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ABSTRACT

We review the lattice approach to gauge theories with scalar mat-
ter fields. Special emphasis is placed on the treatment of the Higgs
mechanism in a gauge invariant way. We discuss the strategy for in-
vestigating nonperturbatively (e.g. through simulations) the triviality
problem and the related problem of upper bounds on the Higgs mass.

1 INTRODUCTION

Lattice gauge theories were introduced by Wilson [1] in order to explain quark
confinement in QCD. He defined a gauge invariant regularization in which the
theory can be investigated by nonperturbative methods, many of them borrowed
from statistical mechanics. Qualitatively this approach is very successful: con-
finement is explained using strong coupling expansions [1,2,3,4]; the results are
extrapolated towards the physically relevant weak coupling region using computer
simulations [5]. From a quantitative point of view however, the initial hope of
computing hadron masses accurately has not been fulfilled due to the lack of a
sufficiently efficient fermion simulation algorithm {6]. While a 10% accuracy is
attainable today using quenched fermions (NB: not for the pion) [7], pessimists
(optimists) estimate that we need 10°° (10%) times faster computers to go down to
a 1% accuracy [8].

For gauge theories coupled to scalar matter fields, present-day computers are
powerful enough to allow us to perform accurate simulations [9,10,11]. Of partic-
ular interest are the scalar sectors of the standard model and of grand unified
theories. In such models perturbation theory is extremely successful; if the “un-
broken group” is Abelian (so there is no confinement) it correctly describes the

*Invited lecture presented by M. Marcu at the 12th Johns Hopkins Workshop on Current
Problems in Particle Theory, TeV Physics, Baltimore, June 8-10 1988.



long distance physics too. Why then would someone want to study such theories
on the lattice? Let us discuss several reasons.

First recall Elitzur’s theorem stating that a local gauge symmetry cannot be
broken [12]. The proof requires the assumption of no gauge fixing. In perturbation
theory however we have to fix a gauge, so it is not very clear how to discuss
the validity of this theorem. Furthermore, standard descriptions of the Higgs
mechanism often give the impression that the local gauge symmetry is in fact
broken [13]. We would like to have a gauge invariant formulation of the Higgs
mechanism that is explicitely in no conflict with Elitzur's theorem.

Secondly, even in a Higgs mechanism region of a gauge-scalar model pertur-
bation theory does have its problems. Using the renormalization group, we can see
that in many cases the cutoff can be removed only for zero renormalized couplings
[14,15]). We are either left with a noninteracting — i.e. trivial - theory, or we have
to keep the cutoff finite and take the point of view that we are dealing with an
effective theory. In the latter case upper bounds on the mass of the heaviest Higgs
particle can be derived by requiring that it is not heavier than the cutoff. The
whole discussion of triviality relies on the renormalization group equations. These
equations are expected to hold only for small enough renormalized couplings. It is
not clear that this is always true in physically interesting situations, for example
if the mass of some Higgs particle is large [16]. Computer simulations can be used
to first determine the renormalized couplings nonperturbatively and then to check
the validity of the renormalization group equations. They can also be used to
check on perturbative predictions considered somewhat less reliable, like the order
of the phase transition from the “broken” to the “unbroken” phase [17].

Finally, in the lattice regularization the existence of the quantities we are
interested in is guaranteed [3]. We thus have a framework in which more fun-
damental field-theoretical questions can be investigated, like “in what sense is
perturbation theory a good approximation?”. Such questions are not always aca-
demic. It is known for example that perturbation theory does not feel the influence
of the gauge group center, which is believed to be related to a variety of interesting
phenomena [18,19].

We will not attempt here to present a comprehensive review like [10,11]. Qur
intention will rather be to emphasize the philosophy behind the various numerical
lattice investigations, to discuss both their strengths and their weaknesses.

In section 2 we define the lattice regularization and describe the phase di-
agrams for various models. Then we proceed in section 3 to the gauge invariant
definition of some important quantities. The masses of the gauge bosons and Higgs
scalars are determined from the decay of Euclidean correlations. The renormal-
ized gauge coupling is extracted from the potential between two static sources. The
“Higgs expectation value” is determined from the vacuum overlap order parameter
{20]. To illustrate typical problems encountered in numerical investigations, we dis-



cuss some examples picked out from various simulations in which these quantities
have been measured. We also give an example of an inherently nonperturbative
phenomenon on the lattice [19].

In section 4 we discuss the approach to continuum physics using the concept
of lines of constant physics [21]. In this framework it is easy to understand the
problem of triviality. Then we review some of the calculations of an upper bound
on the Higgs mass in the SU(2) model with a fundamental scalar field. The
best upper bound estimates are actually from studies of the O(4)-symmetric pure
matter theory, with the gauge coupling treated perturbatively [22,23,24]. The
results of these studies are in very good agreement with the analytic calculations
of Liischer and Weisz for the pure ¢* models [25], which we briefly outline.

In section 5 we give a brief outlook on topics not covered here,

2 LATTICE REGULARIZATION, PHASE DIAGRAMS

In this section we define the lattice regularization for gauge theories with scalar
matter fields. In principle, the original model is recovered in the continuum limit,
which can be taken in the neighbourhood of second order phase transitions of the
lattice model. Therefore the first step in any lattice calculation is the determina-
tion of the phase diagram. We discuss several examples of such phase diagrams
and the methods employed to obtain them.

2.1 Lattice Regularization and Continuum Limit

The models we are interested in are described by the Euclidean action
So= [ dte {3 Tx Fo, By, + 5 (Du#", Dug?) + 5m2 (85,65 + S0 (65,697} (1)

where the sub/superscript ¢ means “continuum”, and the value of » is 1 for a real
and 2 for a complex Higgs field ¢°. For the gauge group G=U(1), 1 Tr is replaced
by ;15. In many cases more than one invariant can be constructed out of the scalar
field at one point, and the ¢* potential is more complicated; for simplicity we will
not discuss such cases here. We now replace the Euclidean space-time R* with
a hypercubic lattice Z*. The lattice gauge field U is a function defined on the
set of links {z,u |z € Z*, 1 =0,1,2,3} that takes its values in the fundamental
representation of G. The lattice scalar field ¢ is defined on the lattice sites and
takes its values in the representation space of the representation B¢ of G. The
symbol ( . , . ) denotes the scalar product in this space. Usually the continuum
bare couplings g, m. and A, are replaced by the (positive) lattice bare couplings

8, v and A:
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where n is the dimension of the fundamental representation of G and a is the
lattice spacing. For G = U(1), 2n is replaced by 1. The relation between the
continuum and the lattice fields is:

i
Usy = exp{iagd;}; ¢ = (;—5) " ads (3)
k is called the hopping parameter and its meaning is clarified by considering the

pure matter theory (g = 0) at small values of ., where we expect tree-level relations
to hold:

e in the unbroken phase, a large and positive m?2, (am.)? — oo, corresponds to
small &, and & = (am.) 2~ 0;

e in the broken phase, a large and negative m2, (am.)? — —oo, corresponds to
large «, and & &~ L a? <@ > — (am.)?/2X;

e the phase transition is at m. &~ 0, which corresponds to k = 3.

