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The four-dimensional U(1) lattice gauge theory with the action -~p (/3 cos 0p + y cos 2Op) is 
studied by Monte Carlo simulation along the phase transition line separating the confinement and 
the Coulomb phases. The discontinuity of (cos 0p), determined in the interval 0.2~<y~<0.5, is 
extrapolated according to a power law and shown to vanish at the tricritical point/3vcP = 1.09 ± 0.04, 
YTCP = -0.11 ± 0.05 (errors are systematic). A negative value of Yrcp means that the phase transition 
in lattice QED with Wilson action (y = 0) is of first order. 

1. Introduction 

Since the early days o f  lattice gauge theories lattice Q E D  in 4 dimensions has 

been the subject o f  many  investigations, both  by analytic [1-6] and numerical  [6-17] 

methods.  One motivat ion has been the compar ison  of  this lattice field theory with 
the familiar con t inuum electrodynamics.  Another  motivat ion has been of  more 

technical nature. Lattice Q E D  has played a major  role in the development  o f  

calculational  methods in lattice gauge theories, in part icular  in devising tools to 
handle  the deconfining phase  transition. This transition, being practically inaccess- 

ible in low-temperature  lattice QCD,  can be comfor tably  looked at f rom both sides 

in several versions o f  lattice QED.  For  example,  one can investigate the mechanism 
underlying this transit ion [2-6] or  observe in numerical  calculations the vanishing 
of  the string tension and the onset o f  the Cou lomb  potential between static charges 

[9-14]. In particular,  the order  o f  the phase transit ion can be studied. 
Several Monte  Carlo studies [7, 8, 10, 12, 13] suggested that the deconfining phase 

transit ion in lattice Q E D  with Wilson act ion is o f  second order. For  the extended 
Wilson act ion 

S = -  ~ (fl cos 0 p + y  cos20p) ,  
p 

0p = plaquette angle ,  /3, y = coupl ing paramete rs ,  (1.1) 

part  o f  the phase bounda ry  between the confinement  and the Cou lomb  phases, in 
the interval 0 . 3 < 7 < 1 ,  has been found,  however,  to be o f  first order  [15]. The 
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change 0 f the  order along a phase transition line is theoretically a rather complicated 
phenomenon.  The experience from the models in statistical mechanics provides a 
warning that the vicinity of  the tricritical point, where this change takes place, 
harbours various pitfalls for Monte Carlo calculations on finite lattices and within 
limited computer  time. Thus, the presence of the tricritical point suggests that, with 
increased computer  resources, a detailed reanalysis of  the phase transition line in 

lattice QED with the action (1.1) might be worth while. 
We have calculated the discontinuity A Wp of  the mean plaquette value Wp = 

(cos 0p) along the part 0.2 <~ 3' <~ 0.5 of  the first-order phase transition line separating 

the confinement and Coulomb phases. For this part  of  the phase boundary AWp 
turns out to be independent  of  the lattice size for l04 to 144 lattices. For 3' decreasing 
below 0.2, phase flips occur with increasing frequency and make the measurement  
of  A Wp rather unprecise. Furthermore, our estimates indicate increasing dependence 
of A Wp on lattice size with decreasing 3'. In order to avoid both the phase flips and 
finite size effects we have therefore restricted long Monte Carlo runs required for 

a precise determination of  A Wp to the values of  3' above 0.2. 
The values of  A Wp have been fitted by the power law 

A Wp(y) = A(y  - Y T C P ) / 3 u  , (1.2) 

which is suggested by a scaling hypothesis in the tricritical region. We assume such 
a law, found in statistical physics models, to be valid also in U(I )  lattice gauge 
theory. As the fit is very good, we can use it for an extrapolation of zaWp to lower 
values of  7. The value YTcP of  y where A Wp vanishes, determines the position of 

the tricritical point in the plane of couplings /3, y: 

/3TCP ~-'~: 1.09+0.04, 'YTCP ~-'~ -0.11 +0.05.  (1.3) 

The subsidiary tricritical exponent flu and the crossover exponent 4' determining 
the shape of  the phase boundary in the vicinity of  the tricritical point (it will be 

defined in sect. 2), have the values 

/3u=1.7+0.2 ,  4 ' = 1 . 5 + 0 . 3 .  (1.4) 

A negative value of YTcP means that lattice QED with Wilson action (coupling 
= 0 in (1.1)) has a deconfining transition of first order. The discontinuity A Wp = 

0.016 is very small, but nonzero. This improves on earlier results which have been 

consistent with a second-order phase transition. 
It should be stressed that the difference between first- and second-order transitions 

in the vicinity of  a tricritical point is very small and the misinterpretation of the 
order of  the phase transition in this region does not have serious practical consequen- 
ces. It is more important  to realize that lattice QED with Wilson action has a 
deconfining phase transition dominated by a tricritical point, and not by an ordinary 
critical point. The exponents determined in the calculations with Wilson action are 
likely to be the tricritical, and not the critical ones. 
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To explain this difference, and to introduce the concept of tricritical points, we 
give a brief summary of the theory of  tricritical points and of  the numerical experience 
with them in statistical mechanics in sect. 2. In sects. 3-5 we describe the shape of 
the first-order phase boundary and the dependence of A Wp both on y and on the 
lattice size. Sect. 6 contains the actual calculation of A Wp on lattices 104-144 and 
the localization of the tricritical point. The discussion of  our results and some 
remarks about difficulties of  numerical calculations in the vicinity of tricritical points 
follow in sect. 7. 

