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By means of Monte Carlo simulations we investigate the finite temperature SU(2) lattice 
Higgs model with a doublet scalar field at large but finite quartic self-coupling. The lattices are 
asymmetric in space and time extensions and their spatial size is varied in order to study finite size 
effects. The second order deconfinement transition at high temperature of the pure SU(2) gauge 
theory changes into a crossover when the scalar field is coupled to the gauge field. The Higgs 
phase transition at zero temperature also changes into a crossover when the temperature gets high 
enough. Its position shifts sfightly to larger values of the hopping parameter. This means that in 
the Higgs region of the phase diagram the system passes through this crossover when the 
temperature is raised at fixed values of the coupling parameters, in analogy to the symmetry 
restoring transition of Kirzhnits, Linde and Weinberg in the standard model. 

1. Introduction 

The properties of gauge field theories at high temperatures are of crucial impor- 
tance for theories of the early universe. According to the present picture, the 

hadronic matter emerged from the hot deconfined plasma of gluons and quarks 

when its temperature decreased below the deconfining temperature [1]. Even earlier, 

and at a much higher temperature, the electroweak interactions underwent a phase 

transition (PT) with decreasing temperature after which the Higgs mechanism 

started to operate [2-4]. Correspondingly, finite temperature effects in gauge 
theories have received much attention in Monte Carlo (MC) calculations. 

The deconfinement PT in the pure SU(2) and SU(3) gauge theories has been 

investigated quite intensively and it is by now rather well understood [1]. On the 
other hand the precise nature of the deconfinement PT in the presence of dynamical 

quarks has not yet been determined conclusively. In the case of the SU(2) gauge 

group, the question whether the second order PT vanishes when matter fields are 
introduced [5, 6] is still open. 

In the electroweak theory the most important finite temperature effects are 
expected in the Higgs sector. Kirzhnits and Linde, Weinberg and other authors 
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suggested more than ten years ago the occurrence of a "symmetry restoring" PT at 
high temperature by using perturbative methods [2-4]. The confirmation and 
further investigation of this PT by nonperturbative methods is desirable. This 
stimulated several analytic [7] and numerical [8-12] investigations of lattice Higgs 
models at finite temperature. 

These models allow us to study simultaneously also the influence of scalar 
dynamical matter fields on the deconfinement PT in pure gauge theories. Since MC 
calculations with scalar matter fields are much easier than with fermionic ones, one 
can work on larger lattices and has a better control of finite size effects. The 
comparison of the results with those for fermionic matter contributes to the 
understanding of the deconfinement PT in QCD. 

In this work we investigate the SU(2) lattice Higgs model with scalar fields in the 
fundamental representation. A finite temperature on isotropic lattices of size Ns 3 × N t 
is achieved by choosing small values for Nt, the lattice size in the " temporal"  
direction. The main part of our data is for N t = 2. The spatial lattice sizes we use are 
N s = 8 and 16. This wide variation of N s allows us to look for finite size effects. For 
a fixed finite quartic coupling X we study the phase diagram and the nature of PT 
lines or crossovers found inside this diagram. 

The value of ~ has been chosen quite large, ~ -  0.5. For this ~ and moderate 
values of fl the Higgs PT at zero temperature is either of a weak first order or of 
higher order [13,14] so that some physical masses are small in lattice units in the 
vicinity of the Higgs PT. Thus the lattice constant a is small and the temperature 
T =  1 / ( N t a  ) is large in physical units. Only then we may expect observable finite 
temperature effects on the Higgs PT. On the other hand, for small X the Higgs PT is 
of first order and without indications of a critical behavior [14]. The temperature 
would therefore be small in physical units even for the smallest N t. 

We find that the model has only one phase for N t = 2 and for positive values of 
the gauge coupling fl and of the hopping parameter ~. This phase is divided into 
three regions separated only partly by lines of crossovers. We define a crossover as a 
sudden, but smooth change of observables which shows no dependence on the 
lattice size for large lattices. The typical magnitude of finite size effects at PT's in 
the same model is used for comparison. However, since we cannot really distinguish 
between crossovers and very weak higher order PT's, which might not show finite 
size effects in variables we are calculating, the term crossover will be understood in 
this paper to include also the latter possibility. The phase diagram we found for 
N t = 2 is shown in fig. 1. 

One of the dividing lines is the extension of the deconfinement PT of the pure 
SU(2) theory into the ~¢ direction. With growing ~ the transition on this line rapidly 
weakens. We found no finite size effects at least for r >t 0.15 and thus conclude that 
the deconfinement PT of the pure SU(2) gauge theory changes into a crossover 
when scalar matter is present. Even this crossover becomes practically undetectable 
when ~ approaches from below that value at which the Higgs PT occurs for T = 0. 
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Fig. 1. Finite temperature phase diagram of the SU(2) Higgs system for ?t = 0.5 and Nt = 2. Symbols H, 
C and  D stand for the Higgs, confinement and deconfinement regions, respectively. The vertical broken 
line is the deconfinement  crossover for N t = 2. The vertical solid line at fl = 6 is the freezing transition of 
the icosahedron subgroup Y observed on an 8 3 x 2 lattice. The partly horizontal solid line is the Higgs 
PT at T = 0. The data  points and the broken line above this solid line indicate the approximate location 

of the Higgs crossover for N t = 2. 

