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We analyze the particle spectrum of the compact U(1) lattice gauge theory with a scalar 
matter field of unit charge. The nonperturbative Monte Carlo calculation is performed on lattices 
of sizes 83 × 16, 124 and 164. In the Coulomb phase we find a massless photon and massive scalar 
and vector bosonium states which are neutral bound states of charged bosonic particles, analogous 
to the positronium in QED. In the Higgs region of the confinement-Higgs phase the massive 
photon and the Higgs boson are present. Here we do not find any other vector state with a mass 
substantially different from the photon mass. 

1. Introduction 

The main incentive for a systematical study of Higgs models (coupled gauge and 
scalar fields) on the lattice is to improve our understanding of the standard model of 
electroweak interactions from the nonperturbative point of view. Of particular 
interest is the Higgs mechanism for the mass generation of vector bosons. According 
to the present knowledge, this mechanism may be understood without including the 
fermionic matter fields. 

The formulation of Higgs models on an euclidean space-time lattice is straightfor- 
ward [1, 2] and the numerical approach well understood [3]. In contrast to gauge 
theories with fermion matter fields, the Higgs models have always been imple- 
mented as a complete coupled system of compact gauge link variables and scalar 
site variables. At the beginning, the discussion was restricted to the abelian fixed 
length scalar fields [4]. (For an extensive list of references on lattice Higgs models 
see the review article, ref. [5].) Soon it was realized that inclusion of the dynamics of 
the radial mode opens the view on a more structured phase landscape [6, 7, 5], in 
particular in the case of the compact U(1) model [8, 9], and many later studies of the 
Higgs models have taken the radial mode into account. 
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The full gauge symmetry group of the electroweak theory is SU(2)× U(1) and 
some recent studies [10] have been concerned with the corresponding Higgs model. 
The simplest lagrangian of this model involves, however, already four coupling 
constants. For that reason we decided to investigate first the basic properties of the 
system separately for the nonabelian gauge group SU(2) [7,11,12] and for the 
abelian group U(1) [9]. The latter Higgs model, which may also be looked upon as 
scalar QED, will be discussed here. In recent presentations [9] we concentrated on 
the precise determination of the phase structure and on a study of the nature of the 
phase transitions. Here we want to present our Monte Carlo results on the mass 
spectrum of the U(1) Higgs model with a scalar field of unit charge. In another 
paper [13] we present the results for the Wilson loops and gauge invariant two-point 
functions obtained in the same Monte Carlo runs. 

For completeness we briefly review the notation [7, 9]. The action on the four- 
dimensional euclidean lattice may be cast in the three-parameter form 

s =  -   E(up + u ¢ ) -  E +c.c) 
p x /z 

nt- ~ k E  ({~x* (~ x - -  1 )  2 "}- E ~ x * ~  x . ( 1 . 1 )  
x x 

The plaquette variables Up denote the product of link fields Ux, ~ around the 
plaquettes. The action exhibits various invariances (like e.g. x ~ - x )  which are 
discussed in refs. [7, 9] together with the relationship to the corresponding action in 
the continuum. 

The link, plaquette and scalar field variables are complex numbers but may be 
represented by real variables, 

Ux,p, = exp(i%,, ~), Up = exp(iCpp), ~x=pxexp(ic&). (1.2) 

In these variables, which we use for numerical simulation, the action assumes the 
form 

S = - B E c o s  ~ - 2~E  £ 0~0~+.cos(~+~ - ~ + ~ ,~)  
p x ,u 

+AE(p 2- 1)2+ Ep2¢. (1.3) 
x x 

The action (1.3) defines the Boltzmann factor that determines the probability 
distribution of the field configurations. For given couplings an ensemble of config- 
urations is generated by standard Monte Carlo techniques. In our calculations the 
gauge group U(1) was approximated by the discrete subgroup Z(60) for practical 
reasons. Possible caveats of this approximation have been discussed in earlier work 
[9], where also some details of our program have been described. 
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Let us briefly recall the essentials of the phase structure. At x = 0 the model 
reduces to the pure U(1) compact gauge model. For fl = oo the system describes the 
two-component ~4 theory. In the limit ~ ~ oo the radial mode of the Higgs doublet 
freezes and I~1 = 1. This is the case of the fixed length model. In ref. [9] the phase 
diagram was studied for various values of X between 0.001 and 10. There are two 
phases which are completely separated in the space of all coupling constants: the 
Coulomb phase and the confinement-Higgs phase. 

