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Using new order parameters - one proposed by Fredenhagen and Marcu, and another one 
suggested by ourselves - we have investigated by Monte Carlo method several properties of the 
transition between the confinement-Higgs phase and the free charge phase of the U(1) lattice 
Higgs model. These different parameters are constructed by means of gauge invariant 2-point 
functions and of Wilson loops. The latter show perimeter decay in all phases in the presence of 
matter fields with unit charge. Nevertheless, appropriate ratios of such 2-point functions and 
Wilson loops provide sensitive order parameters which are unequal zero in the confinement-Higgs 
phase but vanish in the free charge phase. We give a heuristic interpretation of this behaviour in 
terms of dynamical and external charges. 

1. Introduction 

C o m p a c t  scalar  Q E D  on the lattice,  the so cal led U(1) lat t ice Higgs mode l  [1-7],  

is a p r o t o t y p e  of  a gauge theory with mat te r  fields which exhibi ts  several charac ter -  

is t ic  p rope r t i e s  of  gauge theories within the same model .  In  various regions of  the 

phase  d i a g r a m  in the space of  the coupl ing cons tants  one can f ind 

- conf inement  in the sense that  charged states do  not  occur in the phys ica l  

spec t rum,  

- c o n d e n s a t i o n  of  scalar  ma t te r  fields, convent iona l ly  associa ted with the "H iggs  

p h e n o m e n o n " ,  

- free charges.  

The  U(1) la t t ice  Higgs model  is thus sui table  for  an invest igat ion of these 

d i f fe ren t  fea tures  of  gauge theories,  in par t i cu la r  if one searches for observables  and 

c r i te r ia  a l lowing to ident i fy  and to dis t inguish be tween them. The lat t ice formula-  

t ion pe rmi t s  a gauge invar iant  charac ter iza t ion  of  these var ious  physical  s i tuat ions.  
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und Technologie and the Studienstiftung des Deutschen Volkes. 
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The number of practically calculable gauge invariant observables one can con- 
struct in gauge theories with matter is quite large. Correlation functions between 
various gauge invariant combinations of gauge and matter fields provide plenty of 
information about the spectrum of the theory, like the masses of the scalar Higgs 
boson, the vector boson, U(1) analogies of glueballs, and excited states. It turns out, 
however, that an excellent characterization of various features of the U(1) Higgs 
model, and presumably also of other gauge theories with matter fields, is achieved 
by studying those gauge invariant products of dynamical fields whose physical 
interpretation uses point-like external sources. These sources can also be looked at 
as additional, heavy charged fields, which makes their physical interpretation 
particularly transparent. For example, the Wilson loop criterion for confinement in 
pure gauge theories is formulated in terms of gauge fields alone, but interpreted 
physically in terms of external sources or heavy quarks. 

The Wilson loop criterion [8] is known to fail in gauge theories with dynamical 
matter fields screening the confining linear potential [1, 2, 9]. However, in this case it 
is possible to find criteria for confinement by using a gauge invariant 2-point 
function of the matter fields. Again, a suitable physical interpretation can be found 
by means of external sources. The 2-point function of the matter field 4) [1,10,11] 
which we shall mainly consider in this paper is defined as follows: 

I x -y[  = T, (1.1) 

F =  y )( IT, 
x × 

R 

where Ut are link variables on an oriented path lr connecting points x and y. In 
analogy to the Wilson criterion, the parallel transporter in the T direction of the 
path F, when the T-direction is interpreted as (euclidean) time, is associated with 
the presence of an external charge q at the spatial point x + R = y + R [2,12]. In the 
2-point function the dynamical matter field is thus correlated with this charge 
at the spatial distance R (a detailed explanation of this interpretation will be given 
in sec. 5). 

The study of G(T, R) provides information about the screening of an external 
source q by matter fields. This screening can either be due to the binding of one 
charged particle c associated with the ~-field to the external charge q, or it can be 
analogous to the Debye screening in a plasma of such particles. The presence of a 
screened external charge is associated with an energy increase/~ >t 0 of the ground 
state of the system of the dynamical fields. This "screening energy" I* is obtained 
from the exponential decay of G(T, R) at large distances T=  I x -  Y I: 

G( T, R)-------+fa(R) e -~r. (1.2) 
T large 
R fixed 
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It has been found by Fredenhagen and Marcu that one can use G(T, R) in order 
to construct a criterion for the existence of free charged states with finite energy in 
gauge theories with matter fields [11]. This criterion has been investigated in several 
lattice Higgs models by numerical [13-15] and various analytic methods [16,17]. 
The function G(T, R) has to be studied for both T and R large in this context. 
Motivated by our considerations of the screening energy /z we propose another 
criterion for confinement, for which R in G(T, R) can be zero. 

We have performed a Monte Carlo investigation of the function G(T, R) in lattice 
scalar QED with a scalar field of charge one. In our calculations we have con- 
centrated on the vicinity of the Higgs phase transition (PT) which separates the free 
charge (Coulomb) phase from the Higgs region of the confinement-Higgs phase. The 
values of the parameter /~ on both sides of the Higgs PT are determined and 
physically interpreted. We also point out that ~t is a very suitable parameter to study 
the order of the Higgs PT. Although this PT seems to be continuous for our choice 
of coupling parameters if only local observables like ( ~ * ~ )  are considered, /~ 
exhibits a discontinuity, characteristic for a PT of first order. Our main result is the 
numerical support to the validity of the criterion proposed by Fredenhagen and 
Marcu [11] and of the one we propose in this paper. Both test for confinement or 
free charges. 

The outline of this paper is as follows. In the next section we define lattice scalar 
QED and describe its phase structure in the space of three coupling parameters. In 
sect. 3 we then briefly summarize the main results of our investigation, whereas 
more detailed descriptions and interpretations are contained in the following 
sections: After discussing the static potential (sect. 4), we explain in detail the 
physical meaning of the function G(T, R) in sects. 5 and 6. We describe its 
usefulness for studying the screening of the confining potential in the Higgs region 
(sect. 7), properties of charged particles (sect. 8) and the order of the Higgs PT (sect. 
9). Finally, we discuss the confinement criteria (sects. 10 and 11) and the criterion 
for the existence of bound states of a charged particle and an external source due to 
Bricmont and Frrhiich (sect. 12). Sect. 13 contains conclusions. 

2. Phase structure of the compact scalar QED 

The compact lattice U(1) Higgs model with a scalar field • of charge one is 
defined by the action [18, 6, 7] 

E u¢) 
p ~ A 

4 

x ~ A  ~=1 x ~ A  x ~ A  
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Fig. 1. Phase diagram of compact scalar QED as determined in our earlier [6] and present Monte Carlo 
calculations, at fixed quartic coupling k = 3. 

The  relation to the bare parameters used in the cont inuum field theory, 

(2.2) 

is given by [18] 

ae& = q)x7~-, X = X / r  2 , (arh)  2 = (1 - 2X - 8 x ) / x .  (2.3) 

We note  that  r = 0 corresponds to ~ / 2  = -t- ~ and x = oe to ~ 2  = _ ~ at a fixed )t. 

