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New order parameters inveoiving ratios of gauge invariant correlation functi

ions for distinguishing different phases -

confined /screened or free charges — in systems with lattice gauge fields coupled to matter fields have been proposed by

Fredenhagen and Marcu and by Bricmont and Frihlich.

field coupled to scalar matter fiel

Cur Monte Carlo analysis of those guantities for an SU2) gauge

ds in the fundamental representation supports the theoretically expected behaviour. Alse a

new mass parameter determining the exponential decay of two-point funetions is observed.

In euclidean gauge theories on the lattice the
pmemtmi V{R) between two external static wa,fges
can be derived from the large-7 behaviour of the
expectation value

~
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W(T, R) = (ir b{arj>

Here U denotes the Wegner—Wilson loop {1} of
path-ordered products of gauge group valued link
variabies U, on a rectangular contour with fength

R in spatial and length 7 in {euclidean) temporal
direction. If the potential

1
V{R}=— im = In W{T, R) {2}

T
behaves like oR for large R {area law), then one
has confinement of the charges associated with the
gauge group, but if V(R) tends fo a constant

(o0} < co {perimeter law), then there are
long-range forces between the charges and they
may be free. Thus, for pure gauge theories the
sualitatively different behavicur of W{T, R) for

o
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large T and R makes it possible 1o use W{(7, R)
as an order parameter which distinguishes be-
tween the two phases of confined and free charges,
respeciively.

If the gauge fields are coupled to matter fields,
then the Wegner—Wﬁson ioop is no longer useful
as an order parameter, because it also has perime-
tsl-behawour in the confme-,‘ nt /screening phase
[2,31. The physical reason is that now & jz:a:mcch
particle—antiparticie pairs of th@ matter fields can
be created from the ground state and the charges
of these pairs can shield the external charges, if
the matter fields belong to the fundamental repre-
sentation. The construction of new crder parame-
ters testing for the existence or non-gxistence of

free charges in the presence of matter fislds {4-7]
is severely restricted by the fact that there is 1o
spontaneous gauge symmetry breaking in gauge-
‘qvarzanz jattice field theories (8l On the othe

and, there is an intimate re}az,ons*up between

‘.gmemenz and Higgs mechanisms [9,10, 3} if the
scaiaf matter fields are in the fundamental repre-
sentation of the gauge group, 2 property which
makes it possible to analyse Higgs mechanism and
confinement by means of the same order parame-
ter.

In systemns with local gauge invariance there is
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no long-range order and gauge invariant two-point
unctions decay exponentiaily with the distance
¢ Zf the mass parameters which determine
decay are the same for two different correla-
ion funcaom in one phase, and different in
another, then the ratic of such functions may
pro d‘* a suitable order parameter. The same holds
he power law corrections (o the exponential
demy are different for different phases. Such ideas
are behind the proposals of Fredenhagen and
Marcu (6] and of Bricmont and Fréhlich [5] for
rder parameters which test for confined /screened
charges or free ones in lattice gauge theories cou-
pied to matter.
Fredenhagen and Marcu proposed the follow-
ing limit
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w= Hm esy(R, T=1R),
R— o0

el R Ty =GR TY/WQT. R} (3)

of the ratio of the gauge-invariant two-point func-

tion
[
Gp{R, Ty={ ®JUirl 1@, (4)

and the square root of the expectaiion value
W{(ZT, R} of the Wegner—Wilson loop. Here @

nd @ denote the matter fields — we consider
only scalar ones ~ carrying a gauge charge and
anticharge, respectively. U( ) denotes the
path-ordered product of link variables along a
rectanguoiar path from x to y as indicated. Pictorni-
ally we can write

el R, T)= <TX§ k \/2 . {5}
\

in the same way as W(T, R) measures the
response of ihe gauge fields to an external
charge—anticharge pair separated by a distance R,
the function GR(7, R} measures the response of
the coupled system of gauge and matter fields to
such an external pair {6}, now with 2 dynamical
charge and anticharge “sitting on top” of their
corresponding external pariners at the spatial
points x and .

