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New order parameters lnvoiving ratios of gauge invariam correlation functions for disting~ishing different phases - 
cenfined/sc~eened or free charges - in systems with lattice gauge fields coupled to mailer fieids have beer~ proposed by 
Freden.bagen and Marcu and by gricmont and Fr~hhlich. Our Monte Carlo analysis of those quan~ilies for an SU(2) gauge 
fieid coupled to scalar metier fields in the fundamental representation supports the theoretically expected behaviour. Also a 
new mass parameter determining th~ exponential decay of two-point functions is observed. 

In euclidean gauge theories on the ~attice the 
potential V(R) between two external static charges 
can be derived from the Iarge°T behaviour of the 
expectation value 

w(r, R)-- <tr 

Here U(E.'~, denotes the Wegner-WHson loop [1] of 
path-ordered products of gauge group valued link 
variables U e on a rectangular contour with length 
R in spatied and 1ength T in (euclidean) temporai 
direction, if  the potential 

i 
V ( R ) = -  lira ~n W{T, R) (2} 

behaves tike ~R for large R (area law). then one 
aas confinement of the charges associated with the 
gauge group, bu'.. if V(R) tends to a constant 
V(¢o)< co {perimeter law), then there are no 
~ong-range forces between the charges and they 
may be free. Thus, for pure gauge theories the 
~ualitativeiy different behaviour of W(T, R I for 
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large T and R makes it possible to use >V(T, R) 
as an order parameter which distinguishes be- 
tween the two phases of confined and free charges, 
respectively. 

if the gauge fields are coupled to matter fietds, 
then the Wegner-Witson loop is no longer useful 
as an order parameter, because it also has perime~ 
ter-behaviour in the confinement/screening phase 
[2,3]~ The physical reason is that now dynamicai 
particle-antiparticIe pairs of the matter fields can 
be created from the ground state and the charges 
of these pairs can shield the external charges, if 
the matter fields belong to the fundamenta~ repre- 
sentation. The construction of new order parame- 
ters testing for the existence or non-existence of 
free charges in the presence of matter fields [4-7i 
is severely restricted by the fact that there is no 
spontaneous gauge symmetry breaking in gauge- 
invariant lattice field theories [8]. On the other 
hand, there is an intimate relationship between 
confinement and Higgs mechanisms [9,i0,3], if the 
scalar matter fields are in the fundamenta~ repre- 
sentation of the gauge group, a property which 
makes it possible to analyse Higgs mechanism and 
confinement by means of the same order parame~ 
ter. 

tn systems with iocai gauge invariance there is 
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no long-range order and gauge invariant two-point 
functions decay exponentiaiiy with the distance 
[11]. But if the mass parameters which determine 
this decay are the same for two different correla- 
tion funcuons in one phase, and different in 
another, then the ratio of such furmtions may 
provide a suitable order parameter. The same hoids 
if {he power law corrections to the exponential 
decay are different for different phases. Such ideas 
are behind the proposals of Fredenhagen and 
Marcu [6] and of Bricmont and FrO, hlich [5] for 
order parameters which test for confined/screened 
charges or free ones in lattice gauge theories cou- 
pled to matter. 

Fredenhagen and Marc~ proposed :;he foi!ow- 
ing limit 

R~oO 

,~vv," !R, T )=  GR(R, T)/W(ZT, R) *'/z (3) 

of the ratio of the gauge-invariant two-point func- 
tion (,  o ~ R , '  r ) =  r ~ i  e,, (4) ® T u  I ; .~ 

and the square root of the expectation vab.e 
W(2T, R) of the Wegner-Wi!son loop. Here 4)~ + 
and ~>. denote the matter fields - we consider 
only scalar ones - carrying a gauge charge and 
anticharge, respectively. U(~---]) denotes the 
path-ordered product of link variabies along a 
rectangular path from x to y as indicated. Pictori-, 
aliy we can write 

,~Fv(R, T ) =  / 2 r ~  (5) 

In the same way as W(K R) measures the 
response of the gauge fields to an externat 
charge-anticharge pair separated by a distance R, 
the function GR(T, R) measures the response of 
the coupied system of gauge and matter fields to 
such an external pair [6], now with a dynamical 
charge and anticharge "sitting on top" of their 
corresponding external partners at the spatial 
points x and y. 

tn the case of Z 2 gauge fields coupled to Z z 
matter fields in dimensions D > 3 Fredmahagen 

and Marcu proved that the order parameter P~M 
has a vaiue ¢ 0 in the confinement/screening 
phase and vanishes in the phase with free charges. 
They argued that this behaviour shoutd hold for 
more geveraI gauge groups, the essential argument 
being the fo!lowing: The charge-anticbarge 
"string" state 