2. Tricritieal regions in statistical mechanics systems 

Various physical systems and models in statistical mechanics, like He3/He 4 mix- 
ture or metamagnets, have a line of first-order phase transitions changing in the 
tricritical point into a critical line of second-order phase transitions. In the vicinity 
of the tricritical point, the tricritical region, the behaviour of a system has to be 
described by a scaling theory which is more elaborate than the scaling theory of 
ordinary critical points. We include, for the reader's convenience, a brief summary 
of  the properties of tricritical points which are known in statistical mechanics. A 
comprehensive recent review [18] and several papers [19-21] are recommended for 
further information. 

One of  the simplest models with tricritical behaviour is the Ising antiferromagnet 
with competing antiferromagnetic nn (nearest neighbour) and ferromagnetic nnn 
(next-to-nearest neighbour) couplings. The hamiltonian in d dimensions is 

~ = y ~  o-,o,~- y~ ~,~k+HY~ ~,, 
n n  n n n  i 

t r ~ = ± l ,  i=(il,...,ia). (2.1) 

H is here the nonordering magnetic field. The free energy is a function of H and 
of the temperature T, F(T,  H).  For low values of T and H the spins tend to assume 
alternating orientations, constituting the antiferromagnetic phase with low magnetiz- 
ation. When H increases above a specific value, the wrongly oriented spins flip, 
and a paramagnetic phase with large magnetization arises. The corresponding phase 
transition is of first order at temperatures below the tricritical temperature TTCP, 
and of second order for temperatures between Txcp and the Nrel temperature T N 

(fig. la). 
There is a formal analogy of  this model with a ferromagnet, consisting in a twofold 

degeneracy of the ground state of the antiferromagnet: even spins oriented up and 
odd ones oriented down, or vice versa. This spontaneous symmetry breaking is 
characterized by the sign of the staggered magnetization 

Mst,= (~ (-1)" +"+iao'i) . (2.2) 
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Fig. 1. Phase diagram of Ising antiferromagnet (2.1) (a) in the space of two parameters T, H, and (b) 
in the space of three parameters T, H, H~tg. The figures are adapted from ref. [18]. 

The degeneracy can be lifted by introducing an additional, staggered magnetic field 
of constant absolute value 'Hstg and with alternating sign on the lattice sites 

Yg~ Y(+ Hsts E ( -  1 )q++%r , .  (2.3) 
i 

Hstg is the thermodynamical conjugate of  the order parameter Mstg, 

a 
M s t g -  - -  F(  T,/4, Hstg) • (2.4) 

cgHstg 

In the space of the three variables T, H and H~tg (fig. lb) the first-order part of 
the phase boundary in the Hstg = 0 plane turns out to be a line of  triple points. In 
this line three coexistence surfaces, separating the paramagnetic and two antifer- 
romagnetic phases, intersect. The tricritical point is the intersection of the three 
critical lines forming boundaries of the coexistence surfaces. 

A similar analysis can be performed for other systems with tricritical points and 
generalized to multi-dimensional phase diagrams. The most important conclusion 
is already apparent: any scaling hypothesis in the tricritical region has to take into 
account the presence of several critical lines emerging from the tricritical point, and 
the scaling laws and scaling functions will thus differ from the ordinary critical 
ones. Two new sets of critical exponents have to be introduced [ 19]. One set describes 
the behaviour of thermodynamical quantities when the tricritical point is approached 
along a path which is not asymptotically parallel to the phase boundary (tricritical 
exponents, labeled by index t). The other set is associated with the approach to the 
tricritical point along the triple line (subsidiary critical exponents, labeled by index 
u). For example, in the approach at constant H = HTcp the correlation length 

behaves as 

- - IT  - TTcPI -~' • (2.5) 
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The exponent  vt differs, in general, f rom the ordinary critical exponent  1,. A discon- 

tinuity along the triple line (e.g. the magnetizat ion) behaves as 

a M  - I T -  TTcP] °~ . (2.6) 

For  a descript ion of  the scaling hypothesis  usually made in the tricritical region, 
we restrict ourselves to the 2-dimensional  T -  H plane of  the Ising ant i ferromagnet  
(fig. la).  A suitable or thogonal  coordinate  system A, g is in t roduced (fig. 2), with 
the origin in the tricritical point  and with the g = 0 line tangent  to the critical line. 