The other dividing line is a finite temperature remnant of the Higgs PT line at 
T = 0. Again, the transition gets weaker on an 83 x 2 lattice in comparison with an 
84 lattice. F o r /3  = 2.25 and 4 we found no difference between the transitions on 
8 3 x  2 and 163x  2 lattices. This means again that the Higgs PT at T =  0 changes 

into a crossover at high temperature at least for these/3's and )~ = 0.5. 
Very precise data are required for the observation that the position of this 

crossover is at slightly higher x than the Higgs PT at T =  0; e.g. for N t = 2 at 
?~ = 0.5 and /3  = 4 the shift is about 0.01. This tiny shift actually might be of major 
physical importance. When we increase the temperature T =  1/ (Nta  ) of a given 
physical system, for N t finite and fixed, by decreasing the lattice spacing a, we move 
in the coupling constant space along a renormalization group (RG) line. Such a line 
is originally defined as a line of constant physics at zero temperature (see sect. 3 for 
details). Since such RG lines are expected to approach the T = 0 Higgs PT line when 
a approaches zero, they may cross the shifted Higgs PT remnant at some finite 
temperature. This would correspond to the Kirzhnits-Linde-Weinberg PT, which 
appears here as a crossover due to nonperturbative effects. The mathematical 
difference between a true PT and a crossover might be physically unimportant as 
long as the crossover is sharp enough. 

From our data and on the basis of various theoretical expectations we have 
sketched a schematic phase diagram, shown in fig. 2, for the finite temperature 
SU(2) Higgs model at a large fixed ~. The temperature is plotted in lattice units. 
This figure illustrates how the three regions of the phase diagram (confinement, 
deconfinement and Higgs regions), which appear to be of great difference physi- 
cally, are actually analytically connected. 
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Fig. 2. Expected phase diagram of the SU(2) Higgs system for variable temperature in lattice units at a 
fixed large X. The dashed lines indicate sheets of crossovers. The thin solid lines indicate either sharp 
crossovers or phase transitions. The thick solid lines are phase transition lines in the limiting eases of the 

model. 

The outline of the paper is as follows: In the next section we introduce the SU(2) 
lattice Higgs model and discuss its most important limiting cases. In sect. 3 we 
describe the expected three-dimensional phase diagram shown in fig. 2 and discuss 
the physical meaning of temperature in lattice Higgs models. The definitions of 
various thermodynamic variables we are calculating, and some technical details 
of our MC calculations, are collected in sect. 4. In sect. 5 we investigate the effects 
of matter fields on the deconfinement PT. The influence of high temperatures on the 
Higgs PT is described in sect. 6. Sect. 7 is devoted to a short discussion on the large 
/3 behavior of the energy density, We list our conclusions and mention some open 
questions in sect, 8. 

2. T h e  m o d e l  and  its  l i m i t i n g  c a s e s  

The action of the SU(2) Higgs model we consider in this paper is parametrized 
following refs. [13,14]" 

p x,~ 

+ ~ x E ( o  2 -  1 ) 2 +  E O  2 , (2 .1)  
X X 
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where o~ and U~, are 2 × 2 SU(2) matrices and Ox ~ (0, oo). The variables O~ and o~ 
are the radial and the angular modes of the scalar field, respectively, whose 
conventional complex doublet form @~ is 

This model has three coupling parameters: the gauge coupling fl - 4 / g  2, the quartic 
self-coupling ?~ and the hopping parameter x. The values x -- 0 and oo correspond 
to large positive and negative square bare masses of the scalar field, respectively. 
Connection with the standard continuum parametrization is discussed in ref. [13]. 

On a periodic Ns 3 × N t lattice with a lattice spacing a, the temperature T is given 
by T =  1 / ( N t a  ). The action S is a function of T. The partition function is then 

defined as 

Z(T) = N(T) f[dUd~le -s(T), (2.3) 

where N ( T )  is a normalization factor which appears when the finite temperature 
Hamilton formalism is rewritten as a Lagrange formalism and corrects the ground 
state energy [15,16]. 

There are three important limiting cases of the model, namely T = 0, K = 0 and 
/3 = oc, which have PT fines. We briefly summarize those known facts about these 
transitions which will help us to envisage the phase diagram of the whole model. 

At T =  0, the SU(2) Higgs model with the scalar field in the fundamental 
representation has only one phase, which is divided into two physically different 
regions: the Higgs region and the confinement region. These two regions are 
analytically connected to each other at small fl and large ~, and are partly 
separated from each other by a phase transition called the Higgs PT. The nature of 
this PT has been studied for finite ~ in detail in refs. [9,13,14,17,18]. 

In the pure gauge limit (x = 0), the system has a deconfinement PT between the 
low temperature confinement phase and the high temperature deconfinement phase. 
In the latter phase gauge bosons are liberated and in a plasma state. The deconfine- 
ment PT is known to be of second order for the SU(2) gauge group [16, 19,20] and is 
expected to be in the same universality class as the Ising spin system in the same 
spatial number of dimensions [21]. This universality hypothesis is supported on both 
sides of this PT by comparisons of the numerical values for critical exponents 
associated with the corresponding order parameter, the susceptibility and the 
correlation length in both models [19, 20]. 

The limiting case fl = oo, the pure SO(4) ~4 theory at finite temperature, has not 
yet been investigated in MC simulations. Older perturhative calculations [2] suggest 
that the model has two phases, one with the global symmetry spontaneously broken, 
the other symmetric. A line of symmetry restoring PT's extends from the r-point 
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where SSB takes place for T = 0 into the temperature direction and shifts to larger 
as T increases*. 