R 

l % ) = < u  ri I e, ,10> (6) 
y 

is gauge invarmnt. If one moves one of the charges 
to infinity, then either the remaining charge be- 
comes free and the resuking free-charge state is 
orthogona! to the ground state 10) which has 
charge 0, or the charges remain confined or 
screened (i.e. the confining flux tube becomes 
fragmented) and the state l g'e) stays in the 
vacuum sector so that (0 i g'e)4=0, The de- 
nomina to r  W(2T, R)~/a in the funct ion 
pvr, a.(R, T)  results from a regularization of the 
norm (q~R [ " ~ )  ''/z. 

in addition Fredenhagen and Marcu proved 
ana~ytica~]y for the Z 2 Higgs modeI that in a 
region of the screening/confinement phase their 
order parameter ,o <vM coincides with &a~ of Bric- 
mont and Fr/3hiich [51, which is defined by 

P B F :  iim Ps>, 
T ~ o o  

~ ,~  = a ~ ( r ,  R = o ) / a ~ ( 2 r ,  R = o) ,  (7) 

where 

< y i  
O r (T ,  R ) =  e+C'~r ~,, . 

-" i x | 
l 

(8) 

Notice that in an euclidean field theory we have 
Gr(T, R)=Ga(T, R). ConceptualIy there is a 
difference however, because we can - in the tem- 
poral gauge, where Ux,,= o = 1 - translate the fieid 
variabies along the euclidean time axis by means 
of the trans%r matrix e x p ( -  Ha), where a is the 
lattice constant. Thus we have 

\ / 

×exp(H,~) ~,, 10>, 
x = (0, x ) ,  y = (0, y ) ,  r =  ,,~,, (9a)  
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(gb) 

In the limit R ~ m, T = R/2 clustering prop- 
erties can lead to a cancellation of the contribu- 
tions of those pieces of the paths in the ratio (5) 
which are parallel to the T = 0 hyperplane and we 
may have, approximately and symbolicMly, 

Eq. (9b) suggests that the mass parameter 

• ~ =  - r~im - ~ *  ~n O r ( T ,  R),  R fixed (10) 

can be interpreted as the lowest energy of fields 
screening an externM charge, in the language of 
the constituent picture b~ may be seen as the 
energy of a dynamical -+-a-~: "4e bound by an exter- 
n~, charge. The R-independence of a -odows from 
the fact that in eq. (gb) the same ....... ~,~ . . . . . .  
states contribute for at1 R. This in te~reta t ion 
means that 2> is equal to the value of the screened 
potential in eqo (2) for R --+ ~ ,  

= ½ v ( R  (11) 

This re'.,'ado~ship between the decays of the two- 
~oint function and of ~ "* .~ t_.',e W~.=son loop makes ~, 
plausible that the ratio (5) of two exponentiaIly 
decaying functions may be non-zero. 

An iiiustradve e x a m p i e -  not to be taken liter- 
ally, however - for such a behaviour is Debye-  
H~ackel screening [t2]: Let Vo(r) be a potential 
associated with an external charge q = 1 wNch 
behaves like I / r  in the neighbeurhood o f  the 
origin r == 0. If such a test charge is brought into a 
piasma containing an equat number of positive 
and negative charges, then the po'~entiat ga(r) in 
general wilt be screened, say by a factor e x p ( -  ~r)  
[in the. Debye-Hgcke!  case ~=(g¢rq2n/kT) ~/2, 
where n is ~ t~e density of positive charges in the 
plasma]. The potential difference induced by a 
cloud of opposite charges in the neighbourhood of 
q is ~ ( r ) =  ~ ( r )  i e × p ( - ~ r ) -  I~, yielding K~(0) 
= -p. ,  ~ ( e ~ ) = 0 ,  or, if we renormalize F~.(r) 
such that V~(0; - 0, then t/;,.(~e) = a° Thus, if we 
bring a second test charge from infinity to r = 0, 
then its energy gain associated with the potentiai 
Vc~ " is ~. if  we now, heurisficaliy, identify the 
constant V(ee) obtained from eq. (2) for the extero 
nai charges in the screening region with 2K~(~} 
= 2~s, then the lowest mass appearing in the two- 
point functions G~(R, T )  should be ~ = V(~a)/2. 

R 

which iliustrates why the two order parameters 
OFF and P~M may coincide in the screening/con- 
finement phase. 

Is it ._no.: clear, however° even in the Z 2 Higgs 
model, whether the ~wo order ~arameters also 
coincide in the free charge phase, because their 
intui,:ive weaning is e,:ot the same [5,@ Whereas 
P~M measures the overlap of .:he gauge-invariant 
charge-antici~arge state -with the ground s::a~e, if 
one of the charges is sent to infinity, the two*point 
function Gr(T, R = 0) represents the bound state 
C meson"} of a dynamical and an external charge, 
both at the same spatiaI point x. 

