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ABSTRACT

We present new results from a Monte Carlo simulation of the Higgs
region of the SU(2) gauge theory with a fundamental scalar matter
field. To investigate the model at A = oo, # = 2.4 and 2.7, and & close

to the phase transition, three different lattice sizes were used: 8% x 24,

10% x 24 and 12% x 24. The finite size effects, which are by no means
negligible, are discussed in detail.

1. INTRODUCTION
The nonperturbative properties of the Glashow-Weinberg-Salam model of
weak and eIéctromagnetic.inter-a,ctionsl] are extremely important from a purely the-
oretical as well as from a phenomenological viewpoint. Analytic methods that lead
to concrete information about these properties have not been developed yet. The
- most promising technique has been the Monte-Carlo (MC) simulation of the lattice
regularized model. There are however severe conceptual®l and technical®! problems
in treating the Standard Model fermions on the lattice. On the other hand, today’s
computers can well handle the problem of gauge fields coupled to scalar matter
fields. Before starting a large scale simulation of the full SU(2) x U (1) gauge-Higgs
system, it Is important to gain a good quantitative understanding of the simpler

SU(2) and U(1) theories separately.

Here we report on a high-statistics simulation of the SU(2) gauge-Higgs sys-
tem with the Higgs field in the fundamental representation. Many aspects of this
‘model have been investigated before by other groups, both by simulations?*%7! and

by perturbative methods®l. From a numerical point of view the model is not an
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easy one. It has three independent parameters, 3, x, and A. A complete numerical
investigation should include simulations for the full range of these parameters for
large enough lattices. While providing an overall picture, the previous simulations
often underestimated (or neglected) the dependence of the results on the lattice size.
One of the aims of our Monte Carlo study is to deal with the finite size effects in a
systematic way.

Some preliminary results for 3 = 3.0 and A = oo were reported on before %.
We had found considerable finite-size effects in the particle masses for lattices up
to 123 x 24. In order to study these effects in more detail we decided to perform
simulations at A = oo and at smaller values of 3, where the W mass is larger. For
< we chose values in the Higgs region (k£ > rrit) close to the phase transition. The
strategy is to move in a controlled way towards the region of larger 3, where the
renormalized weak coupling constant takes values compatible with the experimental
one’l. | |

In section 2 we briefly review the model and the physical quantities we studied.
In section 3 we describe the MC simulations and results. Some concluding remarks

are presented in section 4.

2. THE MODEL AND THE MEASURED QUANTITIES
The SU(2) Higgs model, as the SU(2) lattice gauge theory with a Higgs field

in the fundamental representation is commonly called, is defined by the action?~"9:

ﬂ .
§=-C3 TrUp—k) ps posi Tr(03 Un i) + 2 S (02 ~ 1) + Y ek (1)
P T,p z z
Here U, is the SU(2) element on the link starting from the lattice point z = (z,t)
in the g direction, Up is the usual plaquette variable, p, = (¢, ;) is the length
of the two-dimensional complex scalar field ¢z, and o is the SU(2) matrix that
rotates the vector (1,0) into ¢, /pz. As usual, we denote the gauge invariant link

variable by
3

Vule) = 01 U o0 = Voule) +3 3 Vile) 7, (2)

r=]
where 7, are the usual Pauli matrices. Besides the gauge symetry the model has an
SU(2) global “isospin” symmetry (conjugation of V,(z) by a constant matrix). The
indices 0 and r in (2} denote the isospin zero part and the three components of the

isospin one part.



2.1. The W and Higgs masses

To determine the W mass we consider the decay of the correlation function® "

3 3
KW(T):<ZZ Y Vi@ 0)| ) Veily, T) > ¢)
' ¥

r=1 j=1 £

where j denotes the three spacelike directions and the summation Y runs over
all three-dimensional space coordinates. For the computation of the Higgs mass an
appropriate correlation function is

2

Kg(T) = < > 2 Vaig0)| (D0 Vouly T) > - < DD Voilz,0) > :

z j=1 ¥y j=1 z j=1
(4)

Because of the periodic .boundary conditions, the measured correlation functions {3)
and (4) are fitted by a periodic exponential decay in T (the fit parameters are A
and m): ' |

K(T) = A{exp[~amT] + exp{—am (L, - T)]}. - (5)

Here @ is the lattice spacing, m is the mass in physical units, and L; is the lattice
size in time direction. Eq. (5) holds for T large, but T' < L;/2.

