been investigated. The position x0(t) as well as the magnitude M(t) = 〈n(x0(t), t)〉 of
the maximum of the signal front, where nj = Ŝzj + 1

2
is the particle density, have been

determined. To get the width of the front, the full width at half maximum (FWHM) has
been calculated by determining the points xl(t) and xr(t) left and right of the maximum,
where the particle density has dropped to one half of the maximum of the signal front.
The FWHM is then d(t) = xr(t) − xl(t). To determine all of these points accurately,
cubic splines have been used to interpolate between data points. An example is given
in Figure 6.5.
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Figure 6.6.: Signal width and height of a single magnon signal front on the XXZ chain
with Jz = 1 up to t = 300. It is evident that the width d(t) does not increase
linearly with time, nor does it seem to converge to a constant value d(t∞).
A power law fit for the model y(t) = atα + c yields an exponent α which
is clearly within 0 < α < 1, showing that the width diverges for very large
times. The relative width with respect to the propagated distance (which
is proportional to t) however converges, since α < 1. The magnitude of the
signal decreases rapidly over time and seems to also follow a power law. A
fit of the same model yields a negative exponent α < 0 and thus a constant
value of M(t∞) = c ≈ 0.
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6.2. XXZ Model

The evolution of the signal shape has been determined for a single spin flip up to
t = 300. The FWHM has been found to increase with a power α as d(t) ∝ tα with
0 < α < 1, i.e. the width increases root-like with time and does not converge to
a constant value. This can be seen in Figure 6.6. Since α < 1, the relative width
compared to the propagated distance (which is proportional to t) goes to 0 for t→∞.
This means that for very large times all characteristic points move with the same velocity
(see below).

Since the signal itself propagates with a constant velocity v = J = 1, the power law
behavior of d(t) leads to the conjecture, that some of the characteristic points xl(t),
xr(t) and x0(t) must propagate non linearly to produce the power law behavior of d(t),
i.e. their propagation velocities will vary over time. In order to investigate this, the
individual time dependent velocities vl(t), vr(t) and v0(t) have been estimated via simple
numerical differentiation

vj(ti) =
xj(ti)− xj(ti−1)

ti − ti−1

. (6.5)

The estimated velocities have then been compared to the constant velocity v = 1. It
can be seen that the closer the point to the front boundary of the light cone, the smaller
the deviation of its velocity from v = 1. Indeed vr(t) has converged to v = 1 better
than vl(t) by about one order of magnitude at t = 300. Due to the fact, that the spline
interpolations work best around the steep parts of the signal front, but strongly depend
on the actual position and values of the measured magnetizations around the maximum,
the interpolated position of the maximum of the front shows some oscillatory behavior,
which is a relic from the interpolation. The estimated velocity v0(t) therefore also shows
strong oscillatory behavior and is plotted separately. The time evolution of the velocities
can be seen in Figure 6.7.

The magnitude of the signal front seems to also follow a power law in time with a
negative exponent, leading to the conjecture that it converges to a constant value. A
power law fit M(t) = at−α+c yields a constant value of M(t∞) = c = (84± 3) ·10−5 ≈ 0
for t→∞. The timeline of the signal magnitude of the front is shown in Figure 6.6.

Since a single spin flip signal on the XXZ chain is equivalent to a single spin flip signal
on the XX chain these results can also be deduced from the exact solution (2.25). This
is however not the case for signals with more than one particle, e.g. double spin flips.

6.2.2. Time Evolution of Double Spin Flips for the FM

In the next step, spin flips of two adjacent sites in the center of the CMW have been
(as depicted in Figure 6.8) have been investigated. Following the same reasoning as in
6.2.1, only the case Jz > 0 has been considered. These 2-particle excitations decay into
a signal front moving at the system’s maximum velocity v0 (independent of Jz) and a
bound state with a velocity vb < v0 dependent on Jz [40, 21, 19]. These bound states
as a special class of eigenstates of the XXZ Hamiltonian can be investigated by means
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Figure 6.7.: Deviations of the individual velocities of the 3 characteristic points of the
signal front from the constant value v = 1. The deviation from the constant
value gets smaller the closet the point to the frontmost part of the signal
front. The velocity vr(t) has converged to v = 1 better by one order of
magnitude as vl(t) at t = 300, which can be seen in the top panel. The
position of the maximum of the front shows strong oscillation, which is a
relic of the spline interpolation. It is thus plotted separately in the bottom
panel. Notice that the small oscillations in vl(t) and vr(t) are amplified by
the logarithmic plot.
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Figure 6.8.: Initial state with a 2-magnon excitation out of the all spin down vacuum
state. The two flipped spins induce a signal splitting into a left and a right
going branch.

of the Bethe ansatz. They follow a dispersion relation

εk = J

(
∆− 1

2∆
− 1

2∆
cos(k)

)
. (6.6)

The group velocity is then

vg =
dεk
k

=
J

2∆
sin(k) =

J2

2Jz
sin(k). (6.7)

By the same reasoning as in Section 6.1, the most prominent part of this signal type will
travel with momenta k = ±π

2
and the maximum velocity vb = J

2∆
, which now depends

on both parameters J and Jz. For a fixed value of J = 1, the velocity is inversely
proportional to the particle-particle interaction parameter Jz via vb = 1

2Jz
. According

to the Bethe ansatz, solutions only exist for cos(k) < 2∆2 − 1. However the dispersion
is only linear around k = ±π

2
, i.e. the states around these momenta are required to

form stable signals, which do not decay. This requires cos(k) > 0 and the formation
of bound states will only be observed as local magnetization signals if 2∆2 − 1 > 0 or
∆ > 1√

2
. These signals then have a maximum velocity at ∆ = 1√

2
of vb = J√

2
, which is

≈ 70% of the system’s maximum velocity v0 = J [41, 40, 19]. Timelines for bipartite
entanglement entropy Sent(t) (3.40) and magnetization 〈Ŝzj (t)〉 for different values of Jz

with J = 1 up to t = 100 can be seen in Figure 6.9.
It has been further investigated, if the formation and propagation of this bound states

affects the signal shape and evolution of the front. The same analysis for width and
magnitude of the signal front as for single spin flips in Section 6.2.1 has been performed
for several values of Jz. The timelines for width and magnitude of the signal fronts
for 7 values of Jz from Jz = 0.1 to Jz = 1.9 can be seen in Figure 6.10. It is clearly
evident that the bound states influence the evolution of the signal front, which moves
with the system’s maximum velocity v0 = 1 always. While the bound states do not
influence the width much, they considerably affect the magnitude of the signal front,
also at large times. This corresponds to an increasing magnitude in the bound state
propagation branch (cf. Figure 6.9). Because the total magnetization Sz (i.e. the total
particle number N) is conserved, this necessarily leads to a reduction of intensity in the
single particle branch.
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Figure 6.9.: Timelines for bipartite entanglement entropy Sent(t) (cf. (3.40)) and mag-
netization 〈Ŝzj (t)〉 of a double spin flip on the XXZ for Jz = 0.5, 1, 1.5. The

emergence of bound states with velocity vb = 1
2Jz

is evident only for Jz > 1√
2
.
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Figure 6.10.: Width and magnitude of the signal front of a double spin excitation on the
XXZ chain for 7 values of Jz from Jz = 0.1 to Jz = 1.9.