Fo r  x = 0 the model reduces to the pure U(1) lattice gauge theory with Wilson 
action. This theory has a deconfinement phase transition for /3  = 1 [8,19, 2, 20]. In  
the limit fl ~ ~ the pure lattice I~  4 theory with global U(1) symmetry is obtained, 

with spontaneous  symmetry breakdown for x above the PT at a certain Xvr(X) 
[1,6]. For  h = ~ the radial mode is frozen, I~1 = 1 [1,4]. In this case the model is 

trivial bo th  for r = oe and fo r /3  = 0, respectively. F o r / 3  > 0 the model has two 
phases, depicted in fig. 1 for X = 3. A similar phase structure is obtained for any 

X > 0.1 [5-7].  

The  Cou lomb phase (/3 > / 3 m . =  1, x < XPT) is expected to contain a massless 
p h o t o n  [1]. Whereas the existence of the Coulomb phase with massless pho ton  has 
been proven rigorously for the noncompac t  U(1) Higgs model [21], the correspond- 
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ing proof does not exist, to the best of our knowledge, for the compact one. 
However, the MC results presented in this paper and in ref. [22] demonstrate the 
existence of such a phase, which is also expected to contain charged states of finite 
energy. This confirms, at least numerically, that for scalar QED Swieca's theorem 
[23,24] holds on the euclidean lattice, too: free abelian gauge charges are only 
compatible with a vanishing mass of the vector gauge field coupled to the charges! 

The confinement-Higgs phase occurs for all x when fl < 1 and for large ~ when 
/3 > 1. It consists of two regions, the confinement region (/3 < 1, small x) and the 
Higgs region (large x). Both are analytically connected [1-7]. Nevertheless, there are 
physical differences between both regions which require their separate considera- 
tion. In the confinement region, static charges are screened by a heavy (for small x) 
but dynamical "constituent" field ~, in analogy with mesons consisting of different 
heavy quarks in QCD. In this region the expectation value of (~* ~x) is small and 
only weakly x-dependent. In the Higgs region the ~-field "condensates", which is 
indicated by a strong dependence of ( ~ * ~ )  on x of the form 

4 
(~*~x)  = ~x + const. (2.4) 

Here charges are screened by a plasma-like behaviour of the ~-condensate. It is 
remarkable that for large ~ and sufficiently small fl the transition from the 
constituent to the condensate regimes is smooth. This is a consequence of the 
analytic connection mentioned above. 

The positions of the PT's in the 3-dimensional space of coupling parameters have 
been investigated in detail in ref. [6]. Here we shall mainly be interested in the PT 
between the Coulomb phase and the Higgs region (Higgs PT). For ?~ = 3 and 
fl = 2.5 the Higgs PT occurs on an 8 3 × 16 lattice at 

K = rex - 0.179 + 0.001. (2.5) 

Most of the results we shall present here have been obtained on both sides of the 
Higgs PT in the vicinity of this point. For comparison we also include some data in 
the Coulomb phase far below the Higgs PT. 

3. Summary of our results 

We have concentrated on the differences between the behaviour of physical 
observables in the Coulomb phase and the Higgs region of the confinement-Higgs 
phase. The choice of the values ~ = 3, /3 = 2.5 for two of the coupling parameters 
was motivated by earlier results [6] indicating that the Higgs PT for these values of 

and /3 might be of higher order. As we shall explain later, our new results are 
inconclusive with respect to the order of this PT. 
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The phase transition between the confinement and Higgs regions for 13 not far 
below/3 = 1 is also of considerable interest. However, here we expect results similar 
to those obtained recently for the SU(2) Higgs model with the scalar field in the 
fundamental representation [14]. There the Higgs PT separates the confinement and 
Higgs regions of the same phase, too. It turned out that it is very difficult to obtain 
asymptotic results for large distances in the confinement region with lattice sizes we 
can afford. So we decided not to attempt a similar investigation for the U(1) model. 

Most of our data have been obtained on lattices of the size 83 × 16. But we also 
have some data samples on 124 and 164 lattices, which allow us to check that most 
of the results are not significantly dependent on the lattice size. Typically we have 
performed 150000 iterations on the 83x  16 lattice and 40000 ones on the other 
lattices. 

The Monte Carlo runs utilized in this paper have also been used for an analysis of 
the mass spectrum of the same model [22]. The total Cyber-205 CPU time spent for 
both purposes was about 350 hours. We used the Metropolis algorithm. For details 
of the program see ref. [6]. 

Let us summarize our results for ?~ = 3 and/3 = 2.5. They have been obtained for 
K in the vicinity of the Higgs PT, both in the Coulomb phase and in the Higgs 
region of the confinement-Higgs phase, 0.175 ~< x ~< 0.64. In addition we give results 
for small ~, i.e. deep in the Coulomb phase: 

The static potential V(R)  is independent of ~ for all x < xvr. Its R-dependence is 
consistent with the Coulomb potential, and the value of the fine structure constant 
a agrees with that of the pure U(1) theory at the same ft. For x > Xvr the potential 
slowly tums Yukawa-like. The Yukawa mass is consistent with the nonzero photon 
mass as calculated in ref. [22] by means of correlation functions. The lowest energy 
of one static source, Eq = ½ V(oo), determined from the perimeter law of the Wilson 
loops, is constant for ~ < ~PT and shows no change at the Higgs PT. 

The gauge invariant 2-point function G(T, R), defined in eq. (1.1), decays for 
large T and fixed R as exp(- /~T).  The parameter # is R-independent and has the 
physical meaning of the lowest energy contained in the dynamical matter and gauge 
fields screening a point-like external charge. We call tt the screening energy. In the 
Higgs region, where one has a Debye-Hi~ckel-like screening, /z is equal to Eq 
= 1 V(oo). In the Coulomb phase, however, we find/z to be substantially larger than 
Eq. Their difference is interpreted as the mass m c of the charged particle c 
(associated with the field q~), which can be present in the Coulomb phase, minus the 
binding energy Eb(Cq) of the charged particle bound by the external source q. That 
is 

/x -- Eq = m c - eb (cq ) .  (3.1) 

We shall give an estimate for values of m c at several ~ in the Coulomb phase. 
The difference/~ - Eq vanishes in the Higgs region. On lattices of size up to 164 it 

displays a remarkable discontinuity at the Higgs PT in spite of the fact tha t  local 
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observables like ~ * U ~  seem to behave smoothly. Therefore this quantity can be 
used as a sensitive parameter for the study of the Higgs PT, in particular of its 
order. 

Furthermore, / t - E q  is expected to vanish not only in the Higgs region but also 
in the confinement region of the confinement-Higgs phase. Thus the difference 
~t - Eq can also be seen as an order parameter distinguishing between confinement 
(vanishing/~ - Eq) and free charge (positive # - Eq) phases of gauge theories with 
matter. 