The singular part  Fsi.~ o f  the free energy F(A, g) = F(  T, H )  is assumed to obey the 

scaling law [18, 19] 

Fsing(A , g ) =  A'k(2-at)F~c (~-~1~) , + = s i g n ) , .  (2.7) 

Here d) is an addit ional ,  so-called crossover exponent ,  assumed to be greater than 

1. Fsc(x)  is the scaling funct ion and at is the thermal exponent.  
The crossover  exponent  (k plays a multiple role. Firstly, the scaling funct ion F~c(x) 

should reproduce  the singularities o f  the free energy on both  the critical and the 

coexistence lines by means o f  a singular behaviour  at some points x = x±. Thus, the 
scaling hypothesis  (2.7) requires that, in the vicinity o f  the tricritical point,  both  the 

critical and the coexistence lines have shapes determined by d): 

g = x ± l x l  ~ , ± =s ign  A. (2.8) 

lStorder 

12nNrder 

Fig. 2. Shape of the crossover regions (shaded areas) implied by the scaling hypothesis for free energy, 
eq. (2.7). Line 1 is an example of a path towards the second-order transition line, which is dominated 
by the tricritical point until a very small distance from the phase transition. This may cause misinterpreta- 
tions of critical exponents in Monte Carlo calculations. On a path as line 2 towards the first-order phase 
boundary, the correlation length may grow because the distance to the tricritical point decreases. On a 

finite lattice the phase transition on this line might thus resemble a second-order transition. 
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As a consequence both lines are asymptotically parallel at the tricritical point, a 
first indication of  the difficulties to localize this point precisely. 

Secondly, the exponents characterizing the behaviour of  observables change from 
their tricritical to their critical values in the so-called crossover regions. Again, the 
changes of  the behaviour have to take place at some hopefully narrow intervals of  
the argument x of  the scaling function Fsc(X). Thus the crossover regions are 
approximately of  the form 

g--~ AklAI ~, (2.9) 

with various amplitudes Ak, but with a common power law determined by the 
crossover exponent 4). 

Such shapes of  the crossover regions, confirmed by Monte Carlo calculations 
[20], mean that the tricritical behaviour occurs even in some parts of  the T - H  
plane whose distance from the phase boundary is small in comparison with their 
distance from the tricritical point (fig. 2). This may cause confusion in Monte Carlo 
calculations on finite lattices. For example, a calculation in the vicinity of  the critical 
line, even if finite size scaling is used, can produce the tricritical exponents rather 
than the critical ones if the crossover region (shaded in fig. 2) has not yet been 
passed (line 1 in fig. 2). Moreover,  a first-order phase transition can be misinterpreted 
as a second-order one, since the correlation length, the specific heat peak etc. grow, 
when the first-order transition line is approached along a path on which the distance 
from the tricritical point decreases (line 2 in fig. 2). 

Furthermore,  in the vicinity of  the tricritical point the dynamical difficulties of  
the second-order transitions (large correlation length, critical slowing down) com- 
bine with the metastability properties of  the first-order transitions. Even in very long 
Monte Carlo runs on finite lattices a doubly peaked distribution of some measured 
quantity may suggest the existence of metastable states, though the transition is of  
second order [21]. The only warning may be a slow decrease of  the distance of the 
peaks with growing lattice size. 

3. Estimates of the mean plaquette discontinuity for y /> 0 

Earlier Monte Carlo investigations [15] of  the phase boundary between the 
confinement and the Coulomb phases in lattice QED with extended Wilson action 
(1.1) indicated in the plane of  couplings/3, y the presence of a first-order transition 
on a line between the branching point at/3 - 0.5, 3' = l and the point/3 --- 0.8, 3' -~ 0.3 
(fig. 3). Along this line a discontinuity in the latent heat was observed on a 4 4 lattice. 
The phase boundary  was followed to large negative values of  y [15, 16], where the 
transition is apparently of  higher order. For 3' = 0 (Wilson action) several calculations 
indicated a transition of second order [7, 8, 10, 12, 13]. However, recently clear signs 
of  metastability phenomena  on a 6 4 lattice and a hysteresis on a 16 4 lattice have 
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Fig. 3. Phase diagram of  lattice Q E D  with extended Wilson action, obtained in refs. [15, 16]. The 
couplings/3,  y are defined in eq. (1.1). The paral lelogram indicates the part  of  the phase  boundary  we 

are investigating in this paper  (see fig. I l). 

been found even for y = 0 [14]. This raises the question of the precise position of 
the tricritical point in the/3 - y plane. 