To get a better comparison, width and magnitude for many values of Jz from Jz = 0 to
Jz = 2.5 at time t = 300 have been plotted against the Jz, which is shown in Figure 6.11.
Jz = 0 corresponds to the limit of the XX chain, the 2 flipped spins therefore propagate
as 2 non interacting 1-magnon signals. With increasing value of Jz it is evident that
the bound states cause an increase in both width and magnitude of the signal front at
large times, with both maxima at Jz ≈ 0.3. Both width and maximum then decrease
for Jz > 0.3 with the width reaching a minimum at Jz ≈ 1.4, whereas the magnitude
decreases monotonically with Jz (at least up to Jz = 2.5). The magnitude also has its
inflection point near Jz = 1√

2
, where bound states start to emerge as stable signals for

J = 1. For values of Jz < 1√
2

the magnetization corresponding to the bound state is
delocalized inside the light cone, where the maximum coherence with the signal front
apparently occurs around Jz ≈ 0.3.
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Figure 6.11.: Width and magnitude of the signal front of a double spin flip in the XXZ
chain at t = 300 versus Jz from Jz = 0 (limit of XX chain) to Jz = 2.5.
Both width and magnitude have a maximum at Jz ≈ 0.3. Width and
magnitude then decrease with the width taking a minimum at Jz ≈ 1.4,
whereas the magnitude continues to decrease monotonically. The magni-
tude also has its inflection point close to Jz = 1√

2
, where bound states start

to emerge as stable signals.

6.2.3. Time Evolution of the AFM Ground State under a Time
Dependent Hamiltonian

Simulations have also been attempted for the ground state of the AFM as an initial state,
with J = 1 and Jz < 0. However this state is much more complex than the ground state
of the FM (cf. Section 2.4) and cannot be encoded in MPS form in a straightforward
way. It has therefore been computed using iDMRG (cf. Section 4.1.1) with a proper
convergence criterion (4.34) (cf. Section 4.1.2). The derived ground state however shows
a 2-site translational invariance, with both sets of Schmidt values showing degeneracy,
thus yielding a 2-site unit cell for the iMPS representation. An example for Schmidt
values is given in Table 6.1. AFM ground states have been calculated for J = 1 and
several values of Jz < −1 without magnetic field. Due to the complex structure of the
AFM ground state, a very high number of kept states m is required. A canonization of
the derived 2-site unit cell according to Section A.1 has been performed.

After filling a CMW of even amount of sites with the derived and canonized 2-site
iMPS, the investigation of local signals induced out of the ground state has been at-
tempted. Since the AFM ground state shows magnetization 〈Ŝxj 〉 = 〈Ŝzj 〉 = 0, spin flip
excitations do not result in a signal in magnetizations. Time evolution has therefore
been performed under a Hamiltonian with same parameters J and Jz, but now with
a local magnetic field hzj > 0 in z on one or two sites in the center of the CMW. The
position of these local field(s) in the overall system is constant over time, i.e. with the
CMW shifting to the right, the position of the field(s) shift to the left inside the CMW.
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λA λB

8.03040E-001 6.63187E-001
3.86052E-001 6.63187E-001
2.97038E-001 2.02015E-001
2.97038E-001 2.02015E-001
1.01061E-001 1.08158E-001
7.24340E-002 1.08158E-001
7.24340E-002 6.75682E-002
6.85304E-002 6.75682E-002
2.74290E-002 4.37654E-002
2.74290E-002 4.37654E-002
2.68884E-002 2.43021E-002
1.97280E-002 2.43021E-002
1.90560E-002 1.49002E-002
1.44738E-002 1.49002E-002
1.44738E-002 1.38727E-002
1.32905E-002 1.38727E-002
1.32905E-002 8.05530E-003
1.31851E-002 8.05530E-003
7.51960E-003 6.51760E-003
7.51960E-003 6.51760E-003

Table 6.1.: Schmidt values of the 2-site unit cell iMPS for the XXZ AFM ground state
with J = 1 and Jz = −1.2. The first 20 Schmidt values for each set are
shown, whereas a number of kept states m = 200 has been used for the
computation. It is clearly evident that both sets of Schmidt values show
degeneracy.

Starting at t = 0, signals are generated at this position, which travel left and right,
where again the right going branch has been followed. Window movement has been
performed with a fixed velocity vf .

Unfortunately however, the time evolution did not yield any viable results. Strong
perturbations are induced at the front boundary immediately, constantly propagating
into the window and distorting the signal of interest. The reason for this is not yet
understood. As of now, it is believed that the degeneracy in Schmidt values is the
reason for these perturbations. In fact, the nature of these perturbations is similar to
those one would get if no phase convention (cf. Section 5.4) is implemented for the
CMW method. However the present perturbations arise despite the use of a proper
phase convention. An example of a simulation, where a magnetic field hzj = 5 has been

switched on at t = 0 at site j = L
2

is shown in Figure 6.12. The CMW has not been
moved along during the simulation, the perturbations arise nevertheless and are thus no
relic of window movement.
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It has been tried to eliminate the perturbations by implementing an additional order-
ing of Schmidt vectors in the respective degenerate subspaces after each SVD. Otherwise
the ordering of Schmidt vectors would be random within their respective subspaces and
copying and joining of MPS matrices with different (because random) ordering should
generate such perturbations. A unique ordering by position of the coefficient with largest
magnitude of Schmidt vectors in each degenerate subspace has been implemented, which
however could not solve the problem as the results remained the same. The true cause
of the perturbations is thus as of now still unclear and is currently subject of further
investigation.

Figure 6.12.: Timelines of bipartite entanglement entropy Sent(t) (cf. (3.40)) and mag-
netization 〈Ŝzj (t)〉 for the evolution of the AFM ground state under a time
dependent Hamiltonian. The AFM ground state of the XXZ chain for
J = 1, Jz = −1.2 and hz = 0 has been evolved under a Hamiltonian with
the same parameters, but hzj = 5 for j = L

2
with τ = 0.01 and m = 200.