3. The expected phase diagram 

The effect of heavy matter fields on the pure gauge deconfinement PT can be 
studied by the hopping parameter expansion around x = 0. As will be demonstrated 
in sect. 5, the incorporation of a heavy matter field in the fundamental representa- 
tion of the gauge group corresponds to the introduction of a weak external field in 
the spin system to which the gauge theory is related by the universality. In the Z(2) 
spin model, an infinitesimally small external field is enough to destroy the order-dis- 
order PT which is of second order [22]. Thus the apparent common universality 
class of the pure SU(2) gauge theory and the Ising model [19, 20] suggests that the 
second order deconfinement PT disappears at ~ g: 0 [7, 23, 24], although a sharp 
crossover will remain at least for small x. 

In this paper we therefore call the extension of the deconfinement phase of the 
pure SU(2) model to finite x below the Higgs PT the deconfinement region, which is 
separated by a crossover from the confi'nement region. The change of the deconfine- 
ment PT into a crossover is caused physically by the pair creation of matter. Since 
the matter is very heavy for small x, the crossover will be indistinguishable on a 
finite lattice from a second order PT for small x > 0. An interesting question is 
whether this crossover can be distinguished from a PT for large ~ values which are 
still below the Higgs PT. 

What happens if we heat up the Higgs region? According to the standard 
perturbation theory in the continuum, the pure scalar q~4 theory (fl = m) possesses 
a symmetry restoring PT at some finite temperature [2]. The interaction with gauge 
fields introduces only small modifications at large fl [3, 4]. The typical leading finite 
temperature contribution to the effective potential for ~ is of the form (cXcont + 
c'g2)T2tl~ 2, where c and c'  are positive constants and Xcont - X/K: is the self-cou- 
pling in the continuum parametrization. This contribution leads to a symmetry 
restoring PT (Kirzhnits-Linde-Weinberg PT) of second or first order at finite 
temperatures [2-4]. The possibility of such a PT motivated a series of cosmological 
scenarios for the evolution of the early universe [25]. There is no physical reason to 
distinguish the high temperature symmetric phase found in the perturbative ap- 
proach from the deconfinement region. The heating can move the system from the 
Higgs region to the deconfinement region. We therefore expect the KLW transition 
at finite fl to be an extension of the Higgs PT at T---- 0 into the T direction, the 
transition shifting to larger ~ at T > 0. 

* We do not go into the problem of the triviality of the q~4 theory in the exact continuum limit. For 
definiteness, we assume a finite cut-off in our description of the Higgs system. 
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However, since only composite operators are gauge invariant and since it is 
difficult to control higher order effects in these perturbative calculations in a gauge 
theory at finite T [26], the detailed nature of the KLW transition, including the 
possibility that it becomes a crossover, may depend on nonperturbative properties 
of the model. There is indeed some reason to expect that at finite T the Higgs PT 
may partly be a crossover. A study of the gauge invariant radially frozen U(1) Higgs 
model with Villain action on the lattice using the Hamilton formalism indicates that 
this model with matter fields in the fundamental representation does not possess a 
PT for T >  0 at several limiting values of coupling parameters [7]*. Furthermore, 
MC investigations of some other lattice Higgs models at finite T suggest that the 
Higgs PT weakens with increasing T [11,12]. 

We summarize our expectations for finite temperatures and for large fixed ?~ in 
the schematic phase diagram shown in fig. 2. For MC calculations it is more 
convenient to use 1 / N  t instead of the physical temperature T =  1 / (N ta  ). The 
particular shape of both PT/crossover sheets is inspired by the phase diagram 
shown in fig. 1. The 1 / N  t = 0 plane represents the zero temperature phase diagram, 
where at large X the Higgs PT extends from fl = oo to the end point at some finite fl 
[13,14, 18]. The shape of the deconfinement PT in the x = 0 plane is based on the 
scaling of the pure gauge theory for /3 > 2. The interval of x in which the 
deconfinement crossover is still sharp increases with growing fl in the x direction 
because the RG flow approaches the T = 0 Higgs PT. According to our discussion 
above, we expect that at T > 0 parts of the Higgs PT surface in fig. 2 actually 
represent crossovers. The dashed lines in fig. 2 indicate the regions where on finite 
lattices it may be possible to distinguish the crossovers from genuine phase transi- 
tions. 

Before finishing this section, we shall discuss the physical meaning of the 
temperature T on a lattice and of RG lines at finite temperature. In a scaling region 
we have RG lines in coupling space, which are originally defined for T = 0 as lines 
of constant physics (lines of constant mass ratios etc.). At T--- 0, points on the same 
RG line describe the same physical system on lattices with different lattice spacing 
a. A t  each such point we can heat the system by reducing N t without changing the 
coupling parameters and the lattice spacing a. Thus each RG line at T = 0 is a base 
of a two-dimensional sheet in the space of coupling parameters and temperature T. 
Points on the same sheet describe the same system at various T and for various a. 
Lines of constant T in this sheet are again RG lines, i.e. lines of constant physics. 
The coordinates of these finite temperature RG lines in the subspace of couplings 
are independent of temperature and coincide with the position of the T = 0 RG line. 