We have decided to calculate, on the phase boundary, the difference A Wp of the 
mean plaquette values in both phases, 

A Wp = W~p OulOmb phase -- WpOnfi . . . . .  t phase , 

Wp = (cos 0p), (3.I) 

for several values of y with a precision high enough to allow conclusions about the 
value of  y for which A Wp vanishes. This requires small errors and a careful proof 
that A Wp is independent of  the lattice size. 

It is clear that both requirements are difficult to satisfy in the vicinity of the 

tricritical point, and we had to choose the values of y and the lattice sizes L for 

which the calculations were to be performed, judiciously. Therefore, we first made 
an estimate of the measurability of zl Wp and of its dependence both on y and L. 
The estimates have been performed for even L in the interval L = 4-12 at 8 values 

of  y in the interval 0.05 ~< y <~ 0.5. For y = 0 the even lattices up to L = 16 have been 
used. 

To speed up the program, we have approximated the U(I)  group by Z(32) in all 
our calculations. This approximation is sufficient for the range of/3 and y values 

we are working in [10]. We have also verified by using Z(100) [14] that this 
approximation does not change the properties of the phase transition we are studying. 
Our vectorized Metropolis Monte Carlo program performs one link update every 
1.2 i~sec on the CYBER 205 with two pipelines. We have spent about 40 h of  

computer time to obtain the data presented in this paper, not counting various test 
runs and trials. 
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Fig. 4. Hystereses obtained in thermal runs on a 124 lattice• Each data point represents 960 Monte Carlo 
sweeps at fixed/3. The hysteresis at 3' = 0,25 is shown twice, allowing the comparison of ditierent vertical 

scales in figs. 4a and 4b. 

As f rom ear l ie r  work  [15, 16] the  pos i t i on  o f  the phase  t rans i t ion  l ine fiT(T) is 

k n o w n  on ly  with  insufficient  prec is ion ,  we first m a d e ,  for  each  fixed va lue  o f  3', 

re la t ive ly  fast  t he rmal  runs in fl in bo th  d i rec t ions  a t t empt ing  to p r o d u c e  the 

hys tereses  on  an  84 lat t ice.  Thei r  pos i t ions  and  widths  p r o v i d e d  an i m p r o v e d  

k n o w l e d g e  o f  fiT(T), pe rmi t t ing  new, be t te r  pos i t i one d  the rmal  runs  with smal le r  

s teps in /3 and  a la rger  n u m b e r  o f  sweeps  pe r  step.  The  resul t ing  hystereses  for  

T ~> 0.05 on  a 124 la t t ice  with 960 sweeps  per  po in t  are shown in fig. 4. As expec ted ,  

bo th  the  heights  and  the widths  of  the  hys tereses  decrease  wi th  dec reas ing  T. One 

can es t imate  za Wp by de t e rmin ing  the heights  o f  the  hys tereses  at thei r  m i d d l e  points .  
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The precision of  this procedure is insufficient, however. The fluctuations of  Wp 
increase with decreasing 7, in particular on the hot (more disordered) branches 
(lower values of  Wp), indicating long time correlations and increasing correlation 

length. 
On smaller lattices the hystereses get even worse, and for smaller y they cannot 

be produced with reasonably small fluctuations at all, since the system starts to flip 
between two metastable states. For y = 0 this happens even on a 124 lattice. In these 
cases it is better to perform long iteration runs at fixed fl and to plot the distribution 
of  the values of  Wp averaged over l0 successive configurations. An example of  such 
a plot for y = 0.15,/3 = 0.887 on a 44 lattice is shown in fig. 5. The doubly peaked 
structure of  these plots has been used for an estimate of  AWp from the distance 
between the peaks, again with a rather poor  precision. 

From these estimates of  AWp and from the evolution of Wp during the Monte 
Carlo iteration, which has been recorded in all our calculations, several observations 
can be made: 

(i) I f  for a given y on a lattice of  some size the flips between metastable states 
occur frequently, the calculation of A Wp will be rather imprecise and even a 
substantial increase in the iteration time does not improve the result. Only an increase 
of  the lattice size, which suppresses the flips, helps. 

(ii) As far as the estimated values of  A Wp are reliable, they mostly show a decrease 
of  AWp with the lattice size. At y = 0  the decrease from L = 6  to L= 16 is about 
50% (figs. 3 and 4b in ref. [14]). For larger y the decrease gets smaller and for 
y i> 0.2 A Wp does not seem to decrease any more for L/> 8. 

4/.'. LATTICE. r~ = • 887, . ( :  .150 
N (Wp) ~ ~ ~ , , 

2OO 

150 

100 

i i 

.45 .50 .55 .60 .65 .70 .75 

Wp 

Fig. 5. Distribution of the values of Wp in a Monte Carlo run of 57 600 sweeps at ~ = 0.887 and y = 0.15 
on a 44 lattice. Each value of Wp is the average over l0 successive configurations. 
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Fig. 6. Estimates of the discontinuity A Wp based mostly on the height of the hystereses on a 12 4 lattice, 
shown in fig. 4. For 3' < 0.2 the values of A Wp lie above the power law curve, indicating a finite size effect. 