The Coulomb phase is the analytic continuation of the corresponding phase for 
pure U(1) gauge theory to positive values of x and one expects to find the massless 
photon throughout this phase [1]. In this phase there should also exist a charged 
bosonic particle [13,14]. Pairs of these charged particles can form neutral bound 
states which we call bosonium in analogy to positronium in QED or quarkonium in 
QCD. 

Increasing r (for constant X and fl), one passes from the Coulomb phase through 
the so-called Higgs phase transition (PT) at r = rvr to the Higgs region of the 
confinement-Higgs phase. This region is adjacent to the phase of broken global 
symmetry in the pure ~4 theory at /3 = oo. The most prominent property of the 
Higgs region is the linear dependence of the gauge invariant expectation value of the 
scalar field on r for sufficiently large r > rpT [8, 9]: 

4 
<~*@> = ~-r + const. (1.4) 

This indicates the presence of the scalar field condensate, in analogy to the 
quasiclassical picture of spontaneous symmetry breakdown. The Higgs region is 
analyticMly connected to the confinement region [1, 2,15] which is adjacent to the 
confinement phase of the pure compact U(1) gauge model at fl < tier = 1. In the 
confinement region, as also in the Coulomb phase, the values of ( ~ * ~ )  are small 
and only weakly x-dependent [8, 9]. 

In the whole confinement-Higgs phase one expects, on the basis of the quasi- 
classical perturbative approach, the presence of the Higgs boson and of the massive 
photon. However, a richer, genuinely nonperturbative spectrum might be possible. 
The Higgs PT line extends into the confinement-Higgs phase where for X >/O(1) it 
has an endpoint at some fl > 0 and is rather weak [8, 9]. For X ~< O(0.1) the line 
separates the confinement and the Higgs regions and clearly is of first order [8, 9]. 
This change is related to the activation of the radial mode Px at small X [6]. 
Nevertheless, the confinement and Higgs regions are still analytically connected in 
the three-dimensional parameter space. 

The Higgs PT between the Coulomb phase and the Higgs region is of first order 
for small ~, but becomes weaker for increasing X and ft. For X = 3 one can hardly 
decide the order of the phase transition. Recent results for the exponential decay of 
the gauge invariant two-point function of the scalar field gave indications that for 
this X and fl = 2.5 the Higgs PT still is of a very weak first order [13]. 
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For  our study of the spectrum in the Coulomb phase and in the Higgs region we 
chose the values /3 = 2.5 and" ~ = 3.0 and varied only the bare Higgs coupling 
parameter x. The Higgs PT on an 83. 16 lattice then lies at Xvr = 0.179(1) and on 
164 at Kvr = 0.177(2). This choice of couplings was motivated from our earlier 
investigation of the phase diagram [9] which indicated the possibility of a second 
order Higgs PT for these values of/3 and ~. 

In sect. 2 we present our results for the masses of the states observed in both 
phases. In sect. 3 we summarize our results for the specific heat. We also describe 
the influence of metastable Dirac sheets [16] on various observables. 

2. Determination of  the masses 

2.1. O P E R A T O R S  A N D  M E A S U R E M E N T S  

Let us begin with an introduction to the method and the technical details for 
calculation of the masses in the U(1)-Higgs model. We introduce the operators: 

01(x, t) = Re ~-"~ q~* U x , , ~ + ~ ,  (2.1) 
/x 

Oz(x , t )  = Im Ecb*Ux,~¢x+~, (2.2) 
/z 

O3(x, t) = Im ~] Up, (2.3) 
/.L,v 

x = ( x , t ) ;  p = x/~v; /~, u = 1 ,2 ,3 .  