Unphysical perturbations are induced almost instantly at both boundaries
of the CMW, constantly propagating into the CMW and distorting the sig-
nal of interest. It is also apparent that the perturbations are not generated
symmetrically.
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6.3. Transverse Ising Model

As a final application, the CMW has been tested for the TIM (cf. Section 2.3). Out
of the thermodynamic limit ground state, various signals have been induced and their
propagation has been studied. For the case of a single JW excitation (cf. Section 2.3)
the simulated results for the magnetization 〈Ŝzj (t)〉 have been compared with the exact
result (2.50). Other investigated signals include single spin flips as well as domain walls.

Again, this type of signals decays into a left and right going branch, where the right
going branch has been followed by triggering window movement with the relative growth
in bipartite entanglement entropy (3.40). The dependence of the signal propagation
velocity on the model parameters J and h as well as the evolution of signal shapes over
time has been investigated.

Simulations have been performed below the critical point h < hc = J
2

and the Ising
interaction parameter J has been kept constant at J = 1 at all times and only the
transverse field strength h has been varied.3

6.3.1. Removing the Degeneracy in the Calculated Thermodynamic
Limit Ground State

The thermodynamic limit ground state for the TIM is essentially the vacuum state in
terms of Bogoliubov fermions (cf. Section 2.3). As it cannot be encoded in an iMPS
in a straightforward way, it has been computed using iDMRG (cf. 4.1.1) with a proper
convergence criterion (4.34) of 1− F < 10−14 (cf. Section 4.1.2).

The thermodynamic limit ground state below the critical point in fact shows an ex-
pectation value 〈Ŝxj 〉 = 0, even though the magnetization in x is the order parameter
that goes to 0 with h→ hc. This is due to the Z2 symmetry around the x-axis present
in the system, which causes the ground state to consist of a linear combination of two
equivalent states with opposite magnetization in x in the thermodynamic limit, resulting
in zero net magnetization. This fact is reflected in the degeneracy of the Schmidt values
after iDMRG convergence. To lift this degeneracy, a magnetic interaction −hxŜxj along
x has been included in the model and a small symmetry breaking magnetic field hx has
been applied during the first few steps of the iDMRG run only. This causes the iDMRG
algorithm to decide on one of the two possible magnetization directions and to fully con-
verge to the corresponding state with finite magnetization. The ground state energies
are identical up to machine precision for both cases. An example for Schmidt values for
a TIM ground state with and without symmetry breaking field hx for transverse field
strength h = 0.2 is given in Table 6.2.

This behavior of the ground state can also be seen for the finite size case. Due to
boundary effects the symmetry is only broken if the system is sufficiently large, below
this critical size the magnetization along x vanishes despite the small symmetry breaking
field, whereas the magnetization along z is always finite, showing boundary effects. This
critical size depends on the value of hx, but also on the transverse field strength h as the

3This is sufficient with the same argument as for the XXZ chain (cf. Section 6.2).

81



6. Results

hx = 10−4 hx = 0
9.99941E-001 7.07065E-001
1.08947E-002 7.07065E-001
1.18702E-004 7.70373E-003
1.29331E-006 7.70373E-003
1.29330E-006 8.39349E-005
1.41003E-008 8.39349E-005
1.40909E-008 9.14501E-007
1.57834E-010 9.14501E-007
1.53711E-010 9.14501E-007
1.53425E-010 9.14501E-007

Table 6.2.: Schmidt values for the thermodynamic limit ground state of the TIM for
h = 0.2 and m = 30, where only the first 10 Schmidt values are shown. For
hx = 0 the Schmidt values are clearly degenerate and decay much slower
than for the symmetry breaking case, where a small field hx = 10−4 has been
applied during the first few iDMRG steps.

correlation length increases dramatically with h close to hc. An example of boundary
effects for the finite size TIM with L = 80 sites is given in Figure 6.13, where the
ground state and magnetizations have been calculated using regular finite size DMRG
(cf. Section 4.1.3). Symmetry breaking fields have again been applied during the first
few iDMRG steps for growing the initial L-site system only.

The fact that boundary effects already reach very far into a finite system for transverse
field strengths not so close to hc shows, that it is indeed best to study the propagation
of local signals on an infinite system. The CMW method is therefore an excellent tool
to study signal propagation in the bulk of a Transverse Ising chain.

After computing the thermodynamic limit ground state with broken symmetry to
get finite positive magnetization in x, the derived 2-site unit cell has been canonized
according to Section A.1. An L-site CMW has then been filled with the canonized unit
cell in order to induce local signals in the center.

6.3.2. Time Evolution of JW Excitations

In order to be able to compare the simulated data to exact results, the first signal to be
investigated was a JW excitation to the ground state (cf. Section 2.3), which has been
induced according to (A.20). The initial state therefore has the character of a single
spin flip in z and a domain wall in x.

Simulations have been performed for various transverse field strengths h < hc up
to t = 300. Attention has to be paid to the case h close to hc. In order to avoid
perturbations at the front boundary, which are caused by broken translational invariance
due to long range correlations, the size of the CMW and the margin between signal and
front boundary has been increased as h gets closer to hc. Magnetization timelines for
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Figure 6.13.: Boundary effects for the finite size TIM for L = 80 sites and symmetry
breaking field hx = 10−4, which has been applied during the first few steps
of iDMRG only. Shown are magnetizations 〈Ŝxj 〉 and 〈Ŝxj 〉 for transverse

field strengths h = 0.2, 0.25, 0.3, 0.35. Whereas 〈Ŝzj 〉 increases with h, 〈Ŝxj 〉
decreases. If h is too close to hc, 〈Ŝxj 〉 vanishes due to boundary effects
despite the symmetry breaking field, which would e.g. already be the case
for h ≈ 0.4 here.
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〈Ŝxj (t)〉 and 〈Ŝxj (t)〉 can be seen in Figure 6.14. The watched bond j inside the CMW for

triggering the window movement has been chosen as j = 2L
3
, 2L

3
, 3L

5
for h = 0.2, 0.3, 0.4.

This choice also holds for all subsequently investigated signal types.
The simulations show that the CMW method is indeed able to efficiently remove finite

size boundary effects up to very large simulation times, which would clearly be present
in a finite size system. However, with h getting close to hc it becomes more difficult to
eliminate perturbations at the front boundary at all times, as window size and margin
between the signal and the front boundary have to become very large.