(iii) We have made  several at tempts to extrapolate the values o f  A Wp to L = 

for 3' fixed at some value in the interval 0 ~< 3' < 0.2, either by plott ing AWp as a 
funct ion o f  L or  as a funct ion o f  the width o f  individual peaks in the doubly  peaked 
distributions (this width should  approach  zero for L--> ~ ) .  As any extrapolat ion 

requires reliable and precise data  in a b roader  range o f  L, the difficulty o f  obtaining 

such data for  smaller L prevents such extrapolat ions in practice. 

(iv) From all our  estimates o f  AWp we show only the values obta ined on 124 

lattices in fig. 6. We stress that both the systematic and statistical errors in these 
estimates are not  under  sufficient control.  Nevertheless,  we have compared  them 
with the power  law (1.2). As seen in fig. 6, the five points with 3'>~ 0.2 obey the 
power  law quite well, whereas for 3' < 0.2 the values of  A Wp are clearly too high. 
This suggests that  for L = 12 the asymptot ic  values o f  A Wp for 3' < 0.2 have not yet 

been achieved and the deviation f rom the power  law is caused by finite size effects. 
From these observat ions we have drawn the conclus ion that there is a fair chance 

o f  calculating A Wp precisely and to demonst ra te  its independence  o f  L for 3'/> 0.2 

and on lattices L ~> 8. We have chosen the values 3' = 0.2, 0.25, 0.3, 0.4, 0.5. Higher  
values of  y, for which the calculat ion would  be very easy, are o f  little use for an 
extrapolat ion by means o f  the power  law (1.2) which is assumed to be valid only 

in the vicinity o f  the tricritical point. 

4. Study of the hysteresis branches 

For a precise calculat ion o f  A Wp at a phase transit ion point  /3T it is necessary to 
determine the dependence  o f  A Wp on /3 for fixed 3/in the vicinity of/3T- AS /3x is 
known with finite precision only, the knowledge of  this dependence  allows us to 
determine the error in AWp caused by the uncertainty in /3T and may eventually 
indicate the necessity to improve the value of/3T. 

We have performed high statistics thermal runs on an 8 4 lattice at all 5 values of  

3, chosen in sect. 3 above. For  each 3, the range o f  values o f /3  and the steps in /3 
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Fig. 7. The hysteresis branches obtained in high statistics thermal runs on an 84 lattice. The branches 
are not parallel and their slopes, listed in table 1, increase with decreasing 3'. 

have been chosen so that each branch of the hysteresis has been covered by I0 
points. At each point 4800 Monte Carlo sweeps have been performed,  starting on 
the stable side of  each branch with the corresponding hot or cold initial configurations 
and throwing away the first 2000 sweeps. Knowing the positions and widths of  the 
hystereses from previous runs, we have terminated the high statistics thermal runs 
on the metastable sides of  the branches shortly before the transitions occur. Points 
containing jumps from the unstable to stable states would be of  no use. Some 
branches have been calculated several times, starting also on the unstable side of  
the branch or with different random number  generator seed. 

The resulting hysteresis branches are shown in fig. 7. They have several important 
properties: 

(i) The cold and hot branches at any 7 are not parallel, the hot branch (the lower 
one) is steeper. 

(ii) The slopes of  both branches grow rapidly with decreasing 3'- Fortunately, 
their difference grows much slower. The values of  the slopes are listed in table 1. 

(iii) Thermal runs on both branches show very long time correlations. This is 
illustrated in fig. 8 showing several thermal runs for 7 = 0.3. Runs differing in the 
seed of the random number  generator can produce distinctly shifted branches. 

The difference in the slopes of  the cold and hot branches does not allow us to 
determine A Wp simply from the distance of the branches with sufficient precision. 

5. M i x e d  start runs 

It has become apparent  that the key to precise values of  AWp lies in a precise 
location of  the phase transition points fiT(Y)" For 7 = 0 . 2  and 7=0 .25  on a 124 
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TABLE 1 

Summary of numerical results for the phase transition in the/3-3'  plane 

~T Slopes of Wp on A Wp 
± syst. cold/hot cold/hot ± syst. 
error branches branches error 