These lattice operators, summed over x, as associated with quantum numbers 
j p c =  0++, 1 - -  and 1 +-, respectively. (For procedures to construct operators with 
given quantum numbers see ref. [17].) To give these operators a 3-momentum in the 
1-direction, we introduce 

Oi( k, t) = ~ Oi( x, t )exp( ik. Xl), (2.4) 
x 

where k =p .  2~r/L, and L is the spatial size of the lattice. We considered only the 
values p = 0 and 1. The plaquette operator 03 with momentum p = 1 is appropriate 
for a search for the expected massless photon state. It was pointed out in ref. [18] 
that in spite of the wrong parity of 03 at k = 0 in comparison with the continuum 
photon, the corresponding correlation function with k > 0 gets contributions from 
the odd superposition of photon states with the same momentum and opposite 
helicities. 
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With these operators we calculated correlation functions 

Ci(At)=Y'~((Oi(t)-(Oi(t)))(Oi(t+At)-(Oi(t+At)))) ,  (2.5) 
t 

where the sum goes over the time direction of the lattice. In order to estimate the 
statistical errors we blocked the results of the correlation measurements in blocks 
of 1000-1500 sweeps. The average of these block correlation functions over all 

blocks leads to final values and statistical errors. The correlation functions are then 
fitted according to 

c i ( g t  ) = c o n s t ( e - E / a / +  e -e , ( /~ , -a t ) ) ,  (2.6) 

where Z t is the size of the periodic lattice in the time-like direction. For the fit of 

the data according to eq. (2.6) we discarded the points with At = 0 and 1. The 
masses m i are determined from the energies Ei by means of the lattice dispersion 
relation. Both quantities are in lattice units. 

Our results have been obtained on lattices of sizes 83)< 16, 124 , and 164 , with 
typically 150 000 iterations on the 83 x 16 lattice and 40 000 iterations on the other 
lattices. This  wide variation of the lattice size allowed us to control the influence of 
the finite lattice size on our results. We used about 350 hours of Cyber-205 time for 
this and a parallel paper [13]. 

Most of our results are obtain in the vicinity of the Higgs PT. Further x-points, 
where we performed calculations, are at ~ = 0 and K = 0.1 deep in the Coulomb 

phase, and K = 0.3 and 0.64 in the Higgs region. The latter two points are distant 
enough from the Higgs PT to find the increase of the photon mass with x. 

2.2, RESULTS 

In  fig. 1 we exhibit our data for the photon propagator at momentum p = 1, for 
~¢ = 0.1757 < JCzr. The solid line represents the  correlation function in the case of a 
massless photon. The actual fit by means of the expression (2.6) is almost indis- 
tinguishable from this line and the value of m r obtained in this fit is consistent with 
zero. For other x-values the fits are of similar quality. The fits for the other 
correlation functions are also of good quality, as long as the energies are not larger 
than about  1. From these fits we find the following picture for the mass spectrum, 
shown in figs. 2 and 3: 

2.2.1. Coulomb phase. Here we have observed three states. The lightest of them, 
the photon, has a mass consistent with zero. For the Coulomb phase in the pure 
U(1) compact  lattice QED the existence of a massless state has been proven 
rigorously [19] and confirmed by Monte Carlo calculations both directly [18] and by 
establishing the coulombic form of the potential [20]. To our knowledge there is no 
rigorous result on the mass of the photon inside this free charge phase of the 
compact  U(1) Higgs model (in contrast to the noncompact  one [21]), but the photon 
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Fig. 1. Logari thm of the correlation function of operator 03 at p = 1, for x = 0.1757 on a 164 lattice. 
The solid line represents the correlation function (2.6) for an energy of 0.388, corresponding to zero 

photon mass (eq. (2.12)). All data in figs. 1 -4  are taken at h = 3, fl = 2.5. 

is generally expected to be massless there, too [1]. A massless photon inside a phase 
with charged dynamical matter has also been found in Monte Carlo simulations of 
the SU(2) Higgs model with triplett matter field [22]. 