(for large X it turns out that small « still corresponds to the unbroken and large
% to the broken phase). The lattice action is

S=8Y%" {1 . 51,; Tr [U(p) + UT(p)]} — &5 2Re (s, R*(Us,u)botn)

+ A Z [(45::, ¢:r) - 1]2 + Z(d’z: ¢:r:) (4)

where U(p) is the path ordered product of the gauge fields around the elementary
plaquette p. Formally $— 5. in the hmit a— 0.

The lattice spacing a does not occur at all in (4). The formal limit a—0 1s
meaningless unless we define a within the lattice theory itself. This can be achieved
by identifying a~! with the ultraviolet cutoff. Let £; be a correlation length in
lattice units (i.e. a real number). We define a as the dimensionful quantity for
which a é; = &, where £ is a physical length that we fix by hand, e.g. by requiring
it to be equal to the inverse of some particle mass. The continuum limit a— 0 can
be taken only if & (g, &, A) — oo, that is by tuning the couplings towards a second
order phase transition point (ger, Kcry Aer) Where §; is infinite.

In the case of the pure gauge theory (x=0) with a nonabelian G, we expect
from asymptotic freedom that the correlation lengths become infinite in lattice
units at g=0 [1,5]. The continuum limit is performed by checking that for g —0
the lattice theory obeys scaling laws:

é— 2 g = const (5)
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where §; are other correlation lengths in lattice units and £ (i # 1) are the cor-
responding continuum quantities with the dimension of length. For dimensionless
physical quantities scaling simply means that they are constant for small enough g.
If in addition to scaling £,(g) coincides with the prediction of the renormalization
group improved perturbation theory, we say that asymptotic scaling is obeyed [5].

For the full theory the situation is more complicated since the values of the
ratios (5) depend in general on the path on which (g, £cr, Aer ) is approached. A
useful procedure [21] is to define lines of constant physics as lines on which two
of the ratios (5) have fixed values (one can equivalently fix dimensionless physical
quantities). The continuum limit is taken by checking scaling along a line of
constant physics.

In QCD with fermions (3 flavors, m, =my), a useful definition of the lines of
constant physics is to fix the ratios of the rho mass to the pion mass and to the
kaon mass. Scaling then means to check that the other hadron masses are constant
as the critical point is approached. In section 4 we will see that for gauge-Higgs
systems a useful definition is to fix the ratio of the Higgs to the W mass and the
value of the renormalized gauge coupling.

2.2 Computational Methods on the Lattice and Phase Diagrams

Since the whole theory is in general rather complicated, it is a good idea to start
investigating the phase diagram in some limiting cases. Two limits are straight-
forward. For 3 — oo (g — 0) the gauge interaction vanishes and we get the pure
¢* matter theory. For x — 0 the mass term for the ¢-field becomes infinite and we
get the pure gauge theory.

As 3 — 0 the gauge fields occur only in the link term of the action (4) and
can be integrated out exactly. The result is a pure matter theory whose variables
are the G-invariant polynomials in ¢, (often only functions of (¢, ¢.) [26]).

If we let A — oo (so ¢ has length one) and then x— oo, the link term in (4) is
bounded and must be as large as possible. In the unitary gauge ¢ takes its values
in a set of orbit representatives [27]. The link term is maximal if ¢, is the same
orbit representative @ for all z and U, , is in its stability group Hs. The largest
stability group H,,., wins by an entropy factor for each link, so we are left with a
pure gauge theory with the gauge group Hoz.

There are a variety of computational tools that can be used in the study of
the lattice regularized theories, some of them similar to those in continuum field
theory, others adapted from statistical mechanics. Among the most important are:

e Convergent expansions [1,2,3,4} can be set up in the full theory for small 3
(strong coupling), and in the pure matter theory for small «.

e Expansions around one of the limiting theories have been used in several



contexts: the hopping parameter expansion [28] is an expansion in « around
the pure gauge theory; the weak gauge coupling expansion is an expansion
in g? around the pure matter theory [29,21].

o Computer (Monte Carlo) simulations [5,9] can be used in the whole phase
diagram except in regions with large correlation lengths (presently 5 begins
to be large, 10 is huge). They are especially useful in investigating the
location and order of the phase transitions and the critical behaviour.

¢ Perturbative expansions can be used on the lattice as well as in the continuum
(5,30]. The perturbative expressions for the beta functions are widely used
to predict the critical behaviour (see e.g. [5,31,25]).

Other methods include mean field, large N, spin waves, variational and expansion
methods for the Hamiltonian.

Let us now turn to the discussion of some typical phase diagrams. For sim-
plicity choose G = U(1), SU(2), and SU(3). The scalar field has charge 1 or 2 in
the U(1) case, and is in the fundamental or in the adjoint representation in the
nonabelian cases.

Fig. 1 depicts the phase diagrams for A = oo {2,32,4,10]. In general there
are three distinct regions: the Coulomb phase (scalar electrodynamics), the Higgs
mechanism region and the confinement region. The Coulomb phase exists only
for the U(1) models; it has to be a separate phase since it has a massless photon,
while for these models all asymptotic particles are massive both in the confinement
and in the Higgs region. For continuous nonabelian gauge groups, no examples
of theories with a Coulomb phase are known. It is widely believed that gauge
invariant charged states carrying a nonabelian charge cannot exist.

A lot is known about the limiting theories. For B — oo the O(N) spin
system (N is the real dimension of the Higgs field representation) always has a
second order phase transition {31]. For k — 0 the pure gauge theory has a phase
transition in the U(1) case [33], but not in the SU(2) and SU(3) cases [5]. The
order of the U(1) transition is very difficult to determine [34]. For x — co one gets
other pure gauge theories, as discussed below. At A = co and 8 =0 the theory
becomes noninteracting and does not have a phase transition.

If the scalar fleld is in the fundamental representation (charge-1 for U(1)),
the Higgs mechanism and the confinement regions are analytically connected (i.e.
in the same phase). This remarkable result was proven for the U(1) and the SU(2)
cases [2,3]. In these cases the theory becomes noninteracting in the limit A = oo,
K — o0, and the small-3 expansion can be analytically continued to the large-3,
large-x corner. In figs. la and lc we hatched the whole convergent expansion
region obtained in this way. For G = SU(3), the convergent expansion region is
smaller, resembling to the one depicted in fig. 1d. The reason is that for A = oo,
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Figure 1: Phase diagrams at A = o0. The solid lines are the phase boundaries. In the
hatched regions convergent expansions exist (with a modification for the SU(3) model
with a fundamental scalar field — see text). The dashed lines show schematically how the
transition lines change for small A.

x — 0o the model becomes an SU(2) pure gauge theory, so unlike the case of a
noninteracting limit the small-f expansion has to break down at a finite value of 5.
Nevertheless, since the SU(2) pure gauge theoty does not have a phase transition,
the phase diagram of the SU(3) model with a fundamental scalar field is similar
to that of the SU(2) model.