in the case of 7, gauge fields coupied o &y
matter fields in dimensions D » 3 Fredenhagen
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and Marcu proved that the order parameter p%
has a value #0 in the confinement/screenin

phase and vanishes in the phase with free charges.
They argued that this behaviour should hold for
more general gauge groups, the essential argument

being the following: The charge-anticharge
“string” state
[ R
e Ty T i ¥ {
i“j{R>—_@xU§!E ;}ﬁ):g > \6)
. /

is gauge invariant. If one moves one of the charges
to infinity, then either the remaining charge be-
comes free and the resuiting free-charge state is
mahogora‘: 10 the gfound state {0) which has
charge 0, or the charges remain confined or
screened (i.e. the confining flux tube becomes
fragmented} and the state |¥y) stays in the
vacuum sector so that (0i¥,)+# 0 The de-
nominator W{(2T, R)Y/? in the function
orm( R, T) resuh% from a regularization of the
norm (g | ¥p)/?

in addition Frﬂdenhagen and Marcu proved
analytically for the 7, Higgs model that in a
region of the screening/confinement phase their
order parameter g%, coincides with that of Bric
mont and Frohiich [5], which is defined by

fse = lim ppy,

T—o0
pBF":G%(T’ R:G}/GT‘{ZT’ R=0>7 (7>
where
[ &
g ,
(T, R)y=\ 71T 1G] (&)
N SR o
Vo= )

Wotice that in an euclidean ficld theory we have
GA{T, Ry= Gx{T, R). Concepiually there is a
difference however, because we can — in the tem-
poral gauge, where U_,_, =1 — transiate the field
variables along the euclidean time axis by means
of the transfer matrix exp{ — Ha), where o is the
lattice constant. Thus we have

R
Gr{R, T)= (01D} exp{—Hna) U(x——y}

Xexp{ Hna) &,(0),
x={0, x}, y=10, y}, T=na, {9a)
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6T, R) = (0197 U{ |}

X

X exp{ — Hna ) U“l( ! R}@x 10y,

X
{5t}
Baq. (9b) suggests that the mass parameter
p=— Hm = I G (7, R), R fixed (10)
T o0 T

can be interpreted as the lowest energy of fields
screening an external charge. In the language of
the constituent picture p may be Seen as the
snergy of o dynamical charge bound by an exier-
nal charge. The R-independence of u follows from
the fact that in eg. (9b) the same intermediate
states conmtribute for all R. This interpretation
means that Zg is egual to the value of the screened
potential in eq. {2) for B — ¢,

p=3V{R = o). {11)

This relationship between the decays of the two-
point function and of the Wilson loop makes it
plausible that the ratic (5) of two exponentially
decaying functions may be non-zero.

An illustrative example — not to be taken liter-
ally, however — for such a behavicur is Debye—
Hackel screening {121 Let ¥3{7) be z potential
associated with an external charge g=1 which
behaves Yke 1/7 in the neighbourbood of the
origin »= (. If such a test charge is brought into a
piasma containing an egual number of positive
and negative charges, then the potential V(r) in
general will be screened, say by a factor exp{—ur)
lin the Debye-Hucke! case = (Bngn/kT)?
where » is the density of positive charges in the
plasmal. The potential difference induced by a
cloud of opposite charges in the nsighbourhood of
G 18 Vi {ry= Vp{r} iexp(—pur) — 1}, vielding V(O
= —u, Valeo)y=0, or, if we renormalize ¥V, (r)
such that V,,{(0) =0, then ¥, {o0} = u. Thus, if we
bring & second test charge from infinity to r =,
then its energy gain associated with the potential
¥y ds po If we now, heuristically, identify the
constant ¥V{oo} obtained from eq. (2) for the sxter-
nal charges in the screening region with 2¥V,(00)
= Zu, then the lowest mass appearing in the two-
point functions Gp{ R, Ty shouid be p= V{en)/2.
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in the Hmit R — oo, T = R /2 clustering prop-
erties can lead to a cancellation of the contribu-
tions of those pieces of the paths in the ratic (5)
which are paraliel to the T = { hyperplane and we
may have, approximately and symbolically,

R // #lin | s\ayl s
T /‘ 2m) m—( T /zfg , {12}
| Ve
which iliustrates why the two order parameters
0%y and pFy may coincide in the screening/con-
finement phase.