We have investigated the differem correlation 
functions mentioned above and the properties of 
the associated order parameters p ~  and P.gv.. by a 
Monte Carlo analysis of a~ SU(2) lattice Higgs 
model in four dimensions, wid~ the scalar fie!d m 
the fundamental re.~resen.zation I13I. One of the 
advantages of this model is that the properues of 
the order parameters ,o~gv and P~M~ are no~. vet 
known anaty6ca!iy for an SU(2) group. Thus one 
obtains a genuinely new test beyond the results 
concerning the groups Z :  i5,6i and U(II  [14]. The 
mma disadvantage ~s tha~. ~he mode1 has onIy o'ae 
phase [t0,3~, the screening/confinement phase. 
which, however, is partiMly separated into differ- 
ent screening (Higgs) and confinemem regmns, 
very similar to the single phase of a fluid, which 
comains vapour and liquid reg~.onso 

The mode*, is defined by the following action 
[13,15]: 

P 

X ~  

X X 
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where U,,,, Up ~ S U ( 2 ) a r e  the usuai link and 
plaquette variables. The two-component Higgs 
field ~ is conveniently parametrized by a pair 
(#, ~), where p is the length of the f idd @ and 

The values of the ga,age conpling fi = 4 / g  2, the 
hopping parameter ~. and the coupling X of the 
qaardc interaction of the Higgs field determine 
the state of the system° The phase structure is 
quMitativeIy as foliows [13,I0,3,15j: 

The three=dimensional space of parameters (fi 
> 0, ~: >i O, X > O) contains a two-dimensionM 
surface where phase transitions between the con- 
finement and screening regions take place, One 
boundary of this surface is a critical line in the 
plane f i =  oo, where, if on keeps p fixed (h = oo), 
the model reduces to a SU(2) x SU(2) = O(4) Hei- 
senberg spin system, for which the existence of 
phase transitions has been proved rigorously [~6}. 
i t  is essenti± that the surface of phase transitions 
in (fi, ~, X)~space does not divide thi's space into 
two separate parts but has a boundary inside, 
leaving a "hote" which aiiows for analytical con- 
tinuations of physical quantities from below the 
surface to above. However, the behaviour of these 
quantities might be quite different on different 
sides of the surface. As the system reduces to a 
pure gauge theory for ~, = 0, with a single confine= 
meat phase, its behaviour for small ~ and finite fi 
and k is "confine:,nent-iike", whereas for farge ~, 
beyond the phase transition surface, it is "screen- 
ing-like". 

Our Monte Carlo analysis has been done on a 
164 lattice with periodic boundary conditions at 
fixed values of 7v = 05 and f i=  2.4, but for differ-- 
eat ~. The confinement/screening transition oco 
c~rs here at ~er = 0.2590 ± 0.0005. At each ~ vaIue 
we performed between 15 000 and 28 000 standard 
Metropolis iterations :using a vectorized checke> 
board a':.gorithm. The starting configurations were 
~aken from runs a~ nearby values of ~ and ~he first 
2000 iterations were discarded for thermalisation. 
Measurements were taken after every 50 iter- 
ations. 

The shape of the potentiM V(R) was de- 
termined from the slope of In W(T, R) as a func- 
• ;ion of T for T > 4 ,  according to eq. (2). The 
string tension o(~), determined from fks corre- 

0.1 

16 4 LATTICE 

+ 

O, £55 O, £8 O, ~6B O~ ~8 O. £8S 

Fig. l. String tensio:~ ~ as determined ~'rom the fits to the 
potentials. The arrow denotes the value of e for f i =  2.4 and 
.~ = 0, [17}. Siighdy negative Vatues of e indicate that for iarger 

the parametrization (14} becomes inappropriate. 

sponding to 

V(R) = C + ~R - ~ / R ,  0 4 )  

is displayed in fig. I, it clearly shows the "break- 
down" of the Iinear term in the potential for 

The mass parameter a can be determined, see 
eq. (i0), from the asymptotic behaviour of 
GT(T, R) as a function of T with R fixed. We 
find that the resu!ting values of ~ are not only 

4 

o.s T 

O.a, 

0.2"~ O,~ O.agS O,a8 0.2B5 

Fig. 2. Tile va!~es of ~ (crosses), defined by eq. (]5). For 
comparison we include values of  V(R = 7) /2  (circies). 
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insensitive to the choice of R but that in addition 

GT(T,  R )  ~ C ~  R x~ e x p ( - ~ T  ~ 

depends only o~l the length of the p a t h / !  .~E-]~ ~. F ig  
2 shows the vatue of #:(~) obtained for different 
values of ~ with R = Io 

We wouid like ~o stress that #(~)  differs sub° 
stantia'~y from the Highs boson and vector boson 
masses which have bees calculated recently in the 
same model for the same values of X and # [i8]. 
Th~s ,~ is a new mass parameter  characterizing the 
spectrum of lattice Higgs models. 