We have investigated in some detail this confinement criterion and also the one 
proposed by Fredenhagen and Marcu [11]. Both criteria can be formulated in terms 
of the asymptotic behaviour of ratios of the 2-point function G(T, R) and of certain 
powers of expectation values of Wilson loops. In a self-explanatory pictorial 
notation we define 

PAc(T) = T ' (3.2) 

([--7 

R 

OFM(R, T) (~--~T) (3.3) 
R , ) 1 / 2  

(I 12T 

Nonvanishing values 

o O  - -  PXc- lim OAc(T) p~M = lim OFM(R, R/2) (3.4) 
T ~  R--* oo 

signal confinement, whereas P ~ M  = IO~C = 0 signal a free charge phase. We have 
investigated both functions numerically and find full agreement of the data with 
these predictions in the Higgs region and in the Coulomb phase. We want to point 
out that our numerical results agree with the theoretical expectations even in the 
vicinity of the Higgs PT where no analytical proofs exist. In addition, it is 
remarkable that the approach of the functions OFM(R, T) and pAc(T) towards their 
asymptotic values O~M and pX~c, respectively, can already be seen clearly on a 16 4 
lattice. This is of considerable value for the practical use of those functions. 

We have also investigated the ratio 

4T)  2 
PBF(T) = (~2T) (3.5) 

suggested by Bricmont and FrShlich, which signals absence of bound states of the 
charged particle with the external source, if PBF vanishes for large T [10]. Our data 
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indicate, unfortunately, rather slow convergence of pBv(T) in the Coulomb phase. 
On the other hand, in the Higgs region OBF(T) approaches a finite value p°~F equal 

to  p°~M. 
Appendix B contains a derivation of the inequality 

( ~ - ~ ) 1 / 4 ~ C (  ~ ) ,  ¢ > 0 ,  (3.6) 

which is required for discussion of pac(T), by means of reflection positivity with 
respect to the planes x 4= + x  1. The method employed might be useful for other 
purposes (see ref. [34]). 

4. Static potential 

The static potential V(R) is one of the most fundamental observables in lattice 
gauge theories and it is important to understand the influence of matter fields on its 
shape. In the Higgs region we expect V(R) to be Yukawa-like due to the Debye 
screening of charges by the matter fields, 

O/ 
V(R)  = - --R e-m'n + V(oc) . (4.1) 

The Yukawa mass, m r, is expected to coincide with the nonvanishing photon mass. 
In the Coulomb phase, however, the photon is presumably massless and we expect a 
Coulomb potential. 

We have determined V(R) by means of Wilson loops W(T, R) which have been 
calculated for T =  1 . . . .  ,8 (1 . . . .  ,6 for 124 lattice) and R up to one half of the 
spatial size of our lattices. Since there is some ambiguity in determining V(R) from 
the exponential decay of W(T, R) with T, we have analyzed the data for T >/4 and 
T >/5 independently. The fits have been made by means of the lattice version of the 
Yukawa potential 

4~a us 1 cos(21rllR/Ns) 
VL(R) Ns 3 Y'~ 2~_1(1 - cos(2'n'li/Ns) ) + m~ + const. (4.2) 

11 = 1 
/2,13 = 0 

(The point I i = (0, 0, 0) has been left out in order to avoid a divergence for m r = 0.) 
The values of m r are consistent with 0 for x < XPT, i.e. in the Coulomb phase, but 
rise as x increases above KpT, In the Coulomb phase we have therefore fitted V(R) 
also by the lattice Coulomb potential (mr = 0 in eq. (4.2)). The fits are very good. 
Thus the photon mass is consistent with zero in the Coulomb phase and rises in the 
Higgs region. This result is in agreement with the behaviour of the photon mass 
determined by means of plaquette correlation functions in the context of the same 
Monte Carlo calculations and published in ref. [22]. 
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Fig. 2. Fine structure constant a, determined from Wilson loops by means of lattice Yukawa and 
Coulomb potential fits, for various lattice sizes. In this and the following figures all error bars are 

displayed unless they are smaller than the size of the symbols. 

The renormalized fine structure constant a has been determined in the Coulomb 
phase both by means of the lattice Yukawa and Coulomb potentials, both results 
being consistent. In the Higgs region we have only used the Yukawa potential. The 
values of a are shown in fig. 2. In the Coulomb phase a is independent of x and its 
value 

a = 0.0385(15) (4.3) 

is close to the value a = 0.036 obtained in a weak coupling expansion [25] for 
/3 -- 2.5. This expansion is known to agree very well with Monte Carlo data for the 
pure U(1) theory in the whole Coulomb phase [26]. Thus in the Coulomb phase of 
scalar QED the matter fields do not influence the renormalized charge in a 
noticeable way. 

In the Higgs region, at r = 0.3 and 0.64, our data indicate values of a which are 
slightly smaller than those for r ~< XpT. Thus the condensed ~-field may influence 
the static potential also at small distances. 

Of particular interest for the later discussion of the 2-point function G(T, R) is 
the value of the potential V(R) at large distances R, when V(R) gets constant. We 
introduce the quantity 

Eq = ½ V(oo), (4.4) 
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the physical meaning of which is the lowest energy of fields around one external 
charge q. (The energy is normalized to be zero in the ground state without external 
charges.) It is determined by the perimeter law of I x J Wilson loops, 

W(I, J) - e-eq 2(I+s) , I, J ~ o¢. (4.5) 

In the Coulomb phase Eq is the energy in the Coulomb field produced by the 
external charge. Of course, on the lattice this self-energy is finite. The value of Eq is 
x-independent in the Coulomb phase as long as a is x-independent. 

In the confinement-Higgs phase, Eq is the sum of the contributions from the 
interacting gauge fields and charged matter field screening the external source. We 
expect that in the confinement region, for small x, this screening is realized by one 
"constituent" particle associated with the ~-field, whereas in the Higgs region the 
screening is due to the qb-condensate in analogy to the Debye-Hiickel screening in a 
plasma [27]. 

The effect of the Higgs PT on the value of Eq is physically similar to bringing a 
charge from the vacuum into a dilute plasma. The energy contained in a Coulomb 
field or in a Yukawa field of an external charge are nearly equal if the Yukawa mass 
is small. Since we know already that the photon mass in our data remains consistent 
with 0 even slightly above the Higgs PT [22], we expect Eq not to change noticeably 
at this transition. 

Our results for Eq are indicated in fig. 3 by circles. It is apparent that Eq is 
indeed insensitive to the Higgs PT. 

5. Exponential decay of the gauge invariant 2-point function 

The gauge invariant 2-point function G(T, R) defined in eq. (1.1) can be seen as a 
gauge invariant generalization of spin-spin correlation functions which are used for 
characterizing long range order in statistical mechanical systems with global symme- 
tries. However, it has been realized already a number of years ago that G(T, R), as a 
function of the distance T = Ix - y I, is bounded from above by functions decreasing 
exponentially with T for large T [28]. Thus, G(T, R) cannot show any long range 
order, in agreement with the expectation that the fluctuations of the gauge degrees 
of freedom destroy any long range correlations [28]. The fast decay of G(T, R) 
therefore is a reflection of the gauge invariance of the model and is not a 
consequence of an unsuitable choice of the correlation function. 