In the confinement region, the force between a fundamental static source-
antisource pair can only be screened by a dynamical matter field in the funda-
mental representation (otherwise the string between the source-antisource cannot
break). In the Higgs mechanism region on the other hand, the vacuum is similar
to a plasma of charged matter particles and screening is always possible. Thus if
the scalar field is in the adjoint representation, or if it has charge 2 in the U(1)
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Figure 2: Schematic three parameter phase diagram for the SU(2) or SU(3) lattice gauge
theory with a fundamental scalar matter field.

case, there has to be a confinement-Higgs phase transition [32). For A=o00, Kk — o0
this transition goes over into the transition of the Z; pure gauge theory for the
charge-2 U(1) case (fig. 1b), and into that of the U(1) and U(2) pure gauge theo-
ries for the SU(2)-adjoint and SU(3)-adjoint cases respectively (fig. 1d). The Z,
pure gauge theory has a first order phase transition [35]. The U(2) theory has a
transition coming from its U(1) part. In fig. 1d all particles are massive in the
confinement phase, but in the Higgs phase there is a massless “photon”.

As )\ decreases the phase transitions shift. In figs. la and lc¢, the dashed lines
depict the change in the transition lines. For small enough A the Higgs-confinement
transition extends up to § =0 [10,26]. In fig. 2 the whole phase diagram of the
SU(2) or SU(3) model with a fundamental scalar field is drawn. There is only
one phase throughout, because of the hole in the transition surface at large ).

At large 3, the Higgs-Coulomb transition for U(1) and the Higgs-confinement
transition for the other cases are expected to be first order by the standard
Coleman-Weinberg argument concerning radiative corrections [17}. As will be
seen in section 4, this is a very important point in the discussion of the triviality
problem. For part of the transition surface, simulations have confirmed this ex-
pectation. As an example for such a calculation, in fig. 3 some results from [36]
are presented. The expectation value of the link term in the action (4) is plotted
for the SU(2) model with a fundamental scalar at A = 0.5 and 8 = 2.25. The
jump at some value .. of « indicates a first order transition. Another sign for the
first order transition is the two-state signal seen in the histogram at x = 0.2706
(also for the link term). The jump at x..{83,A) was found to become smaller as £
increases. This had been expected, since at 3 = oo the transition is second order
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Figure 3: Numerical investigation of the Higgs-confinement transition for the SU(2)
model with a fundamental scalar field at A=0.5 and $=2.25 on a 16* lattice (from [36]).

(with both the vector boson and the Higgs scalar mass becoming zero in lattice
units). The jump also becomes smaller as 8 decreases towards the other endpoint
of the fixed-) transition line, which is expected to be second order too [26]. The
exact location of the small-8 endpoint is however very difficult to find numerically.

One should be very careful with the statement that the simulation results
confirm the Coleman-Weinberg prediction of a first order transition. The region
investigated in simulations is rather limited. In general, it is impossible to dis-
tinguish numerically between a weakly first order transition and a second order
transition. If the correlation length is not small compared to the lattice size, weird
things may happen: one can get a two-state signal although the transition is in
fact second order, or one can get scaling laws indicating a second order transition
although the transition is in fact first order. For large 5, where some correlation
length is always large, the lattice size limitations inherent to any simulation make
a numerical investigation of the transition impossible.

The Coleman-Weinberg argument [17] uses the assumption that A,., and g,
are of the same order of magnitude (“ren” means renormalized). This assumption
18 supported by a conventional analysis of the renormalization group flow (see e.g.
[15]). It is not clear that it is true near the whole transition surface. An argument
was proposed by Nill [37] to the effect that the phase transition surface has two
distinct regions separated by a tricritical line, as shown in fig. 4. In one region
Aren ~ ghen, @nd the Coleman-Weinberg arguments apply. In the second region
Arer is much larger than g, and the transition (Higgs-Coulomb for U(1), Higgs-
confinement for SU(2)) is second order. At constant A this second region is the
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Figure 4: Nill's conjecture tor the phase transition surface.

large-@ region of the transition surface. In view of Nill's argument it would be
interesting to put more effort into the numerical study of this phase transition.

3 GAUGE INVARIANT DISCUSSION OF THE HIGGS MECHA-
NISM ON THE LATTICE

Elitzur’s theorem [12] tells us that in a description of the theory that does not
require gauge fixing, the local gauge symmetry is not broken. If one wishes to use
perturbation theory however (and there obviously are good reasons for that), gauge
fixing is a necessity. The quantities easiest accessible to computations are then
vacuum expectation values of non-gauge-invariant operators like n-point-functions
(of simple expressions in the fields that occur in the Lagrangian). There is always
a unique gauge invariant quantity having the same vacuum expectation value as a
given non-gauge-invariant one, but it is in most cases highly nonlocal and we are
neither able to compute it explicitely nor to understand it beyond rough properties
like e.g. the connection between some of the poles in the n-point-functions and
particle masses. One important exception is of course the S-matrix, which does
not depend on the gauge choice [13]. On the other hand the Higgs mechanism is
usually discussed using a gauge dependent effective potential {17].

If we want to describe the Higgs mechanism in a gauge invariant way, there
s a price to pay: the perturbative computation of the relevant quantities will be
considerably more complicated. As a reward there should be a gain in physical
understanding. One gauge invariant description was extensively discussed in this
conference, namely the effective action of Vilkoviskii and de Witt [38]. In that
approach however, the problem of not knowing the exact physical meaning of the
n-point-functions still persists. Here we shall take the point of view that the only
way to understand the meaning of nonlocal quantities is to define them as limits
of well-understood local gauge invariant quantities.

Using the lattice regularization will help us in many ways. First, we are
guaranteed that the expectation values of local quantities exist (this is obvious

10



on a finite lattice; then one shows that the thermodynamical limit exists [3]).
We can use the reconstruction theorem for Euclidean field theories [39,2] in order
to understand these quantities in terms of a quantum mechanics in a separable
Hilbert space. Secondly, as discussed in section 2, we can use nonperturbative
methods and attempt not only to understand the Higgs mechanism in a gauge
invariant way, but also to check the validity of perturbative results.

In this section we discuss some of the most important quantities used in the
study of Higgs regions of lattice gauge theories with scalar matter fields: masses,
renormalized gauge coupling, and Higgs expectation value. We describe as exam-
ples some results of Monte Carlo simulations.

Simulations cannot be used for really large correlation lengths. Perturbation
theory on the other hand works best at small gauge couplings, which almost always
means large correlation lengths (and which often is the region of physical interest).
If we are lucky, the region where simulations do not require a prohibitive amount
of computer time overlaps with the region where perturbation theory holds to an
order that can still be computed. Agreement between simulations and perturbation
theory is then a stringent test for the latter, since it is not done in the region where
it works best (i.e. at really large correlation lengths). It has to be mentioned that
a perturbative calculation beyond the leading order has not been performed for ali
gauge invariant quantities accessible to simulations that we are going to describe.