Signal Velocity

Both the domain wall in x and the single spin flip in z decay and propagate with a
characteristic signal velocity vh, which depends on the transverse field strength h. Since
window movement has again been triggered with the rise in bipartite entanglement
entropy (3.40), the signal velocity has been identified with the velocity of the window.
vh has therefore been calculated as

vh =
xd
td

=
nNs

tN − t1
, (6.8)

where Ns is the number of sites in a unit cell, n is the total number of CMW shifts
during the simulation and tj is the time of the jth shift. For the uncertainty of vh we
get

∆vh = vh

√
(∆xd)2

x2
d

+
(∆td)2

t2d
, (6.9)

where ∆xd = Ns and ∆td = τNmeas are the uncertainties of xd and td and Nmeas is the
number of time evolution steps between measurements.

The simulated data shows a linear dependence of the velocity vh = h, as can be seen
in Table 6.3, where velocities for 6 different values of h from h = 0.2 to h = 0.45 have
been estimated. This relation has been found to also hold for all other signal types
investigated for the TIM, which agrees with the results in [12]. A surface plot of the
bipartite entanglement entropy (3.40) for h = 0.3 can be seen in Figure 6.17.

Comparison to Exact Results

As a next step, the simulated data has been compared to the exact result (2.50) for the
magnetization 〈Ŝzj (t)〉 for different transverse field strengths h and times t. Comparisons
for h = 0.2, 0.4 and t = 100, 150, 200 can be seen in Figures 6.15 and 6.16. Again,
the simulated data and the exact results are in very good agreement, also at large
simulation times. For both field strengths, largest relative deviations again arise at the
rear boundary after the impact of the left going signal branch, where they are of the
order O (10−2) at worst. These perturbations are again restricted to the first few sites
into the window at all times.
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Figure 6.14.: Magnetizations 〈Ŝxj (t)〉 and 〈Ŝzj (t)〉 of a JW excitation to the TIM for
transverse field strengths h = 0.2, 0.3, 0.4 with τ = 0.01 and m = 12, 12, 24
up to t = 200. Both the domain wall in x and the spin flip in z decay with
a characteristic signal velocity vh dependent on h.
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h vh
0.20 0.21 ± 0.01
0.25 0.25 ± 0.01
0.30 0.31 ± 0.01
0.35 0.36 ± 0.01
0.40 0.41 ± 0.01
0.45 0.46 ± 0.01

Table 6.3.: Velocity of the signal front for a JW excitation for different transverse field
strengths h. The linear dependence of vh = h is clearly evident. The slightly
higher values of vh are again due to the exponentially suppressed tails of
bipartite entanglement entropy reaching beyond the light cone.

For h = 0.2 relative deviations everywhere inside the window are as small as O (10−6)
at all times, even at the front boundary. For h = 0.4 correlations already cause very
slight perturbations at the front boundary, where translational invariance gets slightly
disturbed at larger simulation times. These perturbations however don’t stack up as
they travel into the window, relative deviations therefore never rise above O (10−4) and
the signal front remains basically unperturbed. To minimize these perturbations, one
needs to use very large window sizes and signal-boundary margins.

Comparisons to exact results have only been made for 〈Ŝzj (t)〉, as an analytic ex-

pression for 〈Ŝxj (t)〉 could not have been derived. This due to a complicated product
structure arising from JW phase factors.

Signal Shape: Scaling

The shape of the rise in magnetization at the domain wall in x has been further inves-
tigated. A plot of the magnetizations at different times ti from t = 50 to t = 300 for
h = 0.3 can be seen in Figure 6.18, where the times ti are the times immediately after
CMW shifts. There is a characteristic drop/rise of magnetization at the boundaries of
the light cone, whereas inside the light cone the magnetization depends almost linearly
on the position.

Figure 6.18 shows that the width of the domain wall increases linearly with time.
In order to compare its shape at different times, the position axis inside the window
has been rescaled accordingly with time. For the magnetizations to maximally overlap,
scaling has been centered around the center of the light cone, which is at x0 = L

2
+ 1

2
for

the domain wall. The rescaled positions xj(ti) at time ti is then

xj(ti) =
xj(t0)− x0

ti
, (6.10)

where xj(t0) is the unscaled position at time t0 = 0. The scaled positions are now
centered around the origin.
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Figure 6.15.: Comparison of the magnetization 〈Ŝzj (t)〉 of a JW excitation to exact results
(2.50) for h = 0.2 at t = 100, 150, 200. The comparison shows very good
agreement, even for large times. Largest relative deviations arise at the
rear boundary and are of the order O (10−2). These perturbations are
restricted to the first few sites into the window at all times. Everywhere
else relative deviations never rise above O (10−6).
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Figure 6.16.: Comparison of the magnetization 〈Ŝzj (t)〉 of a JW excitation to exact results
(2.50) for h = 0.4 at t = 100, 150, 200. The comparison again shows good
agreement. Largest relative deviations arise at the rear boundary and are
of the order O (10−2). These perturbations are restricted to the first few
sites into the window at all times. At large times, long range correlations
have caused small perturbations at the front boundary, which constantly
propagate into the window, but are negligible as relative deviations never
rise above O (10−4) there.
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Figure 6.17.: Bipartite entanglement entropy (3.40) for a JW excitation to the TIM for
h = 0.3. The initial JW excitation causes an almost immediate jump of
entanglement entropy at the center of excitation to S ≈ 1. The entan-
glement then spreads with the signal velocity, while entanglement entropy
in the center stays almost constant. The exponentially suppressed tails
reaching beyond the effective light cone can be seen, especially for larger
times. This entanglement entropy structure is characteristic also for all
other investigated signal types.

The scaled time slices overlap indeed very nicely. However the characteristic drops in
magnetization do not scale linearly and the shape as well as the magnitude of the drop
vary over time. This can be seen in Figure 6.18. The evolution of the scaled width and
magnitude of these drops over time has been further investigated. To define the width of
the drop, a starting point where magnetization starts to drop below the magnetization
outside the light cone, needs to be identified. This has been done by identifying the
points, where magnetization drops by a certain relative threshold amount ε = 10−3

below the magnetization outside the light cone. As end point of the drop, the first local
minimum in magnetization after the drop has been identified. Notice that for the right
going signal front, the starting points are thus to the right of the end points (cf. also
Figure 6.19, where starting and end points are marked as upper and lower triangles).