Thus an investigation of G(T, R) should provide us with genuine insight into the 
dynamics of gauge fields interacting with matter. Of particular interest is the precise 
form of the functional dependence of G(T, R) on T and R, and the physical 
interpretation of the energy parameter /t which determines the large distance 
behaviour of G(T, R). The rest of the paper is devoted to various aspects of this 
general question. 
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Fig. 3. Comparison of the potential Eq = 2* V(o~) at large distance, approximated by ½ V(4) (circles), 
with the screening energy g (crosses). /~ has been determined from the exponential decay of the 2-point 
function G(T, R = 1). Data were obtained on an 83 × 16 lattice. At x = 0.179 the system showed two 

long-living metastable states, one in the Coulomb phase (Cb), and one in the Higgs phase (14-). 

First we want to describe some of our Monte Carlo results, which will be 
interpreted physically in later sections. As the exponential decay of a correlation 
function in QFT is determined by the energy spectrum, we identify the distance T 
between the points x, y with the euclidean time. Accordingly we consider the decay 
of G(T, R) as a function of " t ime" T for fixed R. The distance R of the "detour" in 
space direction characterizes the dependence of G on different choices of the path 
F. For  all x in both the Coulomb phase and the Higgs region for which we made 
calculations, G(T, R) decreases exponentially as a function of T for T large, 

G(T, R) - f c ( R ) e - " r ;  4 ~< r~< 8, R fixed, (5.1) 

with/~ being independent of R to a high degree of accuracy. Analogous results have 
been obtained previously for the SU(2) Higgs model [14]. If both T and R become 
large, the 2-point function G(T, R) behaves differently in the free charge phase and 
in *he confinement-Higgs phase, respectively. According to the results by 
Fredenhagen and Marcu [11] one expects 

G(T, R) - e-mcr-Eq (r÷ER) (Coulomb phase), (5.2) 

G(T, R) - e -~(r+2R) (confinement-Higgs phase). (5.3) 
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Fig. 4. The 2-point function G(T, R) on a 164 lattice as a function of the "perimeter" P = T +  2R for 
fixed R between 0 and 8. Different symbols represent different R. For each R, the distance T ranges 
between 1 (top of figures) and 8 (bottom). Data  are at (a) x = 0.175 inside the Coulomb phase, (b) 

= 0.178 jus t  above the PT inside the Higgs region, and (c) ~ = 0.64 deep inside the Higgs region. 
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In appendix A we calculate G(T, R) in the hopping parameter expansion. It 
provides heuristic support to the above dependence of G(T, R) on T and R in both 
phases. 

It is advantageous to plot log G(T, R) as a function of the "perimeter" P = T +  
2R, the length of the path F in eq. (1.1), for various fixed R. Figs. 4a-c  show such 
plots of our data obtained on a 164 lattice in the range T = 1 . . . . .  8 and R = 0 . . . . .  8 
for x = 0.175 in the Coulomb phase (fig. 4a), for x = 0.178 just inside the Higgs 
region (fig. 4b) and for r = 0.64 deep inside the Higgs region (fig. 4c). In all figures 
different symbols represent different values of R. At x = 0.64 in the Higgs region 
one can observe the perimeter behaviour (5.3), which means that all points fall onto 
a single line. At K = 0.178, near the PT, but still in the Higgs phase, the perimeter 
behaviour is found only for large T and R. In the Coulomb phase at x = 0.175 one 
can see that G(T, R) does not depend on P alone, in accordance with the relation 
(5.2). 

The slope of log G(T, R) for fixed R and large T (T>~ 4) gives ~t. The equality of 
the slopes for different R reflects the R-independence of ~. This independence 
holds for all x-points we have investigated. Whereas all our data show the asymp- 
totic exponential behaviour (5.1) for T >/4 independent of R, there are significant 
deviations from this asymptotic form for T <  4. The R-dependence of G(T, R) at 
large fixed T gives the function fc(R) in the relation (5.1). The slope C of log f c ( R  ) 
at fixed T >/4 has an approximate value of C --- 0.1, which is nearly the same for all 
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K. This fact will be discussed further in sect. 8. We would like to point out that the 
calculation of G(T, R) with small statistical errors requires only moderate statistics. 
It is about 10 times easier to calculate/~ than to determine the Higgs boson mass 
with comparable statistical errors. 

In sect. 11 we shall continue our discussion of G(T, R) as a function of T and R 
when both variables grow simultaneously. 

6. Screening energy I~ 

The R-independence of /~ suggests that ~t is a useful observable with the 
dimension of energy. Its physical meaning can be determined by using the temporal 
gauge [2,12]. Then the parallel transporter in the time direction on the path F 
reduces to 1 and G(T, R) reduces to a usual correlation function in time direction 
between two field products of the form 

D ( x , x  + R)= YIueqbx.t, 
E 

? ~ l i n e ( ( t , x ) ~ ( t , x + R ) )  (6.1) 

for t = 0 and t = T. These products are not gauge invariant and the standard 
interpretation of the states contributing to the correlation function is that an 
external source q is present at the space point x + R forming a charge neutral 
system together with states created by D [2,12]. The behaviour of G(T, R) for large 
T projects out the lowest energy of this system. Therefore we conclude that/z is the 
lowest energy in the fields screening a point-like external charge q [11]. We call/~ the 
screening energy. 

In order to persuade the reader not familiar with the interpretation of gauge 
noninvariant states in the temporal gauge in terms of external sources, we give an 
alternative, fully gauge invariant argument, which leads to an identical physical 
interpretation of/z. Suppose that we introduce into the theory an additional, heavy 
field ~/'x carrying the same charge as ~x, which is therefore coupled minimally to the 
gauge field, too. We can form the gauge invariant correlation function 

G,I,(T,R)=(~Ptx+R,oD(x,x+R,O)'~Px+R,rDf(x,x+R,T)). (6.2) 

This is a correlation function between two gauge invariant products of fields. Its 
exponential decay for large T is determined by the lowest total energy of the heavy 
particle ~/" screened by the field ~. In the static limit for the field '/' we have 
approximately 

• z.r= e-M~rl- I UerPz,o, g~ line ((z,0) ---> (z, T) ) ,  (6.3) 
E 

where M~, is the bare mass of the particle '/'. 
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Substituting this expression into (6.2) we obtain 

G~,(T, R) = e -M~r. G(T, R),  (6.4a) 

or, pictorially, (circles represent the heavy particle '/') 

R 
r )  = r -e (6.4b) 

Combining this with eq. (1.2) we get 

G,~( T, R) = f c ( R )  e -O'+ M'~)r. (6.5) 

Thus/~ is the lowest energy in the fields screening the heavy charged particle xo, 
in accordance with the above interpretation using the temporal gauge. Notice that 
M~, does not include the self-energy of the particle g' caused by its interaction with 
the gauge field. This self-energy is contained in ~t. 