Is it not clear, however, even in the Z, Higps
model, whether the two order parameters also
coincide in the free charpe phase, because their
intuitive meaning is not the same 5,61 Whereas
o5 measures the overlap of the gauge-invariant
charge-anticharge state with the ground state, if
one of the charges is sent {0 infinity, the two-point
function G{T, R =) represents the bound state
{“meson”) of a dynamical and an externsl charge,
both at the same spatial point x.

We have investigated the different correlation
functions mentioned above and the properiies of
the associated order parameters p%. and s BV 2
Monte Carlo anaiysis of an SU{2) lattice Higgs
model in four dimensions, with the scalar field in
the fundamental representation (131 One of th

advantages of this model is that the properties of
he order parameters p%p and pf, are not vei
kniown analyticaily for an SU(Z) group. Thus one
obtains a genuinely new test beyond the results
concerping the groups Z, 15,61 and U(1) [14]. The
main disadvantage is that the model has only one
phase [10,3], the screening/confinement phase,
which, howgver, is partially separated into differ-
ent screening (Higgs) and confinement regions,
very similar to the single phase of a fiuid, which
contains vapour and liguid regions,

The model is defined by the following action
13,155

§=-18T iU, + U})
)<

- #“:Z (@:UXP@.¥+V * h'c'>

X

AL (B, -1+ el D, (13)
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where U,,, U, €8U(2) are the wsual link and
piaguette variables. The two-component Higgs
field @, is conveniently parametrized by a pair
{p, 0}, where ¢ i5 the length of the field @ and
& S
The values of the gauge coupling 8 =4/g°
hopping parameter x and the coupling A of the
yuartic interaction of the Higgs field determine
the state of the system. The phase structure is
qualitatively as follows [13,10,3,15]:

The three-dimensional space of parameters (£

=28 k20 A>0) comtains a iwo-dimensional
surface where phase transitions between the con-
finement and screeming regiomns take place. One
boundary of this %urfa ce is a critical ling in the
plane 8 = oo, where, if on keeps p fixed (A = o0},
the model reduces to a SU{2) X SUZ) = O(4) Hei-
senberg spin system, for which the existence of
phase transitions has been proved rigorousty {16}
it is essential that the surface of phase transitions
irs { B, x, Ayspace dogs not divide this space inte
two separate parts but has a boundary inside,
ieaving & “h oie wiich allows for analytical con-
tinuations of physical quantities from below the

surface to above. How‘wer the behavicur of these
guantities might be guite different on different
sides of the surface. As the system reduces io a
pure gauge theory for x = &, with a single confine-
ment phase, its hehaviour for small x and finite §

Q

e

and A is “confinement-like”, whereas for iargv K,
beyond the phase transition surface, it is “screen-
ing-like”,

Cur Monte Carlo an a%yszs has been done on
16° lattice with periodic boundary conditions &t
fized values of A =0.5 and 8= 2.4, but for differ-
ent x. The ”mfz:sm L-,/scre@mng transition oc-
curs here at xpy = 0.2560 + 0.0005. At each « value

wWe per:ormed between 15900 and 28 000 standard
N@meoab §?L6’“'€:“3”“'S using 2 veetorized checker-
board sigorithm. The starting configurations were
taken from runs at nearby values of « and the first
2000 iterations were discarded for thermalisation.
Measurements were taken after every 50 iter-
ations.

The shape of the potential V(R)} was de-
termined from t;. siope of In W(T, R) as a func-
tion of T for T 24, according &o eq. {2). The
siring tension of{x }., determined from {its corre-

.i!
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Fig, 1. String tension ¢ as determined from the fits (o the
potentials. The arrow denotes the vaiue of ¢ for =24 and
& =0, {17} Siightly negative vakies of ¢ indicate that for larger
& the parametrization (14} becomes inappropriate.

sponding to
VIRY=C+aR—a/R, {14}

is displayed in fig. 1. It clearly shows the “break-
down” of the linear term in the potential
K2 Kpry.