The scaled position xs,e(ti) of both end point and starting point, as well as the mag-

netization M(ti) = 〈Ŝx(xe(ti), ti)〉 at the end point have been estimated by using cubic
spline interpolations. From these points the scaled width d(ti) = xs(ti)− xe(ti), as well
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Figure 6.18.: Magnetization profiles 〈Ŝxj (t)〉 of a JW excitation on the TIM for h = 0.3
at different times t. The top panel shows the unscaled magnetizations at
different times. Here the horizontal axis marks position inside the CMW.
The middle panel shows the scaled time slices, where the position axis has
been scaled according to (6.10) with x0 = L

2
+ 1

2
. Whereas the region

of linear rise in magnetization as well as the total width of the rise scale
linearly with time and thus overlap well, the characteristic drops at the
light cone boundaries do not. They vary over time in scaled width and
magnitude. The bottom panel shows a magnified view of the characteristic
drops.
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as the magnitude ∆M(ti) = M0 −M(ti), with M0 the magnetization outside the light
cone, have been determined for each time ti. The spline interpolations with starting and
end points, as well as the scaled width, magnitude and scaled starting point for each
time ti can be seen in Figure 6.19, where now 24 time slices from t = 50 to t = 300 have
been used to get a better analysis. It is clearly evident that neither the scaled width nor
the magnitude of the drops scale linearly with time. This explains the different shapes
in the scaled comparison in Figure 6.18. It appears however, that all quantities converge
to a constant value for very large times. A power law fit to the model function

y(t) = atα + c (6.11)

indeed yield negative exponents αd = −0.67± 0.01 and αM = −0.359± 0.002 for width
and magnitude, suggesting convergence of both quantities to constant values d∞ =
0.001 ± 0.001 and ∆M∞ = 0.008 ± 0.001, i.e. they (almost) vanish with t → ∞.
The starting point xs of the drop also shows convergence to the constant value xs∞ =
0.299± 0.001 with a negative exponent αxs = −0.65± 0.01. These results suggest, that
the drop vanishes both in width and magnitude, with the scaled starting point of the
signal itself converging to a value corresponding to the signal velocity vh = h = 0.3 as
expected (remember that xs is scaled with t, effectively being a velocity).

The above results lead to the conjecture that the scaled signal shape converges for
t → ∞. The asymptotic shape of the signal front with has therefore been estimated
by extrapolating the scaled positions of magnetization values in a certain interval from
〈Ŝz〉 = 0.35 to 〈Ŝz〉 = 0.45 for t → ∞ from fits according to the above model function
(6.11). This limiting shape can be seen in Figure 6.19 for magnetization values between
as a red dashed curve.

6.3.3. Time Evolution of Single Spin Flips

As next signal type, single spin flips in x and z have been studied. Due to the attached
JW phase factor for the spin flip operators (A.18) and (A.16), the derivation of an
analytic expression for the magnetizations 〈Ŝxj (t)〉 and 〈Ŝzj (t)〉 would be much more
difficult and was therefore not performed here. Simulations have been performed for
both signal types for various transverse field strengths h.

A spin flip in x causes the formation of a region with effectively lowered magnetization
in x. The boundaries of this region propagate to both directions with the signal’s velocity
vh. The excitation in magnetization 〈Ŝxj (t)〉 is therefore like the propagation of two
effective domain walls.

The nature of the TIM Hamiltonian also causes a coupling to magnetization in z,
resulting in magnetization oscillations within the signal’s light cone, even though nothing
has been induced there. Notice that this excitation doesn’t reach its maximum until
t ≈ 2, whereas for the excitation in x the maximum occurs at t = 0, i.e. the initial
excitation. Results for magnetizations 〈Ŝxj (t)〉 and 〈Ŝzj (t)〉 can be seen in Figure 6.20.

A spin flip in z causes a similar type of oscillation in the magnetization 〈Ŝzj (t)〉 as a
spin flip in x, however its maximum is now at t = 0. Notice, that a spin flip in z is also
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Figure 6.19.: Spline interpolations of the characteristic drop in magnetization in x for
24 time slices from t = 50 to t = 300 for a JW excitation on the TIM at
h = 0.3. The first local minima of magnetization after the initial drop are
taken to be the end point of the drop at each time, they are marked as lower
triangles in the plot. The starting point at each time is taken to be the
points where magnetization drops by a threshold amount ε = 10−3 below
the value outside the light cone, they are marked as upper triangles. Notice
that for right going signal fronts, the starting points are to the right of the
ending points. It can be seen that the position where magnetization 〈Ŝx〉 ≈
0.46 scales almost linearly with time, as all magnetization profiles intersect
around this point. The scaled width, magnitude and scaled starting point
of the drop over time can be seen in the bottom panel. They seem to
follow a power law, fits to the model function y(t) = atα+ c indeed suggest
convergence of all three quantities to constant values. The shape of the
drop in the limit t → ∞ has been estimated by extrapolating the scaled
positions of magnetization values in a certain interval. This is shown in
the top panel as a red dashed curve.

part of a JW excitation, however without the initial domain wall in x. The resulting
timeline for 〈Ŝzj (t)〉 therefore looks much different, as there were no oscillations for the

JW excitation. Again, an excitation is also caused for 〈Ŝxj (t)〉, which looks very similar

92



6.3. Transverse Ising Model

to a spin flip in x, even though nothing has been induced there. However in this case
the effective drop in magnetization is much smaller than for a spin flip in x. Results can
be seen in Figure 6.21.

Signal Shape: Scaling

The region of effective drop in magnetization in x for both types of spin flips shows a
similar linear scaling behavior in time as the domain wall in x for a JW excitation. It has
thus been investigated the same way (cf. Section 6.3.2). The magnetization timelines
for spin flips in z were however not used for scaling analysis, due to a bad signal to noise
ratio. Therefore only spin flips in x were investigated. The position axis has again been
rescaled around the center of the light cone according to (6.10), which lies at x0 = L

2
.

The general shape of the excitation scales linearly with time also for this signal type,
while the characteristic drops around the light cone boundaries do not. The unscaled
time slices as well as the scaled time slices and a magnified view of the characteristic
drop for h = 0.4 can be seen in Figure 6.22.

The scaled width, magnitude and scaled starting point of the drop over time have
been determined as described in Section 6.3.2 for 24 different times from t = 50 to
t = 300. The results are shown in Figure 6.23. Again, all three quantities seem to follow
a power law. Indeed, fits to the model function (6.11) again yield negative exponents
αd = −0.67± 0.04, αM = −0.17± 0.03 and αxs − 0.73± 0.02. Again, the drop’s width
vanishes with d∞ = 0.0 ± 0.1 whereas the magnitude converges to a large finite jump
∆M∞ = 0.2 ± 0.1. The scaled position of the jump converges to xs∞ = 0.400 ± 0.001,
complying with vh = h = 0.4. Notice however that the timelines show oscillations and
the fits are of limited quality.

Again the above results from the fits suggest a convergence of the signal shape for
t → ∞. The asymptotic shape of the drop has been estimated by extrapolation as for
the JW excitations (cf. Section 6.3.2) for magnetization values from 〈Ŝx〉 = 0.22 to
〈Ŝx〉 = 0.37 and can be seen in Figure 6.23 as a red dashed curve.