The success of the standard model suggests that using perturbation theory
is in fact legal for most purposes. We cannot however take this for granted, since
only a limited energy range has been explored by experiments and since the Higgs
particle is still a puzzle. In the lattice framework we can look for nonperturbative
phenomena. It is not hard to find candidates, since perturbation theory only
takes into account small fluctuations around a Gaussian fixed point. At the end of
this section we briefly discuss some relatively stable excitations that exist on the
lattice but cannot be described perturbatively. Nothing is known however about
their relevance to continuum physics.

3.1 Masses

One of the main predictions of the Higgs mechanism concerns the particle states
of the theory. They are not in a naive one-to-one relation with the fields in the
Lagrangian. We have stable massive spin one particles, which we shall generically
call the “W?”, spin zero particles with vacuum quantum numbers which we shall
call “Higgs”, and, depending on the model considered, massless “photons”.

On the lattice, the standard way to compute masses i1s from the decay of
two-point-functions in Euclidean time. We shall discuss here only the simplest
case of particles that have trivial quantum numbers with respect to the “unbroken
group”. In this case we can couple to the particle states using gauge invariant

i1



operators.

Let O(z) be a local gauge invariant time-zero operator (the underlined sym-
bols denote objects in the time-zero hyperplane), define its Fourier transform by

O(g) = Y. O(z)e'®® (6)

and denote by E(g) the momentum dependent energy of the lightest one-particle
state 1, to which O(z) couples. E(g) is then determined by the leading behaviour
for large Euclidean times t of the correlation {H is the Hamiltonian ):

— 2 2 _
<0|0t(g) e~  o(g) |0 > -l<ojolo>] ~ |< 0]0(g) 12, >|" e HE(D)
(7)
In simulations, periodic boundary conditions (which are almost always used) and
the finiteness of the time direction force us to replace the exponential decay by a
periodic exponential,

—tB(g) _, (e-tE(g) b (L - t)E(z)) (8)

since a particle can be exchanged between the zero and ¢ hyperplanes either directly
or around the torus (I, is the number of lattice sites in time direction). E(q) is
then determined by fitting the data from a Monte Carlo simulation with the form
(7-8) [40]-{45]. Usually the small values of ¢, £ < t,min, have to be disregarded, since
there the contribution of higher excited states is not negligible.

‘This procedure is on shakier theoretical grounds if we deal with a resonance
rather than a stable particle. Since the Higgs is a resonance if it is heavier than
twice the W, this is an important situation. For a narrow resonance, the r.h.s. of
(7) can be approximated by:

Tes stable
[<ojo(g) 1 >[ 7B @4 < 010(g) |20 5[ ~tEEH(D) (g

tabl
2;& e

where 1 and the superscript res denote a one-resonance state, while 2 and stable
denote a state containing two stable particles. The sum is over the various two-
particle states with total momentum ¢. If EJ**(g) < EI**(g), the second term
always dominates for ¢ large enough. On the other hand, the local operator O(z)
couples much stronger to a one-resonance state than o the more delocalized two-
stable-particle states, so for small t the first term dominates because of the matrix
elements in front of the exponentials. In most numerical investigations a range
tmin < t < fmar was found for which the mass of the Higgs resonance could be
determined from a clean exponential decay with ET*(q).

Let us discuss the choice of O(z) in the SU(2) model with o fundamental
scalar field [40]-[43],[36]. Denote by p. the square root of (¢, $z), by o(¢) the

12
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Figure 5: Masses of the Higgs and W particles for the SU(2) model with a fundamental
scalar field at A=0.5 and $=2.25 on an 8% x 16 lattice (from [40,36]). The lines are drawn
to guide the eye.

unitary matrix that is determined uniquely from the equation ¢ =po(¢)(}), and
by 7, the Pauli matrices (b=1,2,3). We introduce the new link variables W, , =
0($2)WUs,u 0($245). The model has a global SU(2) “isospin” symmetry, namely
the conjugation of the W, , with a constant 2 x 2 matrix. To measure the W
mass, we can take O(z) = Tr 7, W;; (j denotes the spatial directions). This
is a 17~ isospin-1 operator. For the Higgs mass we can use the 0%t isospin-0
operators O(z) = p} or Oz) =3 ; Tr W;;. In the confinement phase the same
operators couple “bosonium” states (bound states of two scalar quarks) with the
corresponding quantum numbers.

We have denoted here with the same symbol two entirely different objects:
the classical fields and the time-zero field operators. This should not cause any
ambiguities, since the former occur in the context of Euclidean path-integral ex-
pectation values, while the latter are used in quantum-mechanical matrix elements.

In fig. 5 the W and Higgs masses are shown for a typical situation [40,36],
at A=0.5 and §=2.25 (cf. fig. 3) As k — 0 the bosonium states become infinitely
heavy. This explains the sharp rise in both masses as x decreases below the phase
transition. Above the transition, the W mass increases slowly with x. Close to
the transition it is almost constant, but for larger « standard tree-level relations
say it has to be linear in k. The Higgs mass increases much more steeply with
k. It is relatively small only in a narrow region around «,. If the transition were
second order, the Higgs mass would become zero at .. (on an infinite lattice).
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In order to give some insight into the problems encountered in the under-
standing of simulation results, let us discuss the pronounced dip in the Higgs mass
that in our example occurs in the region around the phase transition. This dip
was not seen at large A [41,43]. As 3 increases, it becomes more shallow [40]. It is
not clear what causes this phenomenon. It may be a real effect in the sense that
it persists for large § (and has been observed only in a small B-region because of
problems with simulations at large correlation lengths). On the other hand it may
be a spurious effect from the point of view of continuum physics. One possibility
is that the dip is due to the proximity of the small-# end of the transition line,
where we expect that only the Higgs mass becomes zero in lattice units [26]. A
second possibility is that it is caused by the fact that, close to a weak first order
transition, the tunneling between the stable and the metastable state produces on
small volumes a very small mass gap [46] (actually this mass gap is even smaller
on large lattices, but for large enough systems the tunneling probability is so small
that no tunneling event happens during the time of the simulation). Finally it is
possible that the dip is due to the existence of a very light glueball-like particle
with vacuum quantum numbers for & just below the transition. In this case it
would be very hard to do any reliable computations in the confinement phase [43].
Actually there are indications that all three considerations do play a role.

In the U(1) model with a charge one scalar field an operator that couples to
the W is O(z) =Im ¢_U,, $o4; (the bar denotes complex conjugation). For the
Higgs particle we can choose O(z)=¢,¢; or O(z)=Y,;Re ¢, U,, ¢z45. In the
Coulomb phase these operators couple to scalar-electron positronium states with
the appropriate quantum numbers. The masses measured with these operators
have been found to behave in « in a way similar to the SU (2) case [44] (the Higgs
phases are similar anyway; for the bosonium bound states we expect no dramatic
difference between the confinement phase of the SI/(2) model and the Coulomb
phase of the U(1) model).