The mass parameter 4 can be determined, see
eq. {10), from the asymptotic behaviour of
G{T, R} as & function of T with R fixed. We
find that the resuiting vaiues of p are not only
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k

Fig. 2. The values of u (crosses), defined by eq. (15). For
comparison we include values of Y(R = 7)/2 {circies).
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insensitive to the choice of R but that in addition
GrlT, Ry = Co{ R} exp{—uT)

= ¢ exp] —u{2R+ T} (15)

depends only on the length of the path & | Fig
2 shows the value of p{x) obtained for different
values of x with R =1,

We would ke o stress that u{x) differs sub-
stantislly from the Higgs boson and vector boson
masses which have been caleulated recently in the
same model for the same values of A and § [i8L
Thus # is 2 new mass parameter characterizing the
spectrum of lattice Higgs models.

in the same figure we have plotted the values
V{Ty/2 of the potential V(R) for the largest R
reasonably considered on a 16* lattice. It is obvi-
ous that p= ¥{73/2 {eg. 11) to a remarkable
degree of accuracy Ior & > wpy, that is to say, in
the screening region, in agreement with theoretical
discussions above. in the confinement region the
situation is quite different, which had to be ex-
pected, because there the linear part of the poten-
tial has not yet been “screened” and the potential
still grows. The expected perimeter-law behaviour
of W{R, T) for large T is not yet realized on a
16% lattice.

The equality of u and V{7)/2 for & > xpy and
the perimeter behaviour of both G(7, R), eq.

LIS LA S R S AL B L B LI R B I
f; =-{
P | \
D:BSX = ~
o s} 4
;K= 0,255 J
3 K = 0.861
tk =0.280 -
N 3
g PR o s A gy IS =TT P
Lln;-J‘Jxx¢11: A)L.)Af,\!\'l-\x\‘)ll
¢] 5 10 5 20 es 3]

Fig. 3. The values of ppy{R, Ty, T3), defined by eq. (16), for
T+ Ty = R, plotted against the perimeter of the Wilson loop
{P = 4R}, The curves represent fits sccording to eq. {17).
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(15}, and of the Wilson loop are the reasons for
3

the predicted behaviour p%,; # 0 in the screening
region. More generally, fig. 3 shows the funciion

pFM(R’ 1y, Tz)‘
1172
={G{(R, T,)GR(R, 1)/ W(R, R},
h+5=R, |T1-Tik1i, (16)

plotted with respect to the perimeter £ =4R of
the Wilson loop for different values of x. The
slight generalization (16) of the ratio pp (R, T)
in eg. {5) has been introduced in order to be able
1o plot ppy aiso for those cases, where R is an
odd multiple of the lattice constant, The plot
shows a remarkable difference in the behaviour of
oen int the confinement and screening regions:
Whereas pg,, decays to a constant rather fast in
the screening region, it drops practically to O in
the confinement region above P > 20 on our 16°
lattice. This behaviour can be interpreted similarly
as that of g and V{7) in fig. 2: For R not too large
and for x in the confinernent region the potential
still rises Hnearly because hadronization by means
of pair creation has not yet set in and the charges
appesr unshielded at the distance we are able to
consider on a 16° lattice. However, pey( R, 7 is
expected to increase again to z constany # O for
sufficiently large R.

T T I T T T T T T ] 17‘77')‘:( ; T ¥ T l 1
0.8 ~
2
L . R J
3
0.6 #: Ags .
At Apy
b j ] PFM(B’B) 4
0. - .
]

L 4 J

neb £ -
#

b z -
b4

o) SN B A e, !
i

o ]

NPT RO S A BT IS V2 S ! .

0. 855 G.e8 Q.88 .28 ¢.285

p
Fig. 4. The asymptotic values of pye and ppy, namely Ao
(asterisks), 4py; (triangles), from fits (17), 2nd for x » 0.263 %
eeml{ R =6, T = 8) {sguares).
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The fits of pe (£ in fig. 3 are made with the
help of the ansatz

Benv = Aep + Bey exp{ —Cey P}, for P28,
(i7)

For « > $.263 the second term in (17) is not mea-
surable, since gy 18 practically constant. The
Bricmont-Froblich parameter pgp, eg. {7), was
fitted correspondingly. Fig. 4 finally shows a com-
parison of the asymptotic values p%r and o5y as 2
function of x. Clearly both parameters coincide in
the screening reglom, as expected on theoretical
grounds.

We conciude that the properties of the gauge
invariant two-point functions in the SU{2) model
with scalar fields in fundemental representation
ave in agreement with analyticel predictions based
on the scresning picture of confinement in gauge
theories with matter fields. A more detailed
account of this work will be published elsewhere.
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