In the same figure we have plotted the values 
V(7)/2 of the .ootentiaI V(R)  for the iarges~ R 
reasorlably considered o~ a 16 4 !attica. t t  is obvi- 
ous that p.= V(7)/2 (eqo 11) to a remarkab'.:e 
degree of accuracy for ~ > ~ r ,  that is ~o say, in 
the screening regiozl, in ag:eem ..... w,t~ &eo.et~cal 
discussions above. In the coufinelaent region the 
situation is quite d..~fere .... which had ~o be exo 
pec ted, because there the 5near part  of the poten- 
tial has not yr.: been sc.,,~nee and the_. po*oe.:t~a., ~ " ' 
stilI grows. The expected perimeteroiaw behaviour 
of W(R,  T)  for 1argo T is no.'. yet realized on a 
i 6 ~ tattiCeo 

The eq~iality of ~ and V(7)./2 for r, > ~?v and 
the perime,'_er behaviour of both Gr(T,  R k  eq. 

(i5), and of the Wilson Ioop are the reasons for 
the predicted behavioar p~ in ~ =# 0 the screening 
region. More generatiy, fig. 3 shows the function 

= [  Rk 

Ti + T2 = R , I T: - T2 ~<1, ( i6)  

plotted with respect to the perimeter P = 4R of 
the Wilson loop for different values of ~. The 
slight generalization (16) of the ratio p ~ ( R ,  T)  
ia eq. (5) has been imroduced i~ order to be able 
to plot p v~ a~so for those cases, where R is an 
odd multiple of the tastier constant. The plot 
shows a remarkable difference ir~ the behaviour of 
p~4 in the confinement and screeaip.g regions: 
Whereas P~r,~ decays to a constant rather fast in 
the screening region, it drops practicaIty m 0 in 
the confirlemerit region above i ~ >I 20 on our 164 
1attica. This be~aviour can be interpreted si~51arly 
as that of b~ and V(7) in fig. 2: For  R not too large 
and for ~ in the confinement region the potential 
sti!l Nses i in~r ly  because hadronization by means 
of pair creation has not ye~ set in and the charges 
appear ~nshielded at the distance we are abIe to 
consider on a i6 ~ iatticeo However, # ~ ( R ,  T)  is 
expected to increase again to a constant 4= 0 for 
sufficientiy large No 

I 'i ' ' 3 '  ~ '  ' " ' ~ - ~ - ~ '  ' I : : ' ~  . . . .  ~': '  ' ' ' i ' - ~  

0,81 

\ , e~ K = 0,281 / 

5 10 15 2Q 2S 30 
P 

Fig. 3. The values of pFM(R, T~, T2), defined by eq. (I6), for 
T~ + T 2 = R, pi.otted agains~ ~he perimeter of ~he Wilson loop 
( P  = 4R). The eu~es represent fits according to eq. (17). 

0 , 8  

O,B 

0,4 

&:  ~FM 

I '  d S ' '  I ' '  "~ ' t q 

4 
4 

1 

G~ 7=55 0, ~,5 O, 2,55 O, 2E~ 0.285 

F&g. 4. The asymptotic values of .c,~v and PFV, namely AaF 
(as~.edsks), AFM (triangles), from fits (i7), and for .~ >/0.263 × 
p F v ( g  = 6, T = 6) (squares). 
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The fits of p F ~ ( P )  in fig. 3 are made with the 
help of the ansatz 

pF~=/F~+BFM e x p ( - C F M Y ) ,  f o r P > ~ 8 .  

07) 

For  ~ > 0.263 the second term in (17) is not  mea- 
surabIe, since PFM is practically constant.  The 
Br i cmont -F r6hEch  parameter  pa>  eq. (7), was 
fitted correspor~dingiy. Fig. 4 finaliy shows a com- 

parison of t:~e, asymptotic  values Pa.~ ~ and  •o ~ v  as a 
funct ion of ;~. Clearly both  parameters coincide in 
the screening region, as expected on theoretical 

gre--nds. 
We conclude that the properties of the gauge 

invar iant  two-point  functions in the SU(2) model 
with scalar fields in fundamenta l  representat ion 
are in agreement with analytical predictions based 
on the screening picture of conf inement  in gauge 
theories with matter  fields° A more detailed 
account  of this work will be publ ished elsewhere. 
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