* This property is essentially due to the lack of an order parameter distinguishing the Higgs region and 
the high temperature deconfinement region. The 't Hooft loops can be screened by monopoles, whose 
existence is predicted also in the continuum limit in the form of monopole-anfimonopole pairs [27]. 
However, since such monopoles are very heavy and couple only weakly, a sharp crossover is 
expected [7]. 
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The position of constant T =  1/ (Nta  ) lines in the sheet is determined by the 
magnitude of a and N t, while the dependence of a on the coupling parameters can 
be determined by the magnitude of a physical mass scale, for example, by the string 
tension (K = 0) or by the Higgs mass (for large ~) in physical units at T = 0". 

Knowing the RG lines defined at T = 0 in the coupling space, one could vary 
continuously the value of the physical temperature by moving along these lines 
keeping N t finite and fixed. For finite fixed N t these lines are no more lines of 
constant physics. They can cross PT's and the values of other physical quantities 
such as mass ratios at finite T can also vary along them. Unfortunately, at present 
very little is known about the precise position of RG lines in Higgs models. 

4. Choice of )~ and observables 

There exist already several MC studies of the finite temperature SU(2) Higgs 
model with doublet scalar fields, especially for small ~ [8-10]. Neither the change 
into a crossover nor a shift in K has been reported for the Higgs PT at finite T. The 
weakening of the deconfinement PT/crossover at higher x has been observed in 

ref. [9], 
However, the dependence on the spatial lattice size has not been studied and the 

resources have not been large enough to detect a possibly small shift with K of the 
Higgs PT. Actually it is quite obvious that such a shift must be very small even for 
N t = 2. The reason is that the relevant measure of the temperature is the ratio 
T / M p h y  s = 1 / (  NtMphysa ), where Mphy s is the smallest physical mass at T =  0. But 
for finite fl, Mphysa is small in the Higgs region only very close to the Higgs PT. If 
Mphysa is not small enough, then even with the smallest N t the value of T/Mphy ~ 
cannot become sufficiently large to cause observable finite temperature effects. A 
large correlation length (small Mphysa ) is therefore important for a study of finite T 
effects. 

It is known [17, 28] that at least for fl ~< 8 the Higgs and scalar boson masses in 
the Higgs region are quite large except very close to the Higgs PT at large ~ (i.e. 

>_ O(1)). For  small ~ the Higgs PT is strongly of first order [14] and the masses are 
presumably large even at the Higgs PT. In the present paper we have therefore fixed 

at ~ = 0.5, which corresponds to a high value of ~kcont in the continuum 
parametrization. At this ~, the Higgs PT is already associated with a large (though 
possibly still not critical [17,18]) correlation length at moderate fl [17,28,29]. 
Furthermore, a strong first order PT cannot easily change into a crossover. There- 
fore at large ~ we may have a better chance to observe such a change for the Higgs 
PT. For small h we expect that the first order Higgs PT persists at finite tempera- 

* Since physical masses may have different T dependence, it would be another test of scaling to check 
if their ratios remain the same on RG lines at the same finite T. 
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tures up to temperatures which cannot be achieved by decreasing N t on isotropic 
lattices. 

The thermodynamic quantity we study in this paper is the energy density. 

1 0 
In Z(T) 

e =  a3Ns 3 O(1/T) 

= e~ + e , ,  (4.1) 

where ee is the energy density for the pure gauge system and e H is the additional 
contribution due to the scalar field: 

a%o = 3#(<e3 - <et>), 

a% = - 3( a, tVsa,> + 2<,tV,>o) 

+)~(<p4> _ <p4>0 ) + (1 - 2)~ - 4x)(<p2> - <p2>0 ) . (4.2) 

The subscript s (t) stands for the spatial (temporal) directions and 

1 
Ps/t = 3NtNs 3 E ( 1 - ½ R e T r U p ) ,  

p=s / t  

1 
1 t * ' U ~ ¢ -  N~Ns 3 EpxOx÷.~ReTr(~U~ax+~) ,  

X 

* * v , -  1 E *%*,  
~t 

1 
p" = ]~p~ (4.3) 

N, Ns 3 x " 

Here ( . . .>0  denotes the expectation value at T =  0 to correct the ground state 
energy and it may be approximated by the expectation value on a symmetric N 4 
lattice. We refer to this approximation in the following as symmetric subtraction. 

Since calculations on the symmetric lattice require a very large amount of 
computer time, ( . . . )o 'S are sometimes approximated further by the expectation 
values of spatial operators on the same asymmetric lattice (spatial subtraction). In 
the latter approximation we have 

a4eu --- a4e~ p) - 2x ((£btUt~ > - (~ tUs@)) .  (4.4) 
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At the deconfinement PT of the pure gauge theory (x = 0) (Ps) is expected to be 
analytic [21, 30], and we have found it and (~*U~) to be smooth also for ~ > 0 
below the Higgs PT/crossover. We may thus use the spatial subtraction for the 
study of the deconfinement PT/crossover. On the other hand, at the Higgs 
PT/crossover both spatial and symmetric expectation values vary rapidly and in a 
substantially different way. In sect. 6 we shall discuss the quality and physical 
meaning of both the above approximations. 