In the Coulomb phase there is a massless photon. One example of a gauge
invariant operator to which it couples is the B-field, O(z)=Im U (p), where z is
a corner of the spatial plaquette p. For zero momentum, we do not expect any
signal in the Euclidean correlation (7) since a photon at rest should not exist. For
finite momenta however this is no longer true and we expect E(q) to obey a lattice
dispersion relation [45,44] (for small g, E(q) =~ |g| as in the continuum, but for
a typical lattice size used in simulations even the smallest nonzero momenta are
too large for the lattice corrections to be negligible). It is reassuring that these
theoretical expectations were fully confirmed by simulation results [44]. One can
even do more sophisticated things like projecting out photons with a given helicity
[45]. In the Higgs phase there should be no photon and, at nonzero momenta,
ImU(p) should couple to the massive W (at zero momentum this is not true
because of parity; there is no coupling to the Higgs because of charge conjugation).
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Figure 6: Masses in the U/(1) model with a charge-1 scalar field at A=3.0 and 3=2.5 on
an 8° X 16 lattice (from [44]). The lines are drawn to guide the eye. Notice the different
ranges for x in the two plots.

The simulation results from [44] shown in fig. 6 confirm this expectation too.

3.2 Renormalized Gauge Coupling

In lattice theories, scattering processes can be described within a rigorous frame-
work [47]. It is not practical however to define the renormalized gauge coupling
starting from scattering amplitudes, since we are far from being able to compute
such quantities on the lattice reliably. Fortunately there is a different way.

Consider a rectangular contour L with sides of length r in one of the space
directions and ¢ in Buclidean time. The basic quantity is the Wilson loop W (r, 1),
which is the Euclidean expectation value of the trace of the path ordered product
of the U -fields around L. Its physical meaning is well known [1,5]: it is the expec-
tation value of the Euclidean evolution operator exp(—tH) in a state containing
an external source-antisource pair separated by a spatial distance r.

A source is a state that transforms according to an irreducible representation
of the gauge transformation operators at some point z. Since the gauge symmetry
is exact, this property is preserved in time, and we say that the source does not
move. Sources can also be constructed by adding to the theory a second maftter
field ¥ with a very large mass M. In the limit M — oo there is a one-to-one
correspondence between the gauge invariant states of the extended theory that
contain iy -particles, and the states in the original theory that contain sources.
Thus we arrive at the interpretation that a source is an external particle that does
not move because it is infinitely heavy.
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In the limit t — oo, exp(—tH) projects out the lowest-energy state in the
sector containing the source-antisource pair. This state is an eigenstate of the
Hamiltonian. We shall call it a pair of static sources, since it no longer changes in
time.

For stafic sources the classical concept of a potential (or force) can be defined.
The representation of the source is the same as the representation used for the U/ -
fields in the Wilson loop. For simplicity we shall assume it to be the fundamental
representation from now on. The potential V(r) between a source-antisource pair
is then obtained from the Wilson loop as follows:

V(r) = - lim %log W(r,t) (10)

In the Higgs region, the first guess for the functional form of V(r) is the
Yukawa potential, which is derived in the one-W-exchange approximation [41];

V(r) = —c a:n ezp{—amwr} + 2E, (11)

where ¢ is a group theoretical constant (1 for U(1) and 3/4 for SU(2)), ctren is
related to the renormalized gauge coupling by the usual relation o, = g*  [4m,
mw is the W mass as defined in section 3.1, and E, is the energy of an isolated
static source.

In several simulations [41,48,42,43] it was found that (11) was fulfilled within
statistical errors by the potentials obtained from the measured Wilson loops using
(10). This was not only true for very weak gauge couplings (this case was studied
in [42]). In [43] for example, the Yukawa potential fitted the Monte Carlo data well
even though e, was more than 2.5 times larger than ayaye. If Gtpore is increased still
further, the one-W-exchange approximation of course breaks down. For a better
comparison with the simulation results, corrections to (11) should be computed.

3.3 Higgs Expectation Value

A gauge invariant, gauge independent quantity that can be used as “Higgs ex-
pectation value” is the vacuum overlap order parameter (VOOP). This quantity
tests the existence of charged states. The ideas leading to the VOOP, its definition
and some fundamental properties have been discussed in [20]. Let us summarize
the most relevant aspects. We remind that underlining denotes purely spatial
(3-dimensional) objects (equivalently: objects in the time-zero hyperplane).

Let L., be a spatial path from z to z’, chosen for simplicity to be a straight
line. A naive candidate for a dynamical charge-a.ntlcha.rge (“dipole”) state is:

3'(2) U(Lew) $(') [0) (12)

where U(Lg,) is the path ordered product of the U-fields along Ly For large
separations the energy of this gauge invariant state is proportional to |z — z’ |. It
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can be regularized by translating the operator U(L,, ) that creates the electric
flux from z’ to z by n lattice units into Euclidean time. The following general
and model-independent result holds [20]. The energy of the Hilbert space vector
(to avoid any confusion concerning ordering problems we write the group indices
a and b explicitely this only time)

le,2',n) = ¢ (2)a (2 e Uns(Lye) 10) (13)

stays bounded as [z — z'| — co provided that for some constant ¢, n > c¢|z — /|
(i.e. provided the regulating parameter n grows at least linearly with the distance
between z and z').

Notice that the state translated into Euclidean time is not gauge-invariant.
For n — co, e—nH projects out the lowest energy state in the presence of a source-
antisource pair. This means not only that the electric field spreads out in such
a way as to minimize the energy (think about the Coulomb field of a dipole as
an example), but also that other effects, like vacuum polarization, are adequately
taken into account. After having regularized the energy, we use the ¢-operators
to replace the sources with dynamical fields. If we would act with e™"4? on the
gauge invariant state (12), the state projected out would be the vacuum, so there
would be no electric flux from z to g’ at all.

In the limit 2’ — o0, n > ¢|z — 2’|, the charge at z either becomes free or is
screened. A quantity that distinguishes between the two situations is the vacuum
overlap of the normalized dipole state (13):

~ ’ L (OIEB_;EEI-.\TL)

plle —2,n): Tz (14)
A free charge i1s orthogonal to the vacuum Hilbert space. If the charge is screened,
the dipole state (13) differs from the vacuum only in the neighbourhood of z and
z'. I ¢(z) has no additional nontrivial quantum numbers, the vacuum overlap is
nonzero in the limit. Thus the criterion for existence of charged states is:

N o 7 free charges
ploo, 00) = { # 0 charges are screened (15)

The vacuum overlap is easily expressed in terms of euclidean expectation
values. In order to have a quantity with a similar renormalization as the ¢-two-
point-function (i.e. the usual wave function rerormalization), it is convenient to
redefine (14) by replacing in the denominator |z,z',n) with e—nHy (Lzzr) |0).
Denoting the resulting quantity by p instead of 5, we obtain:

z z’

SR

pllz — 2’f,n) = —— (16)

(L)
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Figure 7: Qualitative behaviour of the gauge invariant ¢-two-point-function in a free
charge phase (left), in a Higgs mechanism region (middle) and in a confinement region

(right).