The R-independence of/~ now becomes quite obvious: One and the same lowest 
energy state contributes in (6.2) for all R. Its contribution is only weighted by the 
R-dependent function fc(R). If the parallel transporter along the line in (6.1) would 
not be present, at least in the Coulomb phase this function would measure the 
density of the dynamical charged particles screening the external source. However, 
the presence of the parallel transporter obscures such an interpretation, which is 
even more difficult in the confinement-Higgs phase. 

7. Screening in the Higgs region 

In the confinement-Higgs phase, where the external charges are always screened, 
the physical meaning of the screening energy/L coincides with the lowest energy Eq 
of fields around external charges, eq. (4.4). Thus we expect 

bt = Eq in the confinement-Higgs phase. (7.1) 

As /~ and Eq are determined from conceptually different quantities, namely 
G(T, R) and Wilson loops, respectively, the validity of the relation (7.1) provides a 
test of the physical interpretation of both quantities. 

Unfortunately, it is very difficult to calculate Eq = 1V(oo) in the confinement 
region on lattices of the restricted size we can use. The static potential V(R) is 
expected to rise linearly with the distance R until complete screening through the 
quanta of the field • is possible. From our experience with the SU(2) Higgs model 
[14] we expect this screening distance to exceed the size of our lattice (16 4 ) for 
K < Xvr nearly everywhere in this region and thus only the relation ~V(R)<~ t~ 
might be tested. 
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In the Higgs region t~ rapidly approaches Eq with growing ~, as can be seen in 
fig. 3, and the relation (7.1) is satisfied quite well for ~ >~ 0.188. As suggested by fig. 
4b, the small difference between t~ and Eq for XPa" ~< x ~< 0.188 is probably caused by 
a slow approach of G(T, R) to its asymptotic behaviour in T in this x-interval, and 
our values for ~ obtained at T = 4-8  actually overestimate/~. 

It is interesting that the values of # are very small in the Higgs region, e.g. 
/~ --- 0.05 for x = 0.3. Since this value is smaller than the inverse size of the lattice in 
the time direction (16-1), one has to ask whether the finite size effects do not distort 
/~. However, the inverse value of/~ itself does not have the physical meaning of a 
correlation length. As seen from eq. (6.5), /~ merely contributes to the correlation 
length (/~ + M~,) -1, which for static charges actually vanishes. Thus, small /~ does 
not mean long correlation. There is also no obvious relation between G(T, R) and 
fluctuations of a quantity in the sense of a dissipation-fluctuation theorem. 

8. Charged particles in the Coulomb phase 

In the Coulomb phase we expect the existence of gauge invariant finite energy 
states associated with the complex field ~, which are charged in the sense of Gauss' 
law. That  state with the lowest energy will be called the charged particle or briefly 
c-particle with dressed mass m~. It is important to keep in mind that the c-particle 
states are not created by the local field ~ acting on the vacuum. Such a state would 
not be gauge invariant. Charged states cannot be created by local operators 
[24, 29, 30] and their construction represents a major challenge in QFT. 

A convenient way to study the properties of a charged particle in the gauge 
invariant formalism is to consider it in the presence of an external source q. The 
whole system is charge neutral (like a hydrogen atom) and can thus be described by 
a localized state. The corresponding correlation function is just G(T, R) (see, e.g. 
eqs. (6.2)-(6.5)). Thus the screening energy ~t is the lowest energy of the system 
c-particle plus external source q [11], and one has 

/~ = Eq + m c - Eb(Cq) in the Coulomb phase. (8.1) 

Here Eb(Cq) >/0 is the largest binding energy of the c - q system and a function of 
m~. It is the analogue of the binding energy of a hydrogen atom in the continuum, 
where we have 

Eb(Cq) = lmca2.  (8.2) 

On the lattice the energy Eb(Cq) can in principle also be determined as a function of 
m c for a given potential V(R) by solving the corresponding Schr6dinger equation. 
Thus, when #, V(R) and Eq are determined in Monte Carlo simulations, m c can be 
calculated from eq. (8.1). 
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Our data clearly show that / ~ - E q  > 0 in the Coulomb phase, see figs. 3 and 7. 

Thus for ~ = 3 and /3 = 2.5 the mass m e is nonzero immediately below the Higgs 
PT. A simple estimate using the continuum Bohr formula (8.2) and the value (4.3) 

for a shows that the binding energy is negligible in eq. (8.1) for/3 = 2.5. Thus the 

mass m c of the charged particle is practically equal to # - Eq. For K -- 0.179, 0.177 

and 0.175 we find m c = # - E q =  0.35, 0.40 and 0.46, respectively, with errors 
_+0.05, on an 83× 16 lattice. On a 164 lattice at x = 0.175 we get m c = 0.54. As 

~ 0 the bare mass rh of the ~-field, eq. (2.3), will tend to infinity. According to 
eq. (8.1) and appendix A we expect the mass parameters ~t and mc to become 
infinite, too. 

If, as discussed at the end of sect. 6, fc(R) is at least a crude measure for the 
density of the charged particle, we can estimate the size of the "hydrogen atom". As 

seen in fig. 4a, fc(R) decreases very slowly with R, namely as e x p ( -  CR), C = 0.1. 
Such a low value of C means a very broad cq state, as expected for bound states due 
to Coulomb forces. The Bohr radius is of the order of 20a. 

The mass mc of the charged particle can also be determined, as suggested by 
Fredenhagen and Marcu [11], from the decay of G(T, R) divided by the square root 
of the Wilson loop. This ratio is taken as a function of T with R so large that the cq 
state becomes unbound. For this limit they predict for the Coulomb phase (up to a 

power law correction) 

G(T, R) e-"J-Eq ~2R+r) 
pvM(V, R)  - = e -incr. (8.3) ~/W(T,2R) e -Eq~zR+r) 

Here  W(I, J) is the expectation value of the I × J Wilson loop with the perimeter 
behaviour (4.5). 

In (8.3) no binding energy has to be considered, but the limit is more difficult, 
requiring large lattices in both space and time directions. We have attempted to 
determine m c from our data on a 164 lattice according to eq. (8.3). The result for 

pFM(T, R = 8) at x = 0.175 is shown in fig. 5. The value for m c = 0.50(5) obtained in 
this way is consistent with the value/~ - Eq = 0.54 given above. Of course, due to the 
smallness of  the binding energy an agreement was to be expected. 

9. Discontinuity of ~ at the Higgs phase transition 

As seen in fig. 3, the screening energy/~ has a distinct discontinuity at the Higgs 
PT for X = 3 and/3  = 2.5. We have originally chosen this (X,/3) point for a detailed 
investigation because the observable q~* U~  did not show any discontinuity here [6], 
contrary to its behaviour for lower X, and we therefore expected that the Higgs PT 
might already be of higher order at this value of X. In long MC runs at x = Xvr we 
have noticed two patterns of fluctuations of ~ * U ~ ,  differing only in the range of 
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Fig. 5. Fredenhagen-Marcu parameter  pFM(T, R = 8), eq. (8.3), on  a 164 lattice at ~ = 0.175. The solid 
line represents a fit to the data points denoted by triangles using eq. (8.3). The result is m c = 0.50(5), the 

error representing an estimate of systematic effects. 

fluctuations, the mean values being almost the same. Each pattern could persist for 
a very long time, sometimes for more than 10000 sweeps on an 83 × 16 lattice. Fig. 
6 shows a typical example of this behaviour. 