0.50 0,702 
±0,001 

0.40 0.759 
±0.001 

0.30 0.816 
±0,002 

0.25 0.846 
±0.002 

0.20 0.877 
±0.002 

0.15 0.909 
±0.002 

0.10 0.942 
±0.002 

0.05 0.977 
±0.002 

0+00 1.0106 
4-0.0018 

-0.05 1.045 
+0.003 

-0,10 1.084 
±0.003 

-0.15 1,126 
+0.002 

1.2 0.802 0.295 
2.3 0,507 +0.001 
1.7 0.760 0.218 
3.0 0.542 4-0.001 
1.9 0.719 0.150 
3.6 0.569 ±0.003 
2.5 0.702 0.119 
4.2 0.583 4-0.003 
2.9 0.689 0.096 
4.8 0.593 4-0.004 
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Fig. 8. Several high-statistics thermal runs at 3' = 0.3 on a n  8 4 lattice. They show very long time correlations 
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Fig. 9. The mixed start configurations are produced by the glueing of two metastable configurations. 
The layers of cut plaquettes are cooled by iteration of the hot (more disordered) branch part of the 

glued configuration. 

lattice the hystereses are sufficiently narrow to yield/3T with an error of  about 0.002. 
However, for 3' ~> 0.3 they are too broad. We have succeeded to improve the values 
of fiT(Y) substantially by the following mixed start run procedure: 

For a given % a value of  fl is chosen approximately in the middle of the hysteresis. 
For this/3 a pair of configurations in metastable thermal equilibrium is produced, 
one on each branch of the hysteresis, by suitable thermal runs. Then the configur- 
ations are cut perpendicularly to one of the lattice axes next to the middle point of 
this axis. The larger part of the configuration from the cold branch is glued together 
with the smaller one from the hot branch. The resulting configuration thus consists 
of  (½L+ 1) cold and (½L- 1) hot branch configuration layers of link variables (fig. 
9). The glueing produces two layers of cut plaquettes containing links from different 
configurations. These two layers are therefore disordered, making the mean value 
of  Wp in the glued configuration, in spite of unsymmetric cutting, closer to its value 
in the hot branch configuration than in the cold one. This is repaired by performing 
a few dozen sweeps on the hot branch part of  the glued configuration only, with 
the cold branch part acting as a fixed boundary condition. This moves the mean 
value of Wp of the configuration approximately to the middle position between the 
cold and the hot branch values. 

This cooling of the disordered layers produces a configuration which contains 
germs of the metastable equilibrium configurations on both branches and gives an 
approximately equal chance to both of them to override the whole configuration 
during the following iteration. The equality of chances is important, since any bias 
might shift /3T(Y), determined in this way on a lattice of a size not substantially 
larger than the correlation length. We have used eight configurations glued in this 
way (each axis has been cut twice, unsymmetrically) from a pair of original cold 
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Fig. 10. M i x e d  start runs on  an 84 latt ice at two  s l ight ly  different va lues  o f / 3  in the hysteres is  region 
for  7 = 0.5. A t / 3  = 0.700 (a) the  sys tem evo lves  p r e d o m i n a n t l y  towards  the hot  branch.  At /3  = 0.701 (b) 

nei ther  o f  the branches  wins ,  w h i c h  indicates  that the phase  trans i t ion  point  has  b e e n  reached .  The  e ight  
runs at each  v a l u e  o f / 3  start f rom the m i x e d  conf igurat ions  p r o d u c e d  by eight  different cuts o f  a pair  

o f  metas tab le  conf igurat ions .  

and hot branch configurations and observed the development of  the mean value o f  
Wp for a few hundred sweeps. Then /3 has been slightly changed, a new pair of  
equilibrium configurations has been produced and the mixed start procedure has 

been repeated. 
For most  /3 values inside the hysteresis region nearly all glued configurations 

develop during the iteration into the same direction, towards one o f  the branches. 
But in a small interval o f / 3  they behave erratically, neither of  the branches wins. 
We assume that /37(3') lies within such an interval obtained on 84 or 104 lattices. 
For example for 3' = 0.5 the location of  the transition point, obtained in this way, 
is /3T(0.5)= 0.702+0.001.  The (systematic) error is substantially smaller than the 
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Fig. 11. Detailed picture of a part of the phase boundary line (see fig. 3), separating the confinement 
and the Coulomb phases. The curve starting at the tricritical point is the best fit to the data by means 
of the power law (2.8). The value of the crossover exponent ~ given in eq. (1.4) was determined from 

this fit. 

wid th  o f  the  hysteresis ,  which  is abou t  0.04. In  fig. l0  we show an e xa mple  o f  two 

mixed  start  runs wi th /3  differing by  0.001 only.  

Fo r  y < 0 . 3  the mixed  start  runs on a 104 lat t ice do not  improve  on the a l r eady  

sufficiently smal l  uncer ta in ty  o f  fiT(3') ob t a ined  f rom the hystereses  on a 124 lattice.  

The values  of /3T(Y) ob t a ined  dur ing  our  ca lcu la t ions  are  s u m m a r i z e d  in table  l 

and  in fig. 11. 