6.3.4. Time Evolution of Domain Walls

As a last signal type, the time evolution of simple domain walls in x have been investi-
gated. A domain wall at bond j, j+ 1 can be induced by starting with the homogeneous
ground state and flipping all spins in x left of site j+1. In terms of the spin flip operator
(A.18) one can write for the operator generating a domain wall

F̂w
j =

j∏
n=1

F̂ x
n =

j∏
n=1

(
2Ŝzn

)
. (6.12)

Notice that this excitation is also part of a JW excitation up to a sign. As for single spin
flips, a straightforward analytic expression for the magnetizations 〈Ŝxj (t)〉 and 〈Ŝzj (t)〉
could not be derived, due to the product structure of F̂w

j .
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Figure 6.20.: Magnetizations 〈Ŝxj (t)〉 and 〈Ŝzj (t)〉 for a single spin flip excitation in x
on the TIM for h = 0.2, 0.3, 0.4 with τ = 0.01 and m = 14, 14, 26 up to
t = 200. Although no excitation in z has been induced, the spin flip in
x also causes a considerable excitation in z. In x, the spin flip causes an
effective drop of magnetization in a region, whose boundaries spread like
two domain walls. In z, the magnetization oscillates within the signal’s
light cone.
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Figure 6.21.: Magnetizations 〈Ŝxj (t)〉 and 〈Ŝzj (t)〉 for a single spin flip excitation in z
on the TIM for h = 0.2, 0.3, 0.4 with τ = 0.01 and m = 14, 14, 26 up to
t = 200. Although no excitation in x has been induced, the spin flip in
z also causes a considerable excitation in x. In x, the spin flip causes an
effective drop of magnetization in a region, whose boundaries spread like
two domain walls. In z, the magnetization oscillates within the signal’s
light cone.
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Figure 6.22.: Magnetization time slices in x of a spin flip in x on the TIM for h = 0.4.
The top panel shows the unscaled magnetizations time slices at different
times, the horizontal axis marks position inside the CMW. The middle
panel shows the rescaled time slices, where the position axis has been scaled
according to (6.10) with x0 = L

2
. Whereas the general shape, as well as the

total width of the signal scale linearly with time and thus overlap well, the
characteristic drops at the light cone boundaries do not. They vary over
time in scaled width and magnitude. The bottom panel shows a magnified
view of the characteristic drops.
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Figure 6.23.: Spline interpolations of the characteristic drops in magnetization for 24
time slices from t = 50 to t = 300 for a spin flip in x on the TIM at
h = 0.4. The first local minima of magnetization after the initial drop in
magnetization are taken to be the end points of the characteristic drops,
they are marked as lower triangles. The starting points are taken to be
the points where magnetization drops by a threshold amount ε = 10−3

below the magnetization outside the light cone, they are marked as upper
triangles. Notice, that for a right going signal front, the starting points
are to the right of the end points. As for the JW excitation, there is a
value of magnetization 〈Ŝx〉 ≈ 0.4, around which all magnetization profiles
intersect. The scaled width, magnitude and scaled starting point of the
drop over time can be seen in the bottom panel. They do not depend on
time linearly, but seem to follow a power law. Fits to the model function
y(t) = atα+c indeed suggest convergence of all three quantities to constant
values. The shape of the drop in the limit t → ∞ has been estimated
by extrapolating the scaled positions of magnetization values in a certain
interval. This is shown in the top panel as a red dashed curve.

Simulations have again been performed for several values of h. Results for the magne-
tization timelines 〈Ŝxj (t)〉 and 〈Ŝzj (t)〉 can be seen in Figure 6.24. For the magnetization
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in x one can see that the initial instant jump decays into a nearly linear rise of the
magnetization in a region whose boundaries are the light cone of the signal. The domain
wall gets “stretched apart”, just as for a JW excitation.

In z, an excitation similar to the above single spin flips gets induced, although the
initial oscillation in the center of the light cone decreases and oscillations remain around
the light cone boundaries. These oscillations are of small relative magnitude of ≈ 10%
of the initial magnetization.

Since the domain wall as a signal is also part of a JW excitation, the magnetization in
x with time shows similar scaling behavior with time and has thus been investigated the
same way as in Section 6.3.2. We should therefore also expect similar results. Scaling
has been performed around x0 = L

2
+ 1

2
like for the domain wall of the JW excitation.

The unscaled time slices, as well as the scaled time slices and a magnified view of the
characteristic drops can be seen in Figure 6.25. The results of scaling are qualitatively
the same as for the domain wall in the JW excitation (cf. Figures 6.18).

The scaled width, magnitude and scaled starting point of the drop over time have
been determined as described in Section 6.3.2, now for 25 different times from t = 50
to t = 300. The results are shown in Figure 6.26. Again, all three quantities show
convergence according to a fit to the model function (6.11), yielding negative exponents
of αd = −0.67±0.02, αM = −0.32±0.01 and αxs = −0.76±0.01. Both scaled width and
magnitude vanish to d∞ = −0.001±0.002 and ∆M∞ = −0.01±0.01, whereas the scaled
starting point of the signal itself converges again to xs∞ = 0.3000 ± 0.0004, complying
again with vh = 0.3. An extrapolation of the signal shape for t → ∞ did not yield a
viable result.

Overall, the same behavior for the characteristic drop as for a JW excitation is recov-
ered qualitatively, however there are quantitative differences in magnitude, which can
be seen in Figure 6.27. Whereas the scaled width for the JW excitation and a simple
domain wall are basically the same at all times, the drop’s magnitude for the JW ex-
citation is always smaller. This difference must arise from the additional spin flip in z
induced for a JW excitation.
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Figure 6.24.: Magnetization timelines 〈Ŝxj (t)〉 and 〈Ŝzj (t)〉 for the evolution of a domain
wall in x on the TIM with h = 0.2, 0.3, 0.4, τ = 0.01 and m = 20, 20, 24 up
to t = 200. The domain wall decays into a region where the magnetization
rises almost linearly. This region widens with the signal’s velocity vh = h.
For 〈Ŝzj (t)〉, small oscillations are induced, which remain around the signal

front and decrease again over time in the center of the excitation.
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Figure 6.25.: Magnetization time slices in x for a domain wall on the TIM for h = 0.3.
The top panel shows the unscaled magnetizations at different times, the
horizontal axis marks position inside the CMW. The middle panel shows
the scaled time slices, where the position axis has been scaled according to
(6.10) with x0 = L