On the r.h.s. we have used a pictorial notation for the Euclidean expectation values
of path ordered products of U-fields along space-time paths. The horizontal lines
are time translations of the path L,.,. The vertical lines are at the location of the
sources, and come from the fact that in going from the quantum mechanical to the
path integral formulation we go from the temporal gauge to a description without
any gauge fixing. The dots represent the ¢-fields (at time zero).

The criterion (15) also holds for p (with p a related interpretation is also
possible: (15) tests whether the charge of a static source is screened or not). The
cancellation of perimeter contributions between the numerator and denominator

of (16) is one of the main ingredients in proving (15). The order parameter (the
VOOP) is p(cc, ).

p(lz — 2, 00) is a gauge-invariant two-point function of the ¢-field. Its de-
pendence on the distance is shown qualitatively in fig. 7. It is relatively easily
accessible by numerical methods in a free charge phase and in a Higgs region,
where it behaves similarly to the matter field two-point function of the pure matter
(8= o00) the-ry. In a confinement region however, p(]z — 2’|, o0) has a free-charge-
like decrease with |z — z'| at small distances {corresponding to the Coulomb plus
linear region of the potential), where a charge-anticharge (quark-antiquark) pair
can exist as an excitation. At large distances however it goes to a constant (after
the potential becomes flat). Thus it should have a dip around the characteristic
length for hadronization (fragmentation).

In a Higgs region, the “Higgs expectation value” v is connected to the VOOP
by the tree level relation (the lattice constant a is used to produced dimensionless
quantities):

(av)? ~ kp(o0, 00) (17)
The renormalized Higgs expectation value cannot be obtained from the VOOP
alone because we would also have to take into account the wave function renor-
malization for the two endpoints. For this a computation of the VOOP beyond
tree level is needed.

From a technical point of view, it is worth noting that in order to obtain
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reliable values fbr p(00,00), the n - co extrapolation has to be performed first
(see [43]) for details).

The VOOP has been used to investigate gauge-Higgs models numerically:
Zy [49], U(1)-charge-1 [50], U(1)-charge-2 [51], SU(2)-fundamental [48,43] and
SU(2)-adjoint [52].

Let us briefly discuss the simulation results [43] for the SU(2) model with o
Jundamental scalar field. In a high precision simulation of the Higgs phase, masses,
o,en, and the VOOP were computed at A=00, 2.4 < § < 3.0, close to the Higgs-
confinement transition, on lattices up to 12° x 24. At §=3.0, the value of ay.re is
.106, while the values of ., were found to be between .25 and .30. Nevertheless,
the tree-level relation for renormalized quantities:

(amw)® = } g2, (av)’ =27, & p(oo, 00) (18)

was fulﬁlled rather accurately. Becoming bold, we can estimate the value of \...
using as definition the tree-leve] relation

3 ___m%z (ampy)?
" 40? 4kp(00, 00)

(19)

Here my denotes the mass of the Higgs particle as defined in section 3.1. Again at
f=3.0, the values obtained in this way for A... are not too large (\,.. < 3 for the
narrow range K. < £ < .36 above the jransition), although Ap,e =2 =o00. In fact
they are smaller than in the pure matter theory (¢=0) at A=o00 and at the same
values of ampg, as can be seen by comparing with the results of [25,22,23,24]. Thus
although both a,., and M., differ a lot from their bare values, they are relatively
small and there is a chance that the renormalized perturbation theory is a good
computational tool. One should however be careful. We are in the neighbourhood
of the phase transition. If the Coleman-Weinberg arguments [17] apply, not all
relevant properties can be computed using tree level relations. Actually the degree
of accuracy to which (18) is fulfilled gets worse as 3 is lowered; at 8 =2.7 it is
still rather well obeyed, but at = 2.4 this is no longer the case. Notice that we
have found a region where a highly nontrivial check on the validity of perturbation
theory can be performed as pointed out at the beginning of section 3. For that, a
renormalized perturbative calculation beyond leading order should be performed
for the measured quantities and then compared to the Monte Carlo results.

It is interesting to note that U(1) analog of the relation (18) was also fulfilled
well, albeit within larger statistical errors, in the simulation [44] that we used in
section 3.1 as an example for mass calculations. _

The VOOP can be generalized to compute two-point-functions for particles
that do not transform trivially under the “unbroken” group. The simplest example,
that of the vector bosons in the SU(2)-adjoint model (which are charged under a
U(1) subgroup of SU(2)), is discussed in [53].
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3.4 An Example of a Nonperturbative Effect

In Abelian theories, the electric field operators are gauge invariant. This is no
longer true for nonabelian theories. The electric fields are generators of the group
multiplication operators {5,3,19] (for every link the classical time-zero U-fields are
acted upon from the left or from the right with a group element). Only the group
multiplications £, ;(c) by an element ¢ of the gauge group center are gauge invariant
{left and right multiplications coincide for the cep{;er and only for the center). Let
us define the gauge invariant electric fluz operator F(S,c¢) as the product of the
&;,i(c) for the links z,j perpendicular to a surface S (technically S is a surface on
the dual of the three-dimensional time-zero lattice). This is a multiplicative flux.

In the pure gauge theory F(&, ¢} has nontrivial commutation relations with
the operator measuring the magnetic fluz through a surface that intersects the
boundary 88 of § in one point [18]. Thus by acting with a center-electric flux
operator on the vacuum, we obtain a state that may contain a closed tube of
center-magnetic fluz at 98 (with the flux quantum number ¢). The question of
whether the magnetic flux is screened dynamically by vacuum fluctuations can be
answered using the vacuum overlap of this state (this is the t Hooft loop [18]). If
the vacuum overlap is small (area law), we have an excitation of the vacuum; if
it is large (perimeter law), then the vacuum is a “condensate” of center-magnetic
flux tubes that screen the extra flux tube we are trying to create.

The situation changes in the presence of a matter field in the fundamental
representation. The energy of the state obtained by acting with F(8,¢) on the
vacuum is proportional to the area of & rather than, as in the case in the pure
gauge theory, to its perimeter. Even though the commutation relations between
the electric and the magnetic fluxes have not changed, the interpretation as a
closed tube of center-magnetic flux is no longer possible. This problem can be
overcome [19] using an energy regularization method similar to that described in
section 3.3 for charge-anticharge states.

For the energy-regularized candidate of a state with a closed center-magnetic
flux tube, we can again use the vacuum overlap as a test of whether the vacuum
fluctuations screen the magnetic flux or not. In the Higgs region an interesting
phenomenon happens [19]. The vacuum overlap is small - i.e. obeys an area law
— for small §, while for larger S there is a crossover to an asymptotic perimeter
law. Thus small center-magnetic flux tubes are relatively stable excitations, while
large ones are not. This is a situation similar to that for the energy regularized
charge-anticharge states in the confinement region (see section 3.3).