We have performed Monte Carlo calculations of the quantities (4.2) and (4.3) as 
well as of the Polyakov loop (L)  and of its square (L2), 

L =  E R e T r  H U x o  = L x  , 
X \ X O  ' / 

(4.5) 

applying the standard Metropolis method. The SU(2) gauge group is approximated 
by its 120 element icosahedron subgroup Y. Each of our main data points results 
from 4800-9600 measurements on an 83x 2 lattice, 6000 measurements on a 
163x 2 lattice or 10000-12000 measurements on an 83x 4 lattice. For the sub- 
traction in eR, calculations have been performed on an 84 lattice (28000-68000 
measurements), too. Starting from an end configuration of a nearby point, we first 
performed an appropriate number of thermalization sweeps depending on the lattice 
size and the distance from the starting point in the fi-x plane. At large fl more 
sweeps were used for thermalization, since the acceptance rate of the gauge 
configuration in the MC procedure is smaller there (at/3 --- 5 about 17%). At several 
points the calculations have been repeated with different start configurations in 
order to test the stability of expectation values and to look for hystereses. We found 
no hysteresis neither on the Higgs nor on the deconfinement PT/crossover. The 
freezing transition of the i7 subgroup has been localized by means of thermal cycles 
(with smaller number of measurements). The total amount of computer time spent 
on Cyber 205 was about 300 hours. 

5. Deconfinement phase transition 

Let us first discuss the deconfinement PT in the Higgs model. In the pure gauge 
limit (~ = 0), the most convenient quantity to study is the Polyakov loop L. The 
deconfinement PT is identified here with a spontaneous breakdown of the global 
center symmetry Z(2) of SU(2), which transforms L x into -Lx.  Matter fields in the 
fundamental representation break this symmetry explicitly, so that (L)  is no longer 
an order parameter at ~ > 0. (L)  is not identically zero in the confinement region, 
but decreases a s  x N, for x ~ 0. 

The effect of a heavy scalar matter field can be estimated by the hopping 
parameter expansion. The effective action for the gauge sector to lowest order in x 
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is 

Seff = S t - 2(½ xf  (X))4 y ,  Re Tr Up + [O( I¢ 6 ) closed-loop corrections] 
p 

- 2( I x f (  h )) u'][] L x + [O( ~N, + 2) thermal-loop corrections], 
X 

(5.1) 

where S G is the pure gauge part of (2.1) and 

f~ dx x2 exp( - Xx z -  (1 - 2) , )x)  

f (X)--  f f  dxxexp(-Xx z - ( 1 -  2X)x) " (5.2) 

Typical values of f()~) are f ( m )  = 1, f(0.5) --- ~ and f(0) = 2 (f(0) counts the 
number of complex scalar fields). The r ~, term in (5.1) acts as an external field in 
the Ising system of "spins" (sgn(Lx)}, to which S~ is related by universality [21]. 

We may compare this effective action with that of gauge theory with fermionic 
matter [31]: 

sF~ rmi= S G - 16ran f E R e  Tr Up - 2 u' + 2xtV, n fEL ~ 
p x 

+ [O(K 6) and O(K u' + 2) corrections], (5.3) 

for n f Wilson ferrnions. At present the properties of the deconfinement transition in 
the presence of fermions are not well known, but its location or that of its remnant 
crossover is observed to shift to smaller/3 with increasing x [5, 6]*. In the case of 
Kogut-Susskind fermions the deconfinement PT/crossover merges with the chiral 
transition at larger r [6, 33]. For Wilson fermions, a different behavior has been 
reported [34]. 

For scalars, we expect a similar but smaller shift of the PT/crossover to smaller fl 
with increasing x. Comparing (5.1) and (5.3) we see that the signs of the leading 
corrections to S~ are the same. Scalars act similar to fermions for small x, but much 
more weakly due to the different numerical coefficients in front of the x-dependent 
terms in (5.1) and (5.3). At small x the system will behave more like the pure gauge 
theory than in the fermion case. Since we have no chiral symmetry in the Higgs 
model, the behavior near the Higgs PT will probably be different from that of the 
theory with fermions in the chiral symmetric limit. 

In fig. 3 we collect our results for ( L )  at small ~ on an 83 × 2 lattice. The pure 
gauge theory goes through the deconfinement PT at fl = 1.89 ___ 0.01 for N t = 2. We 

* The shift of  the effective fl due to the x 4 correction in (5.3), though in the same direction, is not 
sufficient to explain the shift of the deconfinement PT/crossover  observed in MC simulations with 
unquenched fermions. A quenched MC study combined with the hopping parameter expansion 
according to (5.3) for N t = 3 shows that the x u, correction dominates the shift [32]. 
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Fig. 3. Polyakov loop near the deconfinement PT/crossover for several values of x on 83>( 2 and 
163 × 2 lattices. The statistical errors determined by the blocking method are approximately of the same 

size as the symbols. 

find that on this lattice the behavior of ( L )  is almost the same as in the pure gauge 
theory up to x = 0.05. With increasing ~, fig. 3 suggests that the deconfinement 
PT/crossover  shifts to smaller/3 and weakens. The same tendency is also observed 
in the susceptibility (fig. 4), 

X = Ns3( (L2)  - ( L ) 2 )  • (5.4) 

We have also studied the energy density. The deconfinement PT/crossover can be 
characterized by a sudden increase of (Pt )  [21, 30] and, we found, also by a sudden 
decrease of (~*Ut~).  We can thus trace it by both c o and e~P). Their behavior, 
shown in figs. 5 and 6, confirms the structure suggested by the properties of ( L ) .  
The deconfinement PT/crossover shifts slightly to smaller/3. As expected, this shift 
with x is much smaller than in the fermion case [6]. The rapid change of observables 
becomes a milder one around x---0.20 far below the Higgs PT at x--0 .29 for 
/3 = 1.9. (The peak of e~ p) at large K's corresponds to the Higgs PT/crossover.  See 
sect. 6.) 