2
+ 1

2
. The result after scaling is qualitatively the same

as for the domain wall of a JW excitation (cf. Section 6.3.2). The bottom
panel shows a magnified view of the scaled characteristic drop.
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Figure 6.26.: Spline interpolations of the characteristic drop in magnetization for 25 time
slices from t = 50 to t = 300 of a domain wall on the TIM at h = 0.3. The
first local minima of magnetization after the initial drop in magnetization
are taken to be the end point of the characteristic drop at different times,
they are marked as lower triangles. The starting point at each time is
taken to be the point where magnetization drops by a threshold amount
ε = 10−3 below the value outside the light cone, they are marked as upper
triangles. Notice, that for a right going signal front, the starting points
are to the right of the end points. Again there is a value of magnetization
〈Ŝx〉 ≈ 0.42, around which all magnetization profiles intersect. The scaled
width, magnitude and scaled starting point of the drop over time can be
seen in the bottom panel. They do not depend on time linearly, but seem
to follow a power law. Fits to the model function y(t) = atα + c indeed
suggest convergence of all three quantities to constant values.
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Figure 6.27.: Comparison of scaled width and magnitude over time of a single domain
wall and a domain wall as part of a JW excitation on the TIM at h = 0.3.
The scaled width for a JW excitation and a simple domain wall is basically
the same at all time, whereas the magnitude of the drop is always higher
for a simple domain wall. The cause for this slight difference must be the
additional spin flip in z for the JW excitation.
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7. Conclusion

The propagation of locally induced signals on infinite one-dimensional systems cannot be
simulated by current methods of MPS time evolution. The Comoving Window (CMW)
method has been introduced in Chapter 5 as an extension to MPS time evolution meth-
ods, which is able to achieve this task. The method has been formulated in terms of the
canonical MPS representation, which is natural to the TEBD method (cf. Section 3.4).
A generalization to other MPS language is straightforward.

It has been shown by application to various spin chain models, that this method is
able to efficiently remove finite size effects present in simulations on finite systems. To
begin with, the method has been tested by simulating the propagation of single spin flip
signals on an XX spin chain of infinite size (cf. Section 6.1), where it has been shown,
that the CMW is able to follow a signal’s propagation front efficiently and thus enable
simulations up to very large times with significantly reduced computational effort. The
simulated data has been compared to exact results derived in Section 2.2 and shows very
good agreement, also for large simulation times.

The CMW has then been tested on single and double spin flip signals propagating on
an infinite size XXZ chain with ferromagnetic coupling. The shape and magnitude of
the signal front has been studied up to very large simulation times. It has been found
that for double spin flips the particle-particle interaction parameter Jz influences the
evolution of the signal shape due to the emergence of slower bound state signals.

As a final successful test, the CMW has been used to follow three types of signals
induced onto the thermodynamic limit ground state of the Transverse Ising model (TIM)
(cf. Section 6.3). The ground state has been derived using infinite size DMRG (iDMRG)
and has been properly canonized before initializing the CMW and inducing the signals.
It has been shown that the CMW method is indeed able to also remove boundary effects
that would clearly be present in a finite system simulation for this model. The scaling
of the signal’s shape with time has been investigated for all three signal types.

Simulations have also been attempted for signals induced onto the ground state of the
antiferromagnetic XXZ chain of infinite size, which has again been derived by means of
iDMRG and canonization. The CMW method however could not yield viable results,
as perturbations are instantly generated at the window’s boundaries and constantly
propagate into the window, distorting the signal of interest. The failure of the method
in this case is believed to arise from the degeneracy in Schmidt values of the ground state.
Ways of addressing this problem that were attempted, but to no avail, are described in
Chapter 6.2.3.

Overall, it has been shown that the CMW works well for simulating the propagation of
signal fronts of locally induced signals on systems with finite correlation lengths, where
signal fronts can be followed unperturbed up to very large simulation times. The method
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can also be used to follow slower parts of the signal or not move along with the signal
front at all, where finite size effects are removed until the signal front hits the window
boundaries, depending on the correlation length of the system.

Furthermore, as of now, the initial state must be non degenerate in Schmidt values
for the method to succeed. An extension of the presented method towards this end
is subject of current research, as well as the application to other models and initial
conditions. What will the future hold? The answer to this question is, if anything, of
course [42].
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A.1. Canonization of an iMPS

Consider a normed iMPS in canonical form (cf. Section 3.4), represented by the a 1-site
unit cell {Γ, λ} with MPS dimensions m, where the MPS matrices not necessarily fulfill
the proper normalization conditions (3.49) and (3.50), i.e. the iMPS is not canonized.

Orús and Vidal have proposed a method to canonize an arbitrary, non-canonized
iMPS, exploiting the gauge freedom of MPS matrices [43]. Another interpretation of
this method in terms of mixed canonical MPS can be found in [30]. The following
explanation closely follows [43], further details and proofs can be found therein.

The method relies on inserting the identity 1 = XX−1 = Y −1Y for yet to be deter-
mined square matrices X and Y on the tensor network bonds between MPS matrices Γ
and Schmidt values λ

. . . λΓλΓλ . . . = . . . λX X−1ΓY −1︸ ︷︷ ︸
:=Γ̃

Y λX︸ ︷︷ ︸
:=λ̃

X−1ΓY −1︸ ︷︷ ︸
:=Γ̃

Y λ . . . (A.1)

such that the newly defined unit cell {Γ̃, λ̃} is properly canonized. Since only identities
were inserted, the new iMPS unit cell describes the same quantum state.

To determine X and Y , consider the transfer operators

R(Z) =
∑
σ

(Γσλ)Z(Γσλ)† (A.2)

L(Z) =
∑
σ

(λΓσ)†Z(λΓσ) (A.3)

acting on m × m matrices Z. Notice, that for Z = 1 (A.2) and (A.3) correspond
to the simple normalization conditions for the iMPS matrices, i.e. if the unit cell is
properly canonized, both transfer operators have the unit matrix as their eigenmatrix
with eigenvalue 1. This will in general however not be fulfilled for a non-canonized iMPS.
To canonize a general iMPS, perform the following steps.

(1) Find the dominant eigenmatrices for both operators

R(V r) = ηrV r L(V l) = ηlV l, (A.4)

where ηl = ηr = 1 if and only if the original iMPS was normed, i.e. find the transfer
operators’ fixed points. The eigenmatrices V r and V l will be real and hermitian.

105



A. Addendum on MPS

(2) Decompose both eigenmatrices

V r = XX† V l = Y T †Y T (A.5)

by means of an upper or lower Cholesky decomposition or an eigen decomposition.1

(3) Form and decompose via SVD

Y λX
SV D
= Uλ̃V, (A.6)

where λ̃ already corresponds to the new Schmidt values for the canonized unit cell.