In our analysis we find, in the Coulomb phase, the massless photon through the 
p = 1 correlation function of the operator 03, but no signal at p = 0. On the other 
hand the p = 1 signal is very clear. The existence of the massless photon in the 
Coulomb phase is also supported by the coulombic form of the static potential 
determined by means of Wilson loops [13]. 

The other correlation functions decay very rapidly in the Coulomb phase except 
very close to the Higgs PT. Therefore states other than the photon appear to be very 
heavy with a mass larger than two inverse lattice units. In the vicinity of the Higgs 
PT, however, two massive states can be resolved. One of them has the same 
quantum numbers 0 ÷÷ as the Higgs boson. Its mass decreases rapidly towards the 
phase transition down to a value of about 0.2 in inverse lattice units. The other state 
observed is a 1 - -  vector boson. It dominates the correlation function of the 
operator 02 both for p = 0 and p = 1. We have found no measurable contribution 
of a massless state in this correlation function for ~ ~< 0.1765. Of course, when the 
mass of the 1 - -  state drops to values of about 0.1-0.2, a contribution of the photon 
cannot be excluded. 



596 H.G. Evertz et al. / Photon and bosonium masses 

We want to call these two heavy states in the Coulomb phase the scalar and 
vector bosonium. Our motivation for this name is the following: In the Coulomb 
phase the scalar lattice QED has an unconfined charged bosonic particle associated 
with the charged field ~. Neutral pairs of these particles interact both through the 
attractive coulombic force and the ~4 coupling. It is not a priori clear whether they 
form bound states, but if they do so, these states should show up in the correlation 
functions of the operators containing @* and • like (2.1) and (2.2). The mass me of 
the unconfined charged particle may be estimated [13] from the data for the gauge 
invariant two-point function 

where F is a path connecting the points x and y. This function is related to the 
bound state of the charged particle with an external charge [13,14]. We find that the 
masses of both the scalar and vector bosonium are, at least for 0.175 ~< r < XpT, 
smaller than 2m c, at the same values of fl and ~. Thus their interpretation as a 
bound state of two bosonic charged particles is plausible. 

Since the interaction of the charged particles via the quartic self-coupling is 
strong for our values of ~, there is no simple way to estimate the masses of the 
bosonium states on the basis of the known values of m c. Actually the bosonium 
masses are much smaller than 2me, indicating that the binding energy is large. 

In order to provide some idea about the bare mass of these strongly interacting 
constituent particles, we determined the "current mass" m 0 from the relation to the 
distance from xpa-, like for the free boson theory (fl = oo, ~ = 0), 

1 1 

K KpT 
. . . .  2 ( c o s h m 0 - 1  ) . (2.8) 

This approach is essentially like the determination of the bare unquenched mass in 
the lattice QCD calculation for Wilson fermions [23]. The resulting mass m 0 is not 
renormalization invariant and gives only a rough idea on the magnitude of the 
screened constituent scalar field mass. In the range considered (0.174 ~< ~ ~< ~zr), the 
resulting values of 2 m o agree approximately with the scalar bosonium mass. 

2.2.2. Higgs region. At the Higgs PT the photon mass shows, within our 
resolution, no discontinuity, and is compatible with zero even close above the PT. 
This agrees with the observation [13] that the static potential does not change 
noticeably at the transition. 

Above the phase transition, the spectrum is quite different from that in the 
Coulomb phase. The correlation functions of vector operators (2.2) and (2.3) decay 
exponentially with approximately the same rate. Therefore either they are both 
dominated by the same vector state or by two separate vector states with similar 
masses. The perturbative analysis of the spectrum in the Higgs region in the unitary 
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Fig. 2. Masses in lattice units obtained from fits to correlation functions of operators (a) O l, (b) 02, and 
(c) 03, for three different lattice sizes and for momenta  p = 0 and p = 1, eq. (2.4). The shaded areas 
represent our estimates of combined statistical and systematical errors. The c-scales are discontinuous, 

emphasizing the Higgs PT region. Technical details are explained in subsect. 2.2.4. 
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Fig. 3. Representative values of m v and m v on a continuous r-scale covering the whole ~-region that 
we have investigated. In the Coulomb phase the photon is massless and m v is very large. In the Higgs 
region the masses obtained from both correlation functions are indistinguishable. The solid line 