Th e question is whether this rapid variation of observables is due to a PT or is 
just a crossover. To answer it, we have studied the same quantifies on a 16 3 × 2 
lattice. Our guiding principle is as follows: If the rapid variation is due to a PT, the 
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signal will become clearer on a larger lattice. On the other hand, if the smooth  

behavior  is independent  of  the lattice size, it originates from a crossover. The 

converse of  these statements is not  always true: For  a crossover very near to a 

second order  PT, the correlation length will not  be sufficiently small in comparison 

with the lattice sizes under consideration, so that the crossover may  appear  like a 

PT. 
Our  results for ( L )  on the larger lattice are shown in fig. 3, too. A similar size 

dependence  is also observed for the gauge energy density (fig. 5). For  K = 0.05, the 

da ta  show a clear finite size effect. As discussed in the previous paragraph,  we 

cannot  deduce f rom it the nature of the deconfinement  PT/c rossover  at this ~. The 

steeper behavior  of  ( L )  and eG on the 1 6 3 ×  2 lattice may be explained by the 

nearby  second order deconfinement PT for x = 0. Nevertheless, we can learn the 

typical  magni tude  of the finite size effects we might expect for a PT when the lattice 
size changes f rom 8 ~ to 163. For  x >/0.15 we find no finite size effects at all. We 

thus conclude that  here the rapid variation of ( L )  and e observed is a crossover*. 

The  resulting deconfinement  PT/c rossover  for N t = 2 is shown in fig. 1. 
In  order  to study the Nt-dependence of  the deconfinement  PT/crossover ,  we have 

per formed a rough survey on an 83 × 4 lattice. In  the pure gauge limit, the PT shifts 

• As mentioned in the introduction, it is outside of our computational accuracy to exclude the 
possibility of a higher order PT if it does not show finite size effects. Since this does not happen in 
the Ising model, the universality arguments suggest this alternative to be unlikely for the Higgs 
model, too. 
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to a larger/3 with N t due to scaling. At K 4:0 we expect the K-interval with sharp 
crossover (0 ~< K ~< 0.1 for N t = 2) to increase with Nt, because the RG lines 
presumably approach the T = 0 Higgs PT with growing/3. The same effect is also 
suggested by the hopping parameter expansion (5.1), in which the power of K in the 
Z(2) symmetry breaking term becomes higher at larger N t. In fig. 7 we show our 
results for ( L )  and X. As expected, the sharp variation persists until larger x. The 
same effect has also been observed previously for the Higgs model [10] as well as in 
the fermion case [6]. The behavior of the energy density is consistent with the 
behavior of both observables shown in fig. 7. 

6. Higgs phase transition 

We now turn our attention to the Higgs PT at high temperature. At T = 0 and 
X = 0.5, the Higgs PT line has an end point at /3 = 1.5 + 0.5 (fig. 1). In the interval 
3 ~< fl ~< 6 its position decreases slightly with growing ft. The strongest PT on this 
line is observed at fl = 2.25 [18], where it seems to be weakly of first order. At larger 
fl the PT becomes weaker (second order or still weakly first order). 

We apply the same method as in the previous section to determine the nature of 
the Higgs PT at finite T. The convenient local observables to study it are ( ~ U s ~ )  
and (~b*Ut~). We shall compare them with ( ~ t U ~ ) 0  on the symmetric lattice. In 
fig. 8 we show these quantities at f l = 4  on 83× 2, 163× 2 and 84 lattices as 
functions of K. The T = 0, Higgs PT at K = 0.235 + 0.005 causes a sudden bend in 
the K-dependence of (q~tUqb)0. On the other hand, both ( ~ t U ~ )  and (~ tU t~ )  
show a much milder change on asymmetric lattices. The data on 83 x 2 and 163 x 2 
lattices are consistent with each other and are thus independent of the lattice size. 
Applying the same reasoning as in the previous section, we therefore conclude that 
the Higgs PT on the symmetric lattice has changed into a crossover at N t = 2. 

Another important feature of the data shown in fig. 8 is a small shift of the 
location of the crossover to a larger K by about 0.01 with respect to the location of 
the Higgs PT at T = 0. The direction of this shift with T is consistent with the 
expectation for the KLW transition discussed in sect. 3. Its smallness explains why 
it has not been observed in previous studies of the model [8-10]. The physical 
importance of this shift was discussed in the introduction. 

We have performed a similar analysis at fi = 2.25 and some further calculations at 
fl = 2 and 5 on 8 3 x 2 and 8 4 lattices. Qualitatively the same change of (q~*U~) at 
finite temperature is always observed. For N t = 2 and )t = 0.5, the whole Higgs PT 
line seems to change into a crossover. For these values of/3,  the position of the 
Higgs crossover relative to the T = 0 Higgs PT is shown in fig. 1. 

We found no remarkable variation of ( L )  at the Higgs crossover. This feature is 
different from a previous observation [10], presumably due to the larger value of our 
h. In plots for constant/3, the gauge part ea of the energy density shows a peak at 
the Higgs crossover. This peak becomes softer at larger/3. 
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on an 8 4 lattice. 