2.2. Static potential, renormalized gauge coupling and source energy
Several interesting physical quantities can be derived by studying the R x T
space-time Wilson loops W(R,T) in the fundamental representation.
The potential Vir( R) between two fundamental representation static sources
at distance R is obtained from the exponential decay in time of W(R, T). At fixed
R a two-parameter (Cy (R) and Viy(R)) fit is performed (R < T < L;/2):

W(R,T) = Cw(R) exp|-Vw(R)T]. (6)

After Viy(R) is determined in this way for 1 < R < L,/2 (L, is the lattice size in
space direction), this function of R is compared to the Yukawa potential Y{R, amw )

obtained in the one-W-exchange approximation. For this we do a two-parameter

{aren and Ey) fit:
3 TEen
Viw(R) = ~ "‘4 Y(R, amw) + 2E,. (7)

Here either the continuum Yukawa form, Y oni( R, amw ) = exp(— amy R)/R, or a

lattice version Yi,4( R, amw) 6.7], which takes into acount the correct range for the
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momenta on the finite lattice, can be used. Since this potential is derived as a first
perturbative approximation {one W, no loops), it cannot be expected to fit the data
well for all values of 3; «, and A, and for the full range of R. If the fit is good,
then aye, is equal to g2,,/47 with gren the renormalized gauge coupling, and E, is
the energy of 2 fundamental static source. Depending on the version of the Yukawa
potential used, we will write E; cons and crep cont, OF Egtate and arep jarr -

In principle one could fit the potential with my as a third free parameter,
instead of using the value obtained from eq. (5). In practice, however, this is no-
toriously difficult®® 7% since for the range of available R-values the fits are rather
insensitive to changes in mw .

The static source energy E, can also be determined in two other ways. The

first method uses the expectation values of gauge invariant timelike lines:

T—1 :
G](T) = < Tr [Cl"g== 0) (H U(zt ) G(E’T):l> . ‘ (8)

For large values of T but with T < Lt /2, a two-parameter (C1 and E, ;) fit is

performed:
Gi(T) = C1 exp(—EqpineT). (9)
The second alternative consists of directly computing the source energy from the
measured expectation value of the timelike Polyakov loop P; = G1(L;) by means of
the relation
Eq.pot = —(1/L;) In(F,). | (10)
These different methods for computing the same physical quantity provide an excel-

lent way of checking the consistency of measurements and computational methods.

2.3. The Vacuum Overlap Order Parameter (VOOP)

In the continuum theory it is customary to consider the Higgs expectation
value v =< ¢° > (¢° is the continuum Higgs field), which is 'related to the Fermi
coupling constant. This quantity v cannot be defined unless the gauge is fixed. A
better quantity to consider is the VOOP. It has a clear gauge- mdependent physmal‘
interpretation'®). In addition to the Wilson loops W(R,T), another set of gauge-

independent quantities G2( R, T) must be measured:

T-1 R-1 |
1
G2R,T) = < Tr ["(Tz 0) (H Utz H U(z+r1 T}, 1 H (z+R1,),0 ) t:'(E.H‘Ziﬂ)] >

(11)



The VOOP is then defined as the limit R,T — oo of the function

G2 R,T)

RT)= A5 2)
PBT) = Ry

(12)
with T > cR (¢ is a positive constant). It can be shown that for all gauges in the

tree-level approximation the VOOP = p(oo,o0) is related to v by the expression
(av)? = & p(o0, ). (13)

In the next section we will refer to the VOOP determined in this way as VOOP;,.

It 1s not always an easy task to determine this limit numerically in the way
described before, especially in the case of small lattices. A good way to avoid these
difficulties is to take the limit T — oo first, while keeping R fixed at a finite value.
We can do this for the numerator and the denominator separately by performing

two-parameter fits according to eq. (6) and to
G2(R,T) = Cy(R) gxp[—VGz(R) 7). (14)

Vw and Vg, represent the same potential, fitted from two different quantities. If
the fits (6) and (14) are both good and after checking that Viy = Vg,, we have:

C2(R)

pR,o0) = & (15)

This allows us to determine the VOOP if the lattice is large enough in the space
direction. The value obtained in this way will be referred to as VOOP,,;.