The astonishingly long lifetimes of these fluctuation patterns suggested that they 
are due to the presence of two long living metastable states. Since these states 
practically do not differ in the mean values of ~*U~,  or of any other local 
observable we have analyzed, we have looked for a nonlocal observable which 
would distinguish between both states and explain their very low flip rate. The 
calculation of # separately in each of the states revealed the two values o f / ,  at 
K = 0.179 shown in fig. 3. The state with larger fluctuations in fig. 6 has a lower 
value of /* and belongs to the Higgs region, whereas the state with smaller 
fluctuations has large/, and is in the Coulomb phase. 

Thus we find that the screening energy/, is a very sensitive parameter, suitable to 
distinguish between the Coulomb phase and the Higgs region of the confinement- 
Higgs phase. Its sizable discontinuity indicates that for ~ = 3, fl = 2.5 the Higgs PT 
might be of first order, in spite of the continuous behaviour of local observables. 
The discontinuity has been found on lattices 83 × 16, 124 and 164, but our data, 
shown in fig. 7, are not sufficient for determining the dependence of this discontinu- 
ity on the lattice size. We cannot exclude that the data obtained in one phase are 
contaminated by short flips into the other phase. As described in ref. [22] an 
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Fig. 6. Monte Carlo evolution of the rink operator ~ * U ~  over 24000 iterations, on an 83 × 16 lattice at 
x = 0.179, exhibiting two long-riving metastable states. The state with smaller fluctuations has large/~ (cf. 
fig. 3) and belongs to the Coulomb phase (Cb), whereas the state with larger fluctuations has lower # and 

belongs to the I-Iiggs region (H). 

increase of the lattice size shifts the Higgs PT to lower r and narrows the peak of 
the specific heat. It might be that the discontinuity of /x  decreases with growing 
lattice size. Thus a definite conclusion on the order of the PT would be premature. 

Since, as discussed in sect. 4, the energy Eq practically does not change at the 
Higgs PT, the discontinuity of # at the PT is caused by a sudden decrease of the 
quantity rn c - Eb(Cq) in eq. (8.1). Neglecting Eb, as suggested by its small value in 
eq. (8.2), and taking into account that V(R) does not change noticably at the PT, we 
conclude that it is actually the mass rn c of the charged particle which vanishes 
discontinuously or at least drops substantially at the Higgs PT. 

I0. Screening energy criterion for confinement 
It is well known that the Wilson loop criterion for confinement in pure gauge 

theories fails to distinguish between phases with confinement and with free charges 
when matter fields are introduced which can screen the confining potential. It is a 
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(crosses). At ~ = 0.179 on the 83 × 16 lattice two values for/z are given, corresponding to two meta- 

stable states. 

challenge [10,11, 31] to construct a field theoretical observable which could be used 
as a criterion for the presence or absence of confinement in that case. 

We want to propose that the energy difference It - Eq is suitable for this purpose. 
The physical interpretations of the quantities It and Eq described in the preceeding 
sections makes it clear that It - Eq vanishes in the confinement-Higgs phase. As any 
charge must be screened, the lowest energy state with an external charge is identical 
with the screened external charge. On the other hand, in a free charge phase an 
external charge can exist in both screened (i.e. bound) and unscreened states with, in 
general, different energies It and Eq. Provided the difference It - Eq is nonnegative, 
the criterion for confinement or free charges can be expressed as the question 
whether the lowest energy of a screened external charge is equal to or greater than 
the lowest energy of an external charge. 

In the Coulomb phase of the U(1) Higgs model, the quantity It - Eq = m c - Eb(Cq) 
is positive when the continuum formula (8.2) is used for an estimate of Eb(Cq), 

/ t - E q = m c ( 1 - ½ a =  ).  (10.1) 

Namely it has been shown in analytic [25, 32] and numerical [26] calculations that 
the renormalized charge in the pure U(1) lattice gauge theory with Wilson and 
Villain actions stays finite and is actually quite small (a < 0.2 [26]) in the whole 
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Coulomb phase. As we have seen in sect. 4, a is numerically independent of x so 
that the expression on the r.h.s, of eq. (10.1) is expected to be positive and very close 
to m e in the whole Coulomb phase of the U(1) Higgs model. 

For U(1) Higgs models with other actions or for other gauge theories with matter 
fields having a free charge phase, the positivity of/~ - Eq  is less obvious. One can 
image Eb(Cq) being larger than me. Thus it is necessary to formalize the criterion in 
order to make it accessible to rigorous treatment in QFT. For this purpose we 
introduce the ratio 

G(T,O) 
PAc(T) - W(T,  T )  '/4" (10.2) 

Using the perimeter behaviour (4.5) of W(I, J)  for large I, J, we obtain from (5.1) 

PAc(T) -- e-(~-eq)r .  (10.3) 

Thus we expect 

:/: 0 (confinement) (10.4) 
pX~c = l i r a  Pac(T)  = 0  (free charge) 

and P~c is an order parameter vanishing in the free charge phase. The ratio PAc(T) 
is different from - but inspired by - the order parameter introduced by Fredenha- 
gen and Marcu [11], which provides another criterion for confinement, and which 
will be discussed in the next section. 

It follows from reflection positivity (see appendix B) that 

W(T,  T) 1/4 >~ cG(T,O), (lO.5) 

where c is positive, bounded and independent of T. (Pictorial form Of (10.5) is given 
in (3.6).) Thus the parameter/1 - Eq is indeed nonnegative. 

In fig. 8 we show our data for PAc(T) in the U(1) Higgs model for x = 0.175 and 
0.1757 (Coulomb phase) and x = 0.178 (Higgs region) on a 164 lattice. The complete 
agreement with the prediction (10.4) is not surprising when we insert the values of/z 
and Eq from fig. 3 into eq. (10.3). It is remarkable that PAc(T) approaches its 
asymptotic values already for small T, both in the Higgs region and in the Coulomb 
phase. In order to determine the asymptotic values P~c, we have fitted the data by 

PAc(T) = A  + B e  - c r  (10.6) 

The fits are shown in fig. 8, too. The resulting values P~c = A, displayed in fig. 9, are 
in full agreement with eq. (10.4). 
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using eq. (10.6). Note the rapid convergence of the data to the asymptotic values. 