Let us now discuss the Higgs energy density e H at the Higgs crossover. As 
explained in sect. 4, er~ requires a subtraction of the T =  0 expectation values 
(symmetric subtraction). The gauge part e6 requires a subtraction, too, if we go 
beyond the tree approximation [35]. We have learned from the data shown in fig. 8 
that for T ~  0 near the Higgs crossover the expectation value ( ~ * U ~ )  can be quite 
different from (~tU~/i)0 at T =  0. We have found similar differences between 
the T = 0  and T ~ 0  behavior of <~tq~> and <(q~t~)2). Therefore the spatial 

subtraction, in which the T = 0  expectation values are approximated by corre- 
sponding spatial expectation values on the asymmetric lattice, turns out to be a 
bad approximation to the symmetric subtraction at and above the Higgs crossover. 
In fig. 9 we show the difference between the two subtraction schemes. The 
symmetric subtraction leads to a much larger en and total energy density E in the 
Higgs region. This difference will be important for an analysis of the asymptotic 
Stefan-Boltzmann (SB) behavior. 

Here we encounter an interesting question: The energy density with the symmet- 
ric subtraction at finite temperature shows a singular behavior at the x-location of 
the zero temperature Higgs PT! This singularity appears only through the subtracted 
expectation values at T = 0. One could suspect that there is something wrong with 
the symmetric subtraction which seems to produce a fake singularity of the energy 
density at finite temperature. However, we think that the correct physical interpreta- 
tion of the MC data avoids such a problem: The symmetric subtraction corresponds 



246 

E./T  

H.G. Euertz et aL/  SU(2) Higgs model 

ENERGY DENSITY (H) 

a 

iJ 

-j 
!t 

,.1 

[ I I I I I I I ' i I , t , t [ 

0 .15  0 .2  0 .25  0 . 3  
tC 

Sk = O.S 
/~=4 

83-2 
0 : SYM. SUBTR. 
O:SP. £LSTR, 

163 .2 
: SYM. SUBTR. 

A : S P . ~ T R .  

E///T 4 

7 b 

6 

S 

4 

ENERGY DENSITY (TOTAL) 

O.t 0.2 0.3 0.4 

.~. = 0.5 
/ 3 = 4  

83.8 
13: SYM. 8JBIR. 
O:SP.SLSTR. 

163-2 
• k-: SYM. SUBTR. 
A :SP. SUBTR. 

Fig. 9. The scalar field part eH of the energy density (a) and the total energy density e (b) at fl = 4 in 
units of T 4 with spatial and symmetric subtractions on 83 × 2 and 163 × 2 lattices, For the symmetric 

subtraction the data obtained on an 84 lattice have been used. 



H.G. Evertz et al. / SU(2) Higgs model 247 

to the normalization condition for the energy density to be zero at T = 0. With this 

condition it is physically sensible to compare the magnitude of the renormalized 
energy density only for the same physical system, i.e. on the same RG  line. RG lines 
never cross the PT of the system at T = 0, thus the singularity of e at the T = 0 
Higgs PT is never encountered when a given physical system is heated. 

7. Large 13 behavior of the energy density 

Finally, we discuss the large /3 behavior of the energy density. The spurious 
freezing PT due to the approximation of SU(2) by the icosahedron group Y is 
located at fl = 5.8 + 0.3 for x ~< 0.325 (fig. 1). By inspecting the hystereses of (P , ) ,  
(~ tUu~)  etc. obtained in thermal cycles around the freezing transition, we have 
convinced ourselves that for our x's the values /3 ~< 5 are sufficiently outside the 
freezing PT region. I n  fig. 10, we show the large/3 behavior of energy densities at 
several typical fixed x-values compared with the ideal gas limit (SB limit) 

ESB//T 4= ~o,TI2NfC(Ns, mr), (7.1) 

Here Nf is the number of fields (the total number in our case is 3 × 2 + 4) and 
C(Ns, Nt) is the exactly calculable finite size correction [36]*. Because of limited 
computed time, we have results for the scalar field energy density en with the spatial 
subtraction only. As has been discussed above, the ambiguity due to the subtraction 
schemes is small in the deconfinement region. In the Higgs region at /3 = 4, the 
values of e n with symmetric subtraction are larger than those with spatial subtrac- 
tion by about one. We expect the difference at other values of/3 to be similar. 

We have plotted the energy densities as functions of /3  at constant values of r, 
since the positions of the RG lines are not yet known. Only along these lines we 
would be able to study the temperature behavior of a given physical system. When 
we increase /3 at constant x, the physical system changes so that the physical 
meaning of the curves in fig. 10 is not a priori clear. However, we expect that, at 
least for a comparison with the universal SB behavior, the dependence on the 
variable T/Mphy s = l /(NtMphysa ) will be more relevant than that on the ratios of 
physical masses. Then, provided that Mphy~a becomes sufficiently small at large/3 
for fixed x, we may expect the universal SB behavior at such/3 regardless of the 
(small) difference between physical systems on a constant x line. 

In the confinement and deconfinement regions, the temperature measured in 
units of the string tension at T = 0 is expected to rise when/3 increases for constant 
x, as in the pure SU(2) case. But the scale Mphy ~ relevant for the validity of the SB 
law in the total system of gauge and matter fields will be large for small x. 