It has been suggested theoretically that in a phase without free'charges the
VOOP is equal to the constant C; obtained from the fit (9) 1%, This is a numerically
easier way to determine the VOOP. As in the case of the source energy, having more
than one method to determine a given quantity provides a useful check of the internal

consistency of our calculation.

3. THE MONTE CARLO SIMULATIONS AND THE RESULTS

As opposed to the case of pure matter theories, for the SU{2) Higgs model
a theory of the finite size effects has not been workgd.ouf. The most reliable way
to check whether one has these effects under control still is to perform simulations
on lattices of increasing size until the changes in the measured quantities become

smaller than the statistical errors. For this reason we carried out simulations for
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three different lattice sizes (8% x 24, 10% x 24, 123 x 24). We will refer to these sizes
as small, medium and large respectively.

We will present data for A = oo, 8 = 2.4 and 2.7. For each 8 we took two
values of x that are in the Higgs phase, relatively close to the phase transition.
The MC runs started with approximately 15000 thermalization sweeps, followed by
90000 to 120000 sweeeps during which measurements were performed every third
sweep. We used a fully vectorized version!!) of Creutz’s heat-bath algorithm2l. In
order to check whether any flip-flops to the confinement phase had occured, the full
history .of eight quantities was stored. In the subsequent analysis we found no such
flip-flops. _ _ |

We were very careful with the error analysis. By the central limit theorem?®],
the averages of the measured physical quantities over a long time series are approx-
imately Gaussian random variables. The Gaussian distribution is characterized by
a covariance matrix. One way to estimate it is to partition the time series into
bins and compute the covariance matrix for the bin averages. As the bin size is in-
creased, this bin average covariance matrix divided by the number of bins converges
to the covariance matrix for the whole-run averages. In computing functions of the
measured quantities or in fitting them, we did the error analysis using the whole
covariance matrix. We will discuss below how the more widespread procedure of
only considering the variances (. e. the diagonal of the covariance matrix) may lead
to numerical mistakes.

Our analysis of the MC results is summarized in tables 1 and 2. Almost ail
symbols used in these tables were defined in section 2. The last two entries are the
values of the W masses as computed from the tree-level rela,tibn (16) (see section
3.5). The numbers followed by a * are not as trustworthy as the others. They either
result from fits that are not good (reduced x* > 1), or from a numerical limiting

procedure where it was not clear that the asymptotic value had really been reached.

3.1. The W and Higgs masses

Fitting the masses with eq. (5) is a delicate task. One has to vary the short-
est distance T,,,;, and the longest distance T,,, and find the situations for which
the reduced x? is smaller than one. The value of the fitted parameters and their
statistical error depends very much on the number of data points considered, espe-
cially on Tynin. The results quoted here are those with the smallest errors among

the subset of fits that have x? < 1 and that give stable mass values with respect to
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Table 1: Collected results for 8 = 2.7