Unless someone comes up with a completely new idea, there is no way to com-
pute perturbatively the quantities discussed above. Therefore we cannot decide
whether the fact that in the Higgs region the small closed lines of center-magnetic
flux are excitations is a lattice artifact, or whether it is relevant to continuum
physics too (e.g. for the deep inelastic scattering of W's and 2’s).
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4 TOWARDS CONTINUUM PHYSICS

In section 2.1 we briefly discussed how to take the continuum limit in models
with more than one parameter in the action. We argued that it is useful to
first determine the lines of constant physics (LCP’s) and then investigate how
correlation lengths (or, equivalently, the cutoff) grow along such lines. Let us for
the sake of simplicity continue the discussion in terms of a specific model. The
obvious candidate is the Higgs region of the SU{2) theory with a fundemental
scalar field. The most thorough investigations in the literature are for this model.
Following [21} we define an LCP by fixing ¢,.. and the Higgé to W mass ratio
mpg/mw. Other definitions give in general different LCP’s. If however scaling is
well obeyed, which is expected to be the case in the perturbative region at large
correlation lengths, the various definitions almost coincide.

Since the experimental value of the weak coupling g.... is small, many features
of the theory can be understood by investigating the ¢-- 0 limit [29], which is the
O(4)-symmetric ¢* model. A natural way to define the LCP’s of this pure matter
theory is to fix A.en. Using (19) as a definition for A,., and assuming that ¢ is
small enough so that {18) holds, it follows that in the full theory

m

(20)

Apen = gr2

en ren 8 m%V
As g — 0 at a fixed value for ampy, both ¢,.n and amy become zero, but A... is
almost constant.

In section 4.1 we shall discuss the perturbative calculation of the LCP’s
[15,21] in the full model. It will turn out that the correlation lengths are bounded
on such lines, unless both ¢,., and A.., are zero. This 1s the well known phe-
nomenon of trivielity: either the regularization cannot be removed (in our case
the lattice spacing cannot become zero), or we have a noninteracting theory. The
discussion will just be qualitative, without formulas, since the computations on the
lattice do not differ significantly from the standard continuum treatments [14,15].

Next we shall turn to the upper bound on the Higgs mass. Consider a line in
the phase diagram obtained by fixing ¢ (another possibility is to fix ¢,.,) and A.
From the properties of the LCP’s, we shall see that along such a line the values of
Aren and of mpy/mw increase with amy, which in turn increases with x. At some
point amp becomes of the order 1. Since a™! is the cutoff A, this means that in
physical units the Higgs mass approaches the cutoff. It becomes meaningless to
speak of a Higgs particle anymore. We declare this value of my to be the g,cn-
and A-dependent upper bound (e.g. in units of my). The interesting bound is the
highest upper bound obtained by varying A. From the behaviour of the LCP’s we
shall see that this “upper upper bound” is obtained at A= oo, which is one of the
reasons why so many numerical calculations are done at this particular value of A.
The bound now depends only on ¢..n.
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Although renormalized perturbation theory may lead to relations that are
accurate up to large values of the bare parameters, e.g. up to A = 0o, the com-
putation of the upper bound on my requires an inherently nonperturbative piece
of information, namely the relation between bare and renormalized quantities at
large values of A. One way to obtain these relations numerically is through com-
puter simulations. In section 4.2 we shall briefly describe some recent Monte Carlo
calculations of the upper bound [42,22,23,24], performed both in the full model
and in the limiting O(4)-symmetric pure matter theory.

For the pure matter theory on the lattice, Lischer and Weisz [25] developed
an analytical method that leads to similar results and is, at present, even more
accurate. They start their calculation in the unbroken phase, at small , using a
high order expansion in « (which is a nonperturbative method too). The results
are then continued to the phase transition and into the broken phase using the
renormalization group equations in both phases, which are matched at the phase
transition. We end section 4 by briefly discussing this approach.

4.1 Lines of Constant Physics

Hasenfratz and Hasenfratz {15] ended a lot of speculative discussions about the
LCP’s (see e.g. [41]) by explicitely computing the relevant quantities in a renormal-
ization group improved perturbative expansion around the Gaussian fixed point
¢=A=0, « = ;. This method is reliable if both the bare and the renormalized
couplings are small enough. We are however also interested in the shape of the
LCP’s for large values of the bare coupling A, where conventional perturbation
theory cannot be used to determine the dependence of renormalized quantities on

the bare parameters (even if A, is small).

In order to solve this problem, a different approach was taken by Montvay
[21]. Following to some extent the suggestions of Dashen and Neuberger [29] he
started from the full pure matter theory and expanded in ¢* alone. The advantage
of this approach is that, similarly to the pure gauge theory, this is an asymptotically
free expansion. The drawback is that the zeroth order theory is the full ¢* model
(however, as will be discussed later, this is the model where the best numerical
results are available).

Both approaches lead to similar conclusions about the LCP’s, which are
summarized in figs. 8 and 9. In fig. 8 the projection in the B8-) plane is shown for
some typical LCP’s. The arrows point in the direction of increasing correlation
lengths. Since there is a two-parameter family of LCP’s, it is not possible to
visualize all of them at once in this way. Some of the LCP’s end in the first
order transition surface (see section 2), others end at A = co. For g # 0 (in our
case equivalent to g,., #0) no LCP ends at a point in the phase diagram where
correlation lengths diverge. In fig. 9 the one-parameter families of LCP’s at fixed
gren @re shown. On the left we have the pure matter theory. Here all LCP's end
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Figure 8: x-projection of the lines of constant physics (LCP’s) in the SU(2) model with
a fundamental scalar field (following [21]). The axes extend up to infinity. The arrows
point in the direction of increusing correlation lengths (increasing cutoff).

at A =00 [25]. On the right, at gre, #0, the situation is different: the transition
line is first order, and there are LCP’s that end in it. Notice that A,.. becomes
smaller as the LCP’s approach the phase transition line. It is zero only in the pure
$* case, at the transition. This second order phase transition line is also the only
LCP along which a correlation length can be infinite.

Let us try to get an intuitive understanding of the shape of the LCP’s.
Assume we start at a point A in the phase diagram at some sufficiently large 8.
All correlation lengths are finite here. One of the renormalization group equations
contains ¢ alone [14], and is almost identical to that of the pure gauge theory.
Since ¢ is asymptotically free, we expect the LCP containing A to move towards
smaller values of ¢ as the correlation lengths (equivalently, the cutoff) increase.

A

A

T WK 1T KK

Figure 9: LCP’s for a given value of gr., in the SU(2) model with a fundamental scalar
field (following [25]); on the left, g,en =0 (pure matter theory}, and on the right, g,en #0.
The axes extend up to infinity. The arrows point in the direction of increasing correlation
lengths (cutoff).
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On the other hand, if ¢ is small we can as a first approximation neglect it m
the renormalization group equation for A, which is then the same as in the pure
matter theory. X is not asymptotically free, which means that it increases with the
correlation lengths (the cutoff). As mentioned above, in the pure matter theory
the cutoff is still finite when A has reached infinity. The non-asymptotically-free
coupling has won: the LCP ends before ¢ becomes zero.