represents the quasiclassical estimate (2.9) for mr,  based on the measured values of ( ~ *  ~) .  
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gauge suggests that there is only one vector boson present - the massive photon. If 
this is the case, then the vector bosonium found in the Coulomb phase has no 
counterpart  in the Higgs region. With growing x the massive vector bosonium and 
the massless photon in the Coulomb phase merge at the Higgs PT to form the 
massive photon in the Higgs region. We adopt this interpretation of our data for the 
rest of this paper. The other possibility should not be completely dismissed, 
however, since some genuinely nonperturbative effects could cause a richer spec- 
trum. 

The mass of the photon rises very slowly above the PT and acquires values 
m r -~- 0.5 at K = 0.3 and m r --- 0.9 at x = 0.64. This is consistent with the values of 
m r as determined from fits to a lattice Yukawa potential, calculated from the 
Wilson loops obtained in the same Monte Carlo runs [13]. Therefore the photon 
becomes massive in the Higgs phase for x >> Xvr in agreement with the standard 
picture of the Higgs mechanism. In the quasiclassical perturbative approach to the 
Higgs model one finds 

2 __. 2 g Z x ( ~ . ~ ) ,  (2.9) my 

where g denotes the bare gauge coupling. In fig. 3 we show for comparison the 
values of (2 g 2K ( ~ *  ~))1/2 in the Higgs region for fl = g -  2 = 2.5. The quasiclassical 
estimate is in agreement with the photon mass. (We would like to remark that in ref. 
[24] one value for mn/rn r has also been obtained by means of duality arguments.) 

The Higgs boson mass has a minimum at x = 0.178(2). This position is in full 
agreement with the location of the transition point as determined from the be- 
haviour of the energy/~ of a screened external charge, an observable most sensitive 
to the Higgs PT in the U(1) Higgs model [13]. Above the transition the Higgs mass 
increases much faster than the photon mass and becomes too large to be measured 
at x = 0.3. 

2.2.3. Mass plots. As we have stressed above, the physical interpretation of 
states with the same quantum numbers is different in both phases. Nevertheless it is 
convenient to plot the masses of the states contributing to the same correlation 
functions in the same figure. Thus we shall use the following notation for both 
phases: 

- s c a l a r  boson mass m s (scalar bosonium in the Coulomb phase and Higgs 
boson in the Higgs region), operator 01, 

- vector boson mass m v (vector bosonium in the Coulomb phase and presuma- 
bly the massive photon in the Higgs region), operator 02, and 

- photon mass my, determined from the p = 1 correlation function of opera- 

tor 03 . 
These three masses are shown in figs. 2a-c,  respectively, as functions of x for 

several lattice sizes and momenta p. In fig. 3 we show representative values of both 
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Fig. 4. Ratio m s / m  v of the scalar and the vector boson masses. 

m r and m v on a continuous r-scale covering the whole x-region that we have 
investigated. 

As for figs. 2a and b, the results obtained for the U(1) Higgs model resemble very 
much those obtained for the nonabelien SU(2) gauge-Higgs model [12]. The mass 
m s of the scalar state, which is the Higgs boson mass in the Higgs regions of both 
models, shows a dip in the vicinity of the Higgs PT. In fig. 4 we show the ratio 
m s / m  v, which is independent of the lattice spacing. Its K-dependence is analogous 
to that of the ratio of the Higgs and vector boson masses in the SU(2) model. These 
similarities between both models suggest that also in the SU(2) case the scalar and 
vector boson states below the Higgs PT [12,25] can be interpreted physically as 
bound states of SU(2)-doublet constituent scalars. These bound states are analogous 
to the bosonium in the Coulomb phase of the U(1) model. The confined scalar 
doublet corresponds to the unconfined charged particle of the U(1) model. 