* In fig. 10, the values of ESB for the 163 × 2 lattice are practically identical with those for 8 3 × 2. We 
found C(16,2) to be 0.16% larger than C(8,2). 
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Furthermore,  along the lines of constant r the physics changes and this Mphy s may 
rise with increasing 13. Therefore it might be difficult or even impossible to find the 
SB behavior of the Higgs system varying/3 with fixed x. From fig. 10a we see that 
for x = 0.2 the gauge energy density e~ overshoots the free massless SU(2) gas limit 
(Nf = 3 × 2) like in the fermion case [6, 32], but unlike in the latter case, e~ does not 
converge to this limit at large 13 but increases again for fl/> 4. Results from the 
163 × 2 lattice at 13 = 4 and 5 are consistent with those from 83 × 2, as shown in fig. 
10. They confirm that this increase is not due to the smaller total physical lattice 
sizes for these/3 's. Also the total energy density e t~p) (fig. 10b) changes at least until 
fl = 5. This indicates that for x = 0.2 the SB limit has not been achieved even for this 

value of ft. 
Also in the Higgs region, the physical interpretation of our results for e <sp~ is 

difficult. According to fig. 10, e G and e ~sp) seem to approach the same large fl limits 
as those in the deconfinement region. But since e ~sp) is expected to be smaller than e 
with the symmetric subtraction, the latter might actually overshoot the SB limit. 
Again, it might be that in the Higgs region T/Mphy s does not increase sufficiently 
with fl for fixed x: If we can simply extend the result obtained at small/3 and at 
T = 0 [28], Mphysa will not decrease much along the constant x lines in the Higgs 
region. It may even increase there. In that case we would not have high T/Mplay s at 
large /3 and fixed x. One should increase the temperature by increasing /3 and 
simultaneously by approaching the T = 0 Higgs PT line. Further studies of RG lines 
without the icosahedron approximation will be necessary. An interesting question to 
be studied is whether we could see an SB behavior on these lines before we pass 
through the Higgs PT/crossover at high T. 

8. Concluding remarks 

From our MC investigation of the finite temperature SU(2) lattice Higgs model 
with a doublet scalar field we draw the following conclusions: 

(i) For positive fl and X the system has only one phase in the 4-dimensional space of 
the parameters fl, 2~, x and T. Though our data are restricted to the hyperplane 
X = 0.5, an analytic continuation of the regions connected analytically on this 
hyperplane to other X-values is expected to be possible in analogy to the T = 0 
model [14]. 

(ii) The coupling to the scalar field changes the second order deconfinement P T  of 
thepure SU(2) gauge theory into a crossover. The crossover, verified by the finite size 
analysis, shifts to lower fl and weakens as ~ increases. It gets very smooth long 
before x reaches the values at which the Higgs PT takes place. We note that a 
similar property is reported for the deconfinement transition in the SU(3) gauge 
theory with Wilson fermions [34], which has no chiral symmetry for finite lattice 
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constant a. For  Kogut-Susskind fermions the deconfinement PT or crossover is well 
observable also for K-values close to the chiral limit both in SU(2) and SU(3) gauge 
theories [6, 33]. Our results confirm the expectation based on the hopping parameter 
expansions that scalars and fermions influence the deconfinement transition very 
similarly except for chiral symmetry effects. 

(iii) At  large ~ and high temperatures the Higgs P T  changes into a crossover. We 
have observed a smoothening of the Higgs PT at h = 0.5 for N t -- 2. No finite size 
effects have been seen at /~--2.25 and 4. For much smaller ~, we expect the 
following difference: Since at T = 0 the Higgs PT is of first order, it persists up to 
some finite temperature. But we cannot achieve a really high temperature on 
isotropic lattices even with the smallest N t because of the smallness of the 
correlation length. Indeed, for small ~ and for fl -- 2-5, no change of the nature of 
the Higgs PT at small N t has been observed so far [9,10]. 

(iv) The crossover remnant of the Higgs P T  slightly shifts to larger ~ relative to the 
Higgs P T  at T = 0. Thus, at large ~, RG lines in the Higgs region very close to the 
T = 0 Higgs PT can cross the Higgs crossover at finite T. This crossover therefore 
corresponds to the Kirzhnits-Linde-Weinberg phase transition [2, 3] smoothened by 
nonperturbative effects. 

Our work also reveals some difficulties arising in studies of Higgs models at finite 
temperature: Since at moderate r-values the vector boson and Higgs boson masses 
in lattice units grow when ~ increases above the Higgs PT [17, 28, 29], the temper- 
ature measured in units of physical masses soon gets very low even for the smallest 
N r Thus, in the Higgs region, the only way to achieve a high T in physical units on 
isotropic lattices is to approach the Higgs PT closely at a location where this 
transition shows signs of critical behavior at T = 0. This requires a large ~ and a 
fine tuning of x. Far from the Higgs PT line a higher physical temperature can only 
be achieved on nonisotropic lattices which have a smaller lattice constant in the 
temporal direction. Furthermore, a reliable knowledge of RG lines and of the 
scaling regions in the 3-dimensional coupling space is still lacking. The qualitative 
results obtained in our paper will not depend on the scaling properties of the model. 
However, in order to extract quantitative information relevant for the electroweak 
theory from the finite temperature simulations on the lattice, a better understanding 
of the zero temperature lattice Higgs model will be required. 
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