II. Fredenhagen-Marcu criterion for confinement 

Fredenhagen and Marcu proposed a different criterion distinguishing between 
confinement and free charge phases. Its validity has been shown rigorously by series 
expansions in various regions of the phase diagrams for Z(2) and U(1) lattice Higgs 
models [11,16] and confirmed by other analytic methods [17]. Furthermore, Monte 
Carlo investigations of the Z(2) model [13], the U(1) model with charge two matter 
fields [15] and the SU(2) model [14] support the analytic predictions. Here we 
extend the numerical verification of the criterion to the Higgs region of the 
confinement-Higgs phase and to the Coulomb phase of the U(1) Higgs model with 
matter fields of charge one, especially in the neighbourhood of the Higgs PT. 

The criterion is formulated by means of the ratio 

G(R,T) 
pFM(R, T) = W(R,2T)I/:. (11.1) 

Note that the distance between the endpoints of the path/"  is now denoted by R, 
since the physical motivation for the criterion requires this distance to be space-like. 
In the limit in which both R and T grow proportionally to each other (e.g. T = ½R) 



0.8 

0.6 

0.4 

0.2 

H.G. Evertz et al. / Confined and free charges 

' ' ' I ' ' ' ' I ' ' ' ' I 

.X. = a 
/s = 2 . 5  

1:3:A: IE~6~16 LhTTICE 

£ 

0 A 
mO mA 

" ,  , , J . . . .  I . . . .  I , , 

O. I "~  O. IB O, IEIS 

I t | !  ! 

& 

I 1  I 
J J  

581 

[ t i 

& 

] i | 

0,3 
/t; 

Fig. 9. Asymptot ic  values p~(°* c of phc(T) ,  determined from fits according to eq. (10.6). These values 
coincide with those of p°~ M, described in sec. 11. The distance of the two triangles at K = 0.179 gives an 

indication of the size of systematical errors at the PT. 

it is expected that 

___,/p~M ~ 0 
PFM( R, T) 

T = ½ R  " 

(confinement) 
(11.2) 

(free charge). 

Thus P~i  is an order parameter (called "vacuum overlap order parameter" by 
Fredenhagen and Marcu) distinguishing between confinement and free charge 
phases. 

The motivation for this criterion [11] is based on the physical picture of a pair of 
opposite charges separated by a spatial distance R. The state is made gauge 
invariant by means of a parallel transporter connecting both charges. As one of the 
charges is removed to R---, oo, the vacuum overlap of the remaining state is 
signaling whether this state is charged (no overlap) or not. The simultaneous shift of 
the parallel transporter in the time-like distance T projects out the low energy 
states. Division by the square root of the expectation value of the Wilson loop 
removes the perimeter law decay factor exp(-  Eq(R + 2T)) in G(R, T) in the limit 
performed in eq. (11.2). In the free charge phase the numerator in (11.1) decays 
faster than the denominator by the factor exp(-  mcR ), eq. (8.3) [11]. Thus PFra also 
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vanishes in the free charge phase. The additional energy is analogous to the positive 
difference / z -  Eq = m e -Eb(Cq) which we have used for the free charge criterion 
(10.4). Therefore the basic ingredients of both criteria, namely properties of the 
energy spectrum, are closely related. Also the equality py~° c = P~M is expected from 
results contained in ref. [11]. 

For all values of ~ at ~ = 3, fl = 2.5 our results for PFM(R, R/2)  turn out to be 
very close to the values of pAc(T) when compared for T =  R. Except for fig. 5 we 
do not plot these data independently, since they can be read off from fig. 8. For the 
above value of fl at K = 0.3 and for fl = 1.1 we found larger, but not substantial, 
differences between pAc(T) and PFM(T, T/2) for small T =  1,2. In any case the 
equality pA~c = p°~M is satisfied to a very good accuracy, so that also the values P~ra 
can be read off from fig. 9. 

12. Criterion for bound states of the charged particle 

In general, the ground state of a charged particle in a free charge phase in 
presence of an external charge of opposite sign may be either a bound state or a 
state in which the particle of mass m c moves freely after sufficiently long time. The 
difference is reflected by the asymptotic behaviour of G(T, 0) which in the free case 
is not given by (5.1) but by 

1 
G(T,O) - e-~rT(a_l)/----------~, # = m c + Eq. (12.1) 

This power law (Ornstein-Zernike) correction has been discussed by Bricmont and 
Fr/Shlich as a signal for the absence of bound states [10]. Its physical meaning has 
also been pointed out in ref. [11]. 

The purely exponential decay (5.1) is expected to hold in the presence of a bound 
state and in the whole confinement phase (rigorous proofs exist for the Z(2) model 
[11]). Unfortunately, it is very difficult to distinguish between the asymptotic 
behaviour of the type (12.1) or (5.1) in Monte Carlo calculations. 

In a slight generalization of the proposal by Bricmont and Frrhlich [10] we define 
the ratio 

G( TI, 0)G( T2, 0) 
pBF(TI+ T2) = G(TI+ T2'0 ) , (12.2) 

where T 2 = T 1 or T 1 + 1. For T ~ oo this ratio should behave as 

0By(T) T - - ~ ( I  ~F*  
(bound state, 
confinement) 
(no bound state). 

(12.3) 
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Fig. 10. The Bricmont-Fr6hlich parameter OBv(T) at ~ = 0.175 in the Coulomb phase and x = 0.188 and 
0.3 in the Higgs region. The solid lines represent fits to the points at T>~ 1 again using eq. (10.6). At 

= 0.175 no such fit is possible. 

In addition, in the confinement-Higgs phase the relation 

P~F = OTM (12.4) 

should hold [11]. 
In the U(1) Higgs model we expect the presence of cq bound states in the 

Coulomb phase, and thus 0~F 4:0 everywhere. Our results confirm the expectation 
OFF 4:0 in the Higgs region. The equality (12.4) is satisfied to a high accuracy there, 
In the Coulomb phase, however, the ratio OBF(T) does not yet show its asymptotic 
behaviour for x = 0.175 even at the distance T = 8 (fig. 10). But it gets very small at 
this distance. The cause is a small value of fa(R) for all R, due to the broad 
probability distribution of the c-particle bound to an external charge in the 
Coulomb phase. Large values of PBF(T) for small T are due to very high values of 
G(T, R) for small T (fig. 4a) and are thus a nonasymptotic effect. 

We conclude that the ratio PBF(T) is strongly influenced by nonasymptotic 
effects in the Coulomb phase at least up to the distance T-- 8 and it is therefore of 
small practical value in the context of presently available lattice sizes. 

13. C o n c l u s i o n s  

Our results, summarized in sect. 3, show that the screening energy /L which 
determines the exponential decay of the gauge invariant 2-point function G(T, R) 
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for large T and (or) R is very sensitive to the phase structure of the U(1) Higgs 
model. It is therefore a very useful quantity for constructing order parameters which 
distinguish between the confinement-Higgs phase and the free charge (Coulomb) 
phase, respectively. 

Motivated by heuristic physical arguments the construction of appropriate order 
parameters essentially compares the exponential decay of 2-point functions with 
that of Wilson loops. Thus, whereas Wilson loops alone are no longer useful as an 
order parameter in the presence of matter fields in the fundamental representation, 
because they have perimeter decay in all phases, their combination with gauge 
invariant 2-point functions provides order parameters with the desired properties. 