2.2.4. Comments on the correlation functions. As mentioned above, all operators 
have been calculated at momentum p = 0 and p = 1. We use the lattice energy- 
momentum dispersion relation 

3 

m 2+ 2 E ( 1 - c o s k ~ ) =  2 (coshE-  1). (2.10) 



H.G. Evertz et aL / Photon and bosonium masses 601 

For  the correlation functions of the operators O x and 02, the masses obtained for 
p = 0 and p = 1 are consistent. However, for p = 1 the errors are substantially larger 
and we have included only a few of the data for p = 1 in our figures. When the 
values of m 2 determined through eq. (2.10) were negative, we have plotted - ]m2[ 1/2 
instead of m in fig. 2c. 

We have also looked at operators with quantum numbers different from the ones 
presented here, namely 2 ++, 1 +- (03 with p = 0), and 0 +-. The correlations of all 
these operators decay very rapidly and no signal could be extracted. The operator 

* ~,  carrying quantum numbers 0 ++, was also considered. It shows a behaviour 
quite similar to O1 but its signal to noise ratio was worse. The 0 ++ plaquette 
correlation functions gave no measurable signal. We would also like to remark that 
the fluctuations of the correlation functions are lower in the Higgs region than in 
the Coulomb phase. 

Fig. 2 contains our data on all lattice sizes that we have used. The obtained mass 
values show no significant dependence on the lattice size. This may be a sign that 
the correlation length in the scalar channel, which is responsible for the Higgs PT, 
does not exceed the lattice extension at the Higgs PT for our values of couplings, 
and is therefore finite [13]. 

3. Other results 

3.1. SPECIFIC HEAT 

In the course of our earlier [9] and the present investigations we obtained results 
on symmetric lattices of size L 4 for L = 4, 6, 8, 12 and 16 and on asymmetric 
lattices of size 63 x 12 and 83 × 16. Here we collect the results for the unnormalized 
specific heat 

0~(¢*U¢) = 4L4(([  ~ * V * ]  2) - ( # * V # )  2) (3.1) 

on the symmetric lattices. (The normalized specific heat has not been computed in 
ref. [9].) The peak positions obtained from a fit to these data agree with the 
determination of Xvr from other quantities like e.g. the masses. We obtain the 
following values: 

L KpT 

4 0.1938(6) 
6 0.1848(1) 
8 0.1814(1) 

12 0.17854(1) 
16 0.177(2) 
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(The value of /£PT on the 16 4 lattice has been determined from the position of the 
discontinuity in the decay parameter/ t  of the gauge invariant 2-point function, eq. 
(2.7), studied in ref. [13].) 

Although some of our results indicate that the PT is of weak first order [13] we 
tentatively apply the finite size scaling relation 

IKPT, L --  I~pT,~  I ~.~-, c g  - l / v .  (3.2) 

Assuming the v-value for a free boson theory, v = 0.5, we get Xvr,~ = 0.1775(5). 
Without such a restriction on v the best fit gives Xvr,~ = 0.175(1) and a value of 
p---0.63(1). It appears that the dependence of KVr, L on the lattice size is quite 
similar to that of the ¢4 theory, although the PT may well be of weak first order. 

The height of the specific heat peak does not increase noticeably with growing 
lattice size, it seems to remain stable from size 84 onwards to larger size, whereas the 
width definitely continues to decrease. Since the specific heat is the unnormalized 
one, this phenomenon allows no conclusion about the order of the phase transition. 

On the asymmetric lattices the peak of the unnormalized specific heat becomes 
unexpectedly broader and its height smaller when one changes the lattice from 84 to 
83 • 16. A possible interpretation of this phenomenon, which has been observed in 
spin models as well [26], is based on the notion that the system tries to interpolate 
between the symmetric 84 and 164 lattices. This would account for the increase of 
the width of the peak which becomes of the order of (KPT,8 -- /¢PT,16), whereas the 
decrease in height would come from the folding of the two sharper peaks. A similar 
phenomenon has also been observed on a 6 3 • 12 lattice. 