6. Localization of the tricritical point 

The very prec ise  knowledge  o f  the phase  t rans i t ion  po in ts  fiT(Y) makes  it poss ib le  

to pe r fo rm,  at a given y, long i te ra t ion  runs at fiT(Y) on bo th  b ranches  and  to 

ca lcula te  prec ise ly  the values  of  Wp and  thei r  difference.  Ac tua l ly  we have of ten 

p e r f o r m e d  2 or  3 such runs at fl s l ightly different  f rom fiT(Y) (by abou t  +0.001) 

and  ca lcu la t ed  Wp at fiT(Y) by  means  o f  the  known  s lopes  o f  the branches .  This 

increases  the  s ta t is t ical  i n d e p e n d e n c e  o f  the  da ta  and  d imin ishes  a poss ib le  system- 
at ic  e r ror  which  might  be caused  by the smal l  but  still finite unce r t a in ty  o f  the values  

o f  fiT(Y)- 
We p e r f o r m e d  these runs on 84-144 even lat t ices with the fo l lowing  total  n u m b e r  

o f  sweeps  on each lat t ice:  

for  L = 8 600 000 s w e e p s ,  

for  L = 10 370 000 s w e e p s ,  

for  L = 12 74 000 s w e e p s ,  

for  L = 14 98 000 s w e e ps .  
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Fig. 12. Values of Wp = (cos 0p) obtained at the phase transition points during Monte Carlo runs in both 
metastable states. The indicated errors are statistical. In most cases they are of the same size as the 
crosses and circles, which denote the hot and cold branch results, respectively. The L = 8 data on the 
hot branch are distorted by brief transitions into the other phase during long Monte Carlo runs. Therefore 
the L = 8 data have not been used for the calculation of the averages of Wp over the runs on various 

lattices indicated by the dashed lines. 

The n u m b e r  of the sweeps performed at each y increased gradual ly  with decreasing 

y. At y = 0.2 the i terat ions have been  about  twice as long as at y = 0.5. 

The results are shown in fig. 12. Each poin t  represents an i n d e p e n d e n t  run. The 

indicated  errors are purely  statistical, calculated as follows: each run  is divided into 

several intervals longer  than  the observed t ime correlat ions,  whose length did not  

exceed 1000 sweeps for all four  lattice sizes. These intervals are abou t  5000 sweeps 

long on an 84 lattice, 2000 sweeps on a l0 + lattice and  1000 sweeps long on 124 and  

144 lattices. Except  for the 144 lattice, their  length  decreases p ropor t iona l ly  to the 

inverse volume,  so that  they represent  statistically comparab le  measurements .  The 

scattering of the values of  W o averaged over these intervals has been  used to calculate 

the statistical error by the usual  formulas.  

As seen in fig. 12, for L ~  > l0 the scattering of the points  at each L is comparab le  

to the statistical errors. This checks the consis tency of the results f rom different 

runs.  The data  tu rn  out to be i n d e p e n d e n t  of the lattice size L for L/> l0 at all y/> 0.2. 

C o m b i n i n g  the runs at fixed L and  calculat ing the difference be tween  the cold 

and  hot branches ,  one obta ins  the d iscont inui ty  AWp as a func t ion  of L (fig. 13). 

Again,  A Wp is i n d e p e n d e n t  of the lattice size for L/> 10. The smaller  values of A Wp 

on an 84 lattice are caused by attempts of the system to make a phase flip dur ing  

the i terat ions,  as can be seen from the record of the i terat ion history. Therefore we 

have not  used the 84 lattice data. For tunate ly ,  all the runs for L ~> l0  proved stable 

on both  branches .  

By averaging AWp over the results ob ta ined  on 10 4, 12 4 and  14 4 lattices, we get 

the final values of A Wp. They are shown in fig. 14. The indicated  errors are systematic,  
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Fig. 13. The discontinuity A Wp as a function of the lattice size L. The L = 8 data are distorted by brief 
phase transitions. The indicated errors are statistical. This figure demonstrates the independence of  A W~ 
of  the lattice size on 104, 124 and 144 lattices. The dashed straight lines show values of  AWp averaged 

over the lattices of  these three sizes. 

caused by the finite precision of the values of  flT( 'Y),  and have been calculated from 
the differences of slopes of  the hysterese branches. The statistical errors, calculated 
by the above procedure, are smaller by a factor of about 6. 