We have benefited from stimulating discussions with K. Fredenhagen, J. Fr/Shlich, 
M. Ltischer and M. Marcu, especially concerning the appendix B. We also thank 
J.C.A. Barata and E. Seiler for valuable comments. The calculations have been 
performed on supercomputers Cyber 205 at the University of Bochum, the Univer- 
sity of Karlsruhe and the SCRI of Florida State University in Tallahassee. The 
support of these Universities and also the assistance of the Rechenzentrum of the 
RWTH Aachen are gratefully acknowledged. 

Appendix A 

For the convenience of the reader we give in this appendix a simple argument, 
based on the hopping parameter expansion, which elucidates the different behaviour 
of G(T, R) for both T and R large in the Coulomb and confinement-Higgs phases, 
eqs. (5.2)-(5.3). A more rigorous (and more involved) derivation can be found in ref. 
[11]. For simplicity we consider the case of the frozen radial mode I~xl--1, i.e. 
h = o¢. The expansion of G(T, R), eq. (1.1), in powers of x consists of terms of two 
types. Either the hopping terms complete the path F to a dosed loop or all the 
fields in the expectation value (1.1) on the path are multiplied by their complex 
conjugates. 

In the Coulomb phase of the pure U(1) gauge theory the Wilson loop decays 
according to the perimeter law (4.5). The leading term in the hopping parameter 
expansion for large T and R and R -  T will therefore be the term K T which 
completes the path in eq. (1.1) to the closed Wilson loop T × R. This term gives 

G(T, R) = e- TW(Z, R), 
1 

rh = I n - ,  (A.1) /£ 

where W(T, R) is determined by the pure gauge theory alone. Using (4.5) we obtain 
for larger T and R 

G(T, R ) - exp(-(rh + E q ) r -  gq(r-.[.- 2R)) .  (h.2) 
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The quantity rh + Eq is the charged particle mass m c split into the bare mass rh and 
the energy of the Coulomb field. Thus we have obtained the relation (5.2). 

In the confinement phase of the pure U(1) lattice gauge theory the Wilson loops 
obey the area law and the leading term of the ~ expansion for larger T and R which 
turns the parallel transporter on the path F into unity is of the order x r+2R. Thus 
we obtain the perimeter behaviour (5.3) of G ( T ,  R )  with 

1 
/z = I n - .  (A.3) 

K 

Of course, in this way we have not shown that the relation (5.3) also holds in the 
Higgs region where K is not small [11]. 

Appendix B 

In this appendix we want to provide the arguments for the inequality (10.5). Our 
main tool is reflection positivity with respect to the 3-dimensional hyperplanes H ~  : 
x 4 _ y 4 =  +(x l  _ y l )  through the point y. 

Usually reflection positivity - which ensures the existence of a Hilbert space - is 
proved for lattice gauge theories [2] with respect to the hyperplane x 4= ½ which 
cuts the links connecting the lattice sites in the planes x 4 = 0 and 1. The p lanes / /~  
do not cut any link but pass through lattice sites instead. Reflection positivity of the 
U(1) Higgs model with respect to these planes follows immediately as a generaliza- 
tion of the corresponding investigations of systems in statistical mechanics [33]. 

Each of the planes Hy, E = + 1, divides the hypercubic lattice A, which for the 
present purpose consists of sites and links, into three disjoint sets A 0, A+ and A ,  
where A 0 consists of the sites and links which lie in the plane, A ÷ contains the sites 
and links "above" and A_ those "below" the plane. The reflections r e with respect 
to the plane H~ map A÷ onto A_ and vice versa and leave the elements of A0 
invariant. The division A = A 0 U A ÷ t3 _~_ of the lattice decomposes the algebra of 
fields A into 3 corresponding subalgebras Ao, A÷ and A_ with supports in A 0' A÷ 
and A_, respectively. The reflections r, of the lattice are associated with the 
following mappings 8, of the algebras Ao, A+, A_ generated by the field variables 
~ and U~,~: 

8~¢~ = ¢~(~),  8~U~,~ = U~*(x,, ~ . (B.1) 

8, maps A÷ onto A_ and vice versa and A o onto itself. The action S in eq. (2.1) is 
invariant under the reflections 8,. This action can be split into the following parts: 

S O: all terms containing variables with support in A o only, 

S÷: terms with support in A÷ t3 A0, except for those contained in So, 
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S :  terms with support in A U A0, except for those contained in S 0, 

So: sum over plaquettes that are cut by Hy,  

S = S o + S + + S  +S  c. (B.2) 

The part Sc has the form -EG+O~G+ with G+ being link products on the A+ side 
of the cut plaquettes. Therefore the series expansion of exp( - So) is also of the form 

e -st = ~_,nJ+OflJ+. (B.3) 
J 

Let us now show the positivity of the expectation value (FO~F>, where F ~ A o U 
A _. The integration measure is 

1-I d ~ d U =  I-I dpxPxdlz(ox)dlZ(Ux,,), (B.4) 
7; x,(x,v)~, 

where q~x = Ox" ox, Ox ~ R+, Ox ~ U(1). The idea is to separate the integration over 
A o and use the fact that the integrations over A+ and A factorize for each j in 
(B.3): 

= f H  dc~dUe-SFO~ F ( FO~F ) 
7~ 

= f r I  d ~  dUe-S°I-[ d ~  dUe-S+ 1--[ d ~  dUe-S-  
d ~0  7~+ 7 [  

J J × FO~F. ]C_,H + O~H + 
J 

2 

: in d ~ d U e - S ° ~  f l--I drbdUe-S+HJ+ F - (B.5) 
7[0 j 

Since the integrand in the integral over S o is obviously positive, we get the 
reflection positivity 

<FO~F) >~ O. (B.6) 

For functions F~, F 2 e A 0 U A+ this implies the Schwartz inequality 

I < FlO f 2> l ~ < FlO~F1)l/Z( F20~F2> 1/2. (B.7) 

We now apply this last result to the 2-point function 

G(T,O)=(pzOz*c~FUdpyOy ) ,  T = z 4 - y  4, z = y .  



The planes /7 -+ 
inequality (B.7) three times, we get 

1/2 

1/2 

= (d) vo_(Hv))  

"(02)1 /2( (  "2"1/4/ (IF'Iff ) 
F r_(E) r_(F) 

2 1/2 2 2 1/4 = (O:) (pyO_p;) W(T, T) 1/4 

2 1/2 4 1/4 1/4 <~ (P;) (Oy) W ( T , T )  . 

Pictorially the first two reflections mean: 
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here pass through the points y and z, respectively. Applying the 

The last 
independent of z and y, we finally obtain the required result 

1/4 

(B.8) 

step in (B.8) again uses the reflection r+. Since (p2) and (p4) are 

G(T,O) <~ cW(T, T )  1/4, c = (p2)1/2 . (p4)1/4 > 0. (B.9) 
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