3.2. PROBLEMS WITH DIRAC SHEETS 

In [9] we reported convergence difficulties in MC runs which occurred when we 
started with a hot initial configuration in the Coulomb phase. They were caused by 
long living metastable states. The effect can most dearly be noticed in the plaquette 
observable, but it is easily seen in the expectation value of ¢*¢, too. It also 
influences the values of nonlocal observables like the specific heat and masses. Fig. 
5 shows a thermal cycle in the expectation value of the plaquette operator, started 
from a random configuration at x = 0.06 in the Coulomb phase. In the thermal cycle 
one detects a systematic gap between the starting values (lower values of (Up)) and 
the last values in the run causing a fake hysteresis in addition to the effects of the 
Higgs PT. The upper branch in fig. 5 corresponds to the ground state and thus the 
initial configuration belongs to an excited state. 

To identify the cause of this gap, we have started some thermal runs already at 
x - - 0  and we found that the gap extends to the pure U(1) gauge theory. Here the 
effect has been investigated in detail [16]. It has been found to be caused by the 
occurrence of a Dirac sheet which is closed due to the periodicity of the lattice 
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F i g .  5. E x p e c t a t i o n  v a l u e s  o f  t h e  p l a q u e t t e  o p e r a t o r  Up in  a t h e r m a l  r u n  p e r f o r m e d  a t  X = 0 .01,  f l  = 2, 

a s  e x p l a i n e d  in  the  text .  T h e  i n c r e a s e d  e n e r g y  in  the  l o w e r  b r a n c h  is  c a u s e d  b y  a D i r a c  shee t .  

(" trapped magnetic flux"). It can be seen as a remnant of a pair of closed monopole 
loops winding around the lattice [16]. On a finite lattice there is a significant surplus 
of energy in plaquettes of one orientation, caused by the magnetic flux. A similar 
surplus has also been found for finite K. Thus we conclude that the gap in the 
Coulomb phase in fig. 5 is due to the presence of a Dirac sheet, which accidentally 
vanished during the Higgs PT. 

The long lifetime of the excited state corresponding to the lower branch of the 
fake hysteresis is remarkable. As the energy of a configuration containing the Dirac 
sheet is higher than that of the ground state, the system is hotter and less ordered. 
Therefore the Higgs phase transition shifts towards higher values of ~. We have also 
observed substantial changes of the specific heat and masses close to the Higgs PT 
in the configurations with the Dirac sheets. 

Although it is easy to avoid the problem with the Dirac sheets by starting with a 
cold initial configuration of the gauge fields, one has to keep in mind that such a 
topological effect might disturb one's results. 

4.  C o n c l u s i o n s  

We have investigated numerically the spectrum of the compact scalar QED in the 
vicinity of the Higgs phase transition for large values of the coupling constants, in a 
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region where no reliable analytic methods are available. In the Coulomb phase we 

have found the massless photon only in the correlation function of the plaquette 
operator  I m  Up at nonzero momentum. The photon does not contribute noticeably 

to the correlation function of the hnk operator Im ~ * U ~  with quantum numbers 
j e c =  1 - - .  The latter correlation function reveals the presence of a massive vector 

state in the Coulomb phase. The state dominating the scalar correlation function is 
also massive. We have argued that these two heavy states are bosonium states, i.e. 
bound states of a pair of unconfined bosonic charged particles present i~a the 
Coulomb phase. Their masses grow quickly with decreasing x, similarly as the mass 
of the charged particle [13]. 

Above the Higgs PT, in the Higgs region of the confinement-Higgs phase, the 
situation is very much like that for the nonabelian SU(2) gauge-Higgs system 
[12, 25]. We have found the scalar Higgs boson, the mass of which quickly rises with 
x. Both vector correlation functions are dominated either by one and the same state, 

the massive photon, or possibly by a pair of approximately degenerate vector states. 
The corresponding mass grows much slower with x than the Higgs boson mass. 

In summary,  we have found that lattice QED with fundamental scalar charged 

particles shows a rich spectrum of bound states. In the Higgs region it is in 
qualitative agreement with the naive expectation from perturbation theory, in the 
Coulomb phase it follows the conceptions based on the experience from QED. 

We are grateful to Prof. H.A. Kastrup for thorough discussions and support and 
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