Let us sum up. There is no LCP that starts at finite correlation lengths
and ends up with at least one of the correlation lengths being infinite. There is
one LCP, the phase transition of the pure matter theory, for which the correlation
lengths are infinite throughout. On this line however both Gren and A, are zero.
Thus the continuum limit only exists for a situation in which there is no interaction.
This phenomenon is called triviality. If we nevertheless want to use the model for
phenomenological purposes, we have to work at a finite cutoff (effective theory).
The hope is then that it is the low energy limit of an aesthetically more pleasing
theory.

A few words of caution are in place. In the pure matter limit, perturbation
theory works well in both phases. If the gauge coupling is turned on, we have at
small k a confinement region instead of a free charge phase. As opposed to the
Higgs region, perturbation theory can only be used for a limited set of quantities
(short distances). In the discussion of the LCP’s at ¢ # 0 it was important to
assume that the Higgs-confinement transition surface is first order. The arguments
for that [17] are based on a one-loop study of the effective potential in both phases,
and are therefore less reliable than the arguments that use the perturbation theory
in the Higgs phase alone (see also the remarks in section 2.2).

4.2 Computations of the Upper Bound on the Higgs Particle Mass

In order to obtain the shape of the LCP’s, we needed to know the dependence of
gren and my/mw (or, by (20), A...) on the bare couplings. For the upper bound
on the Higgs mass we also need the dependence of amy on K, B and ).

For g # 0 the corresponding computation was performed using continuum
perturbation theory [14]. As discussed before, this cannot be trusted too much
for large bare couplings. At g = 0 this problem was circumnvented by using an
approximate block spin renormalization group method [54], and, on the lattice, by
using the method described in the next subsection [25].

Eliminating the bare couplings, one can plot the results for a fixed Qren 8S
shown in fig. 10. The LCP’s are here simply horizontal lines. The thick curve
contains the upper bounds for (amy)™!, so the region above it cannot be reached.
These upper bounds are obtained for A = co. We have to make a convention for
the lowest admissible value of the ratio between the cutoff and the Higgs mass,
e.g. A/my = (amy)™' > C, with C a constant larger than but of the order of 1.
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Figure 10: Upper bound for the Higgs mass at fixed gren. The x-axis is logarithmic.

The region of the x-axis to the left of C' is thus also forbidden. The highest upper
bound is obtained when the curve of upper bounds reaches C'. A change in the
definition of € modifies this bound only a little because the x-axis is logarithmic.

It is an important problem to confirm these results by an entirely nonpertur-
bative method. Several computer simulations have been performed to this end.

In [42] the Higgs and the W masses have been measured at a value of gren
close to the experimental one. These calculations have to deal with the problem
that at the resulting values of my/mw of around 9, and at ampg < 1 (which is
required for the bound calculation), the value of amwy is so small that the finite
size effects cannot be controlled reliably. Therefore it is more practical to try to
find the upper bound on X, in the pure matter theory, and use (20}, with the
experimental values for g,., and mw to translate it into a value for my.

In order to determine M., in the pure matter theory, one has to employ (19)
and use v =< @, >=MZ ~%. Here M is the magnetization and Z is the wave
function renormalization corresponding to the Goldstone particles [29].

In [22] my and < ¢,.n > were computed in the pure matter theory. Initially
the Z-factor was estimated as the residue at the Higgs resonance pole of a two-
point-function used to measure my. By comparing the decay of two different
two-point-functions that couple to the Higgs, it was later possible to extract the
Z-factor for the Goldstone particles too.
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There are two calculations that compute the effective potential for the pure
matter theory [23,24]. We cannot describe their methods here. In (23] two- and
four-point-functions are also measured. Actually the investigations in [23] are more
comprehensive: besides the upper bound problem, both phases are considered,
scaling laws are checked etc. This is also the simulation with the highest statistical
accuracy from the ones mentioned here.

In [24] regularizations of the continuum ¢* theory on latticés of various ge-
ometry (not only hypercubic) are considered. The results agree within roughly
10%, which is reassuring, since in the absence of a continuum limit the different
regularizations are in fact different theories.

The upper bounds obtained in all these calculations agree with one another
within statistical errors. They are also consistent with the result quoted in [25]
(see below), which is my < 630(25)GeV at A/my=2. At this value of the upper
bound, A, = 3.2(2), which is small enough for the renormalized perturbation
theory to be applicable. This excludes a strongly coupled Higgs sector.

We saw before that there is no interaction if the cutoff becomes infinite. We
can however consider a cutoff of the order of the Planck mass. Due to the fact
that the x-axis in fig. 10 is logarithmic, the upper bound on the Higgs mass then
goes down to about 150 GeV. Such a result certainly cannot be obtained from a
direct lattice simulation. However, we can use the simulation results (from lattices
of reasonable size) as initial conditions for integrating the renormalization group
equations,

4.3 The Liischer-Weisz Program

Lischer and Weisz have devised a method to perform very accurate analytical
calculations in lattice ¢* models [25).

For small £ there exists a cluster expansion whose convergence can be well
controlled and for which relatively high orders can be computed. If one goes to a
high enough order, so that all clusters up to a given size ~ are considered, then the
cluster expansion will give very precise results in a region where the correlation
length is smaller than r. Realistically, one can go up to correlations of two lattice
units.

Fortunately a correlation length of two is already well inside the region next
to k.. where perturbation theory works well. One can use the renormalization
group equations to continue the convergent expansion results up to «.. and then
further on into the broken phase. In fig. 11 the solid curve represents the phase
transition. In the region A the cluster expansion is used. Its results on the dashed
line between A4 and B are the initial data for solving the renormalization group
equations. In order to match the two renormalization group flows at the transition,
the massless theory at x., was solved. The second dashed line, above C, represents
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Figure 11: Phase diagram for the pure matter theory (from [25]).

the region above which the solution of these equations corresponds to a correlation
length smaller than two. As a consistency check, the solution of the differential
equations and of the convergent expansion results are found to be almost identical
for a large portion of the region B.

If correct, this analytical method is superior to any other known approxima-
tion scheme for the lattice ¢*-theory. There is however no rigorous proof that the
renormalization group equations using the perturbative beta-functions are accu-
rate. The main device to test the validity of this approach is a comparison with a
completely nonperturbative calculation.

The results of Liischer and Weisz completely agree with the computer simu-
lations discussed before, and with some very accurate simulations that have been
performed with the specific aim of checking tbem [55].

5 Outlook

In the near future, the investigation of the S U (2) model with fundamental scalars
will continue. It is also worthwhile to con51der the U(1) case more closely, espe-
cially in view of studying the scalar sector of the full standard model.

After having understood the zero temperature properties of these models
well enough, a further step is to investigaté them at finite temperatures more
thoroughly than was the case up to now. |

More complicated gauge-Higgs models'a.re of great interest both from the
field theoretical, and from the model bu1ld1ng point of view.

Last but not least, a lot of effort has gone recently into the study of models
with scalars and fermions, in order to investigate what happens at strong Yukawa
couplings. This is maybe the area were most work will be done in the near future.
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