(4) To construct the remaining MPS matrix Γ̃, combine the remaining matrices to get

Γ̃ = V X−1ΓY −1U. (A.7)

Inserting the new unit cell {Γ̃, λ̃} into the normalization conditions (3.49) and (3.50)
indeed shows, that it is now canonized.



 

 

X X−1Y−1YX X−1 Y−1Y
U V

=
SVD

Y  X

  

V X −1 Y−1UV X −1 Y−1U

=

 

 

Figure A.1.: Canonization of an iMPS. Insert the identities 1 = XX−1 and 1 = Y −1Y
between the MPS-matrices and the Schmidt values. Derive X and Y from
(A.5). Combine and apply SVD to get Y λX = Uλ̃V . Combine U and V
with the remaining tensors to get Γ̃ = V X−1ΓY −1U .

Special attention has to be paid if the resulting iMPS is required to be normed. Due
to the nature of the eigen decomposition, the left and right eigenmatrices of the transfer
operators can be multiplied with an arbitrary number without changing anything for the
normalization conditions. However, after decomposing M = Y λX = Uλ̃V , the Schmidt
values λ̃ must fulfill

∑
α λ̃

2
α = 1 for the resulting iMPS to be normed. This can be

1Even though Orús and Vidal [43] and also McCulloch [30] recommend an eigen decomposition, we have
found that a Cholesky decompositions yields numerically more stable results, if the MPS matrices
are already close to being canonized, i.e. the eigenmatrices of the transfer operators are not far from
being diagonal.
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ensured, by calculating the matrix norm w = ‖M‖ = Tr
(
M †M

)
and replacing U → U√

w

and V → V√
w

, which automatically norms the resulting λ̃ to 1.
The above procedure canonizes a 1-site unit cell iMPS. To canonize a 2-site unit cell
{ΓA, λ(A),ΓB, λ(B)}, one can slightly modify the above procedure by coarse graining the
2-site unit cell first to give an initial pair {Γ, λ}

Γ = ΓAλ(A)ΓB λ = λ(B), (A.8)

so that ΓAλ(A)ΓBλ(B) = Γλ. Notice that the coarse grained Γ has now physical dimension
d2, with d the Hilbert space dimension for one site. Now use the above procedure to get a
canonized pair {Γ̃, λ̃}. We can instantly identify λ̃(B) = λ̃, but to extract the remaining
updated elements of the unit cell we need to combine Γ̃ with λ̃ and decompose

λ̃Γ̃λ̃
SV D
= Aλ̃(A)B. (A.9)

Notice that the decomposed matrix λ̃Γ̃λ̃ has the form of a 2-site wave function. Thus
we can extract the now canonized λ̃(A) immediately, the canonized MPS-matrices can
be extracted as usual

Γ̃A = λ̃−1A Γ̃B = Bλ̃−1. (A.10)

The 2-site unit cell is now properly canonized and fulfills the normalization conditions
for canonized MPS-matrices over two sites, i.e. the unit matrix is the eigenmatrix for
the extended transfer operators over two sites

R2(Z) =
∑
σAσB

ΓσAλ(A)ΓσBλ(B)Z(ΓσAλ(A)ΓσBλ(B))† (A.11)

L2(Z) =
∑
σAσB

(λ(B)ΓσAλ(A)ΓσB)†Zλ(B)ΓσAλ(A)ΓσB . (A.12)

The extraction of Γ̃A and Γ̃B by SVD ensures the proper canonization of both MPS-
matrices in the usual 1-site way.

When using 2-site unit cells, this procedure is required, so that the left and right
end of the unit cell is in the same gauge and one can freely arrange the unit cell in an
arbitrary repetition, e.g. to initialize an L-site CMW or to use it as an initial state for
real or imaginary time evolution using iTEBD.

A.2. Inducing Local Signals on MPS

In this section we will shortly derive how to induce a local signal on a general MPS
by applying one or more unitary operators onto it. As shown in [2], the application of
a unitary 1-site operator onto an MPS only involves updating the MPS matrix of the
corresponding site.

Since all simulated signals are induced by spin operators, we will derive how to apply
single site spin operators such as Ŝxj and Ŝzj onto a finite size MPS. Spin operators are
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used in their z basis representation as Ŝα = 1
2
σα, with σα the Pauli matrices in (2.6).

We will also use the spin ladder operators Ŝ± = Ŝx ± iŜy in the z basis

S+ =

(
0 1
0 0

)
, S− =

(
0 0
1 0

)
. (A.13)

The inverse transformation is then

Ŝx =
1

2

(
Ŝ+ + Ŝ−

)
Ŝy =

1

2i

(
Ŝ+ − Ŝ−

)
. (A.14)

As can be seen, Sx corresponds to a spin flip in z. Conversely, Sz acts as a spin flip in
x.

Using Ŝαj =
∑

σjσ′j
S
α,σjσ

′
j

j |σj〉 〈σ′j| with α = {x, y, z} one gets

Ŝαj |ψ〉 =
∑
{σ}

Γσ1 . . . λ(j−1)
(∑

σ′j

S
α,σjσ

′
j

j Γσ
′
j

︸ ︷︷ ︸
:=Γ̃σj

)
λ(j) . . .ΓσL |σ1 . . . σL〉 , (A.15)

where Γ̃σj is still properly normalized. The state itself however, is in general not normed
anymore.

A special case of induced signals are spin flips, as they also preserve the state norm.
Using (A.14) we can write

F̂ z := Ŝ+ + Ŝ− = 2Ŝx (A.16)

for the spin flip operator along z on site j. Together with (A.15) we then get for the
updated MPS matrix after applying F̂ z to a general MPS

Γ̃σj = Γ−σj , (A.17)

i.e. Γ↑j and Γ↓j have now switched places. Similarly, the spin flip operator in x on site
j can then be written as

F̂ x
j := 2Ŝzj (A.18)

and we get for the updated MPS-matrix

Γ̃σj = σjΓ
σj . (A.19)

Another special case is a Jordan-Wigner excitation (cf. Section 2.1), which is es-
sentially a combination of several spin flips. Similar to a spin flip we will define a
Jordan-Wigner excitation on site j as

F̂ JW
j := cj + c†j

(2.2)
=
∏
n<j

(
−2Ŝzn

)(
Ŝ+
j + Ŝ−j

)
=
∏
n<j

(
−F̂ x

n

)
F̂ z
j . (A.20)

This excitation corresponds to a single spin flip in z on site j and spin flips in x on all
sites left of site j, inducing a domain wall.
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