The form of  the y-dependence of A Wp with its apparent curvature already suggests 
that A Wp vanishes at some small negative y = ya-cP. A more precise localization of 
the tricritical point requires validity of the power law (1.2) in the entire region 
YrcP~ < y~<0.5. In order to test this assumption, we have performed several fits to 
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If 

Fig. 14. The discontinuity AWp of  (cos 0p) at the phase transition points ~T(Y) for 5 values of  % 
determined by Monte Carlo calculations on 104-144 lattices. The indicated errors are systematic, caused 
by a finite precision of  the phase  transition points. The curve is a fit to the data by means  of  the power 

law (1.2). 
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the 5 data points, omitting one or two of them at lower 3'. The resulting values of  
3'TCP varied in the interval (-0.16,  -0.06).  This variation is of  the same size as the 
errors associated with a M I N U I T  fit to all 5 points. This agreement verifies that the 
data is consistent with the power law (1.2). The values of  the parameters determined 
by the M I N U I T  fit are 

3'vcP = -0.11 ± 0.05, /34 = 1.7 ± 0.2, A -~ 0.68. (6.1) 

The quoted systematic errors are estimates based on variations of  the fit procedure 
mentioned above. The resulting curve is shown in fig. 14. The data is fitted by the 
power law curve very well and supports the assumption of the validity of  the power 
law (1.2) in the whole region 3'TCP < 3/~< 0.5. To check our result, we have performed 
the calculation and the extrapolation also for the discontinuity of  (cos 20p) and 
obtained the same value for 3'TCP- 

From the known dependence of the phase transition points /3T on 3' (table 1) the 
location of the tricritical point, eq. (1.3), has been derived. With this information 
at hand, we have also fitted the shape of the phase boundary  using the expression 
(2.8). The fit is shown in fig. 11 and the value of the crossover exponent  ~b is given 
in eq. (1.4). 

A negative value of  TTCV means that the phase transition in lattice QED with 
Wilson action is of first order. More important,  the growth of correlation length 
observed in this version of lattice QED, is caused by the vicinity of the tricritical 

point. The associated exponent  vt--- 0.3 describes the growth of the correlation length 
at least in the interval 0.9</3 </3T[8, 10-14]. This exponent is very probably the 
tricritical exponent  and not the critical one. The critical exponent  v of  lattice QED 
is not yet known, since also the phase transition in lattice QED with Villain action, 
for which several calculations have been performed [ 11, 17], is presumably influenced 
by the tricritical point [17]. 

7. Discussion 

Assuming the validity of  the power law (1.2), we have localized the tricritical 
point in lattice QED with extended Wilson action (1.1) by Monte Carlo simulation 
with a precision that allows us to conclude that the deconfining phase transition in 
the case of  the Wilson action is of  first order. 

We have found that the discontinuity A W  v is well described by the power law 
(1.2) for 0.2 ~< y ~< 0.5. This supports  the use of  the power law for an extrapolation 
of A Wp in y down to YrcP- Nevertheless, one can think of logarithmic corrections 
and /o r  of  non-leading power law terms. Even in the case that such corrections are 
present, the shape of the data in fig. 14 indicates that YTCV is negative. The precise 
location of the tricritical point might change, however. 

Our results are consistent with the properties of  tricritical points as they are known 
from the study of systems with global symmetries. From the point of  view of lattice 
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gauge theories, several interesting questions arise: how is the presence of  a tricritical 

point reflected in the properties of  the system in the Coulomb phase where the 
correlation length is infinite? How much do the critical and tricritical exponents 
differ? Where are the crossover regions? Furthermore, it would be interesting to 
generalize the action (1.1) by introducing a new relevant coupling parameter  and 
to study a three-dimensional phase diagram analogous to fig. lb. 

The U(1) phase transition has always been regarded as a prototype of the 
deconfining phase transitions in lattice gauge theories. Its properties, studied in our 
work, thus might be of  some relevance to numerical studies of  the deconfining phase 
transitions both at zero and high temperature. 

It is obvious that a growth of the correlation length when the phase transition 
point is approached,  does not necessarily mean that the transition is of  higher order. 
The correlation length may grow on a path towards a first-order phase boundary if 
the distance to the tricritical point on the path decreases. This is what presumably 
happens in lattice QED with Wilson action, where the string tension jumps to zero 
from some finite value [14]. Such a jump can, however, only be seen on lattices 
larger than the maximal correlation length. Earlier warnings are provided by the 
occurrence of  metastability phenomena.  

On the other hand, these metastability phenomena do not prove that the transition 
is of  first order. They might be just a finite size effect. We have observed double 
peaks, not unlike those shown in fig. 5, on an 84 lattice even for 3' = -0.5.  Another, 
very drastic example can be found in ref. [21]. Furthermore, the metastable behaviour 
might be difficult to observe on small lattices, where transitions between metastable 
states are frequent. An increase of the lattice size makes the metastability more 
apparent,  but simultaneously the distance between the metastable states, e.g. the 
latent heat or A Wp in our case, may decrease with lattice size. What actually happens 
on an infinite lattice is one of the tricky questions typical for tricritical points. 

In spin systems the most convenient method to overcome the difficulties related 
to the vicinity of  a tricritical point seems to be the Monte Carlo renormalization 
group method [21]. Hopefully, this method will be helpful also in the tricritical 

regions in lattice gauge theories. 

We would like to thank V. Dohm, D.P. Landau, H. Miil ler-Krumbhaar and G. 
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