K = .365 k =.370
Lattice size 83 x24 108 x24 129 x24| 8 x24 10°x24 123 x24
amw 41(2) .32(2) 33(2) 40(2)  .31(1)  .31(1)
amp 59(2)  .53(3) 53(3) 56(8)  .73(2)  .74(2)
VOOP 4, J01(2)  .101(4)  .097(2)* | .130(2) .129(2)  .126(2)
VOOP, . 103(6)  .105(4)  .105(2) | 133(4)  .133(3)  .131(5)
Ci | .101(6)* .104(4) .103(3) | .138(5) .137(2)  .135(1)
By line 267(6)* .251(5) .243(3) | .257(4) .242(2)  .235(2)
Eq pol 277(4)  .258(2)  .243(1) .256(3) 241(1)  .234(1)
Ey cont 219(1)  .228(2)* .228(1) | .218(1) .225(2)  .224(1)
Eg jate 206(2)  .218(3)  .220(1) | .210(1) .216(1)  .217(1)
Qren cont 297(6)  .39(2)%  .36(2) 206(4)  .37(2)  .37(2)
Qpen latt 279(4)  .36(2) 34(1) 276(4)  .34(2) 32(1)
aAMW cont 27(1) 31 .29(1) 30(1)  .34(1) .33(1)
MW fatt 26(1)  .29(1)  .29(1) .29(1) 32(1) 31(1)
Table 2: Collected resulits for ,B =24
k= .390 o k=400
Lattice size 83 x24 10°x24 12°x24| 8 x2¢4 10°x24 1282 x24
amw A47(2)  412)  .38(2) A47(1)  .44(1)  .40(2)*
ampg 80(2)  .B5(6)*  .67(4) 91(3)  .96(3)  .94(3) |
VOOPy;, 165(3)  .167(6)  .168(2) | .217(3) .216(2)  .216(5)
VOOP,4¢ 172(14) .168(4)  .171(4) | .216(7) .215(9)  .215(12)
s 183(3)  .170(3)  .178(2)* | .228(3) .231(1)  .226(1)*
- Egline 312(3)  .298(2)  .301(2)* | .288(2) .286(1)  .282(1)*
E, po 306(9)  .301(4)  .297(3) | .290(6) .281(3) .279(2)
Eq cont 283(8)* .293(5)* .293(4)* | .287(2) .281(1)  .280(3)
Eqlatt 270(5)% .283(2)* .284(3)* | .268(1) .276(1)  .275(2)
Cren,cont 56(12)*  61(7)*  .58(4)* .64(4) 58(3)  .51(8)
Creniatt | -BI(LL)* .53(6)*  .50(4)* 60(3)  .51(3)  .42(7)
amweont | A8(T)* .50(3)*  49(2)* | 59(3)  .56(3)  .52(6)
MW Lot A6(7)*  47(3)*  46(2)* | 57(3)  .53(3)  .48(5)

small changes in T and Tong.. _
For a correct analysis of the goodness of fit, it is absolutely necessary to

use the full covariance matrix for the measurements at different values of T. We
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compared the fits done in this way with those disregarding the covariances between
different quantities ,i. e. , using only the variances. For the same T,,;, and Trnaz, the
values of the fitted parameters differed only marginally (rarely up to one standard
deviation); the errors estimated with the full covariance matrix were usually smaller
by 20 to 50%. On the other hand, the value of x* was often larger for the fits that
used the full covariance matrix, in some cases by as much as 100 %. Thus if we
only use the variances, we may be misled to declare as good a fit starting from a too
small 7y In this case it is not only the errors that are not estimated correctly,
but also the values of the fitted physical quantities.

For our values of the coupling constants, fitting the Higgs mass is more diffi
cult than fitting the W mass, as the correlation function K g drops off much faster
and becomes zero (within error bars) for distances around 7 lattice units.

The analysis for the data at 3 = 2.7 went very smoothly. From table 1 it is
clear that the difference in masses between the medium and large lattice size is zero
- within error bars. It is interesting that x = 0.365 and 0.370 give the same W mass.
At B = 3.0% there was a similar situation close to the phase transition. There we
could not exclude the possibility that this was due to finite-size effects. For 8 = 2.7 .
we are now more confident that the finite size effects are under control. New data
for 3 = 3.0 on larger lattices, that will be published elsewhere, point in the same
direction.

The data for § = 2.4 are not as good as for 8 = 2.7. As expected for a smaller
B, the measurements are much “noisier”. This makes fits more difficult, especially
for the W mass. Again, its values for « = 0.39 and 0.40 agree within error bars.
On the other hand it is also clear that the results for the medium and large lattice
are still quite different. New data on a 14% x 28 lattice seem to confirm the values _
quoted for the large lattice.

The Higgs mass varies strongly with x, as expected from other studiess%79].
In our case, mp is in the region of 2my . It may be that some of the finite size
effects are due to the crossover (as the lattice size is changed) from a situation with

a stable Higgs to one where the Higgs particle is a resonance.

3.2. Static potential, renormalized gauge coupling and source energy
As described in section 2.2, the fit of the potentials to the measured data is
done in two steps. First the potentials V(R) for different spatial distances R are

determined together with their covariance matrix. This procedure is similar to the
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one used for the masses and it always worked smoothly. However, employing the

full covariance matrix (of W(R,T)) makes an even greater difference here.

The second step, where some potential function is fitted to V(R), is more
delicate. One of the reasons is that the correct potential function that should be used
to fit the measured data is not known theoretically. This leads to the paradoxical
situation that it is often easier to fit potentials to lower statistics data than to high

statistics data.

At B = 2.7 the fits with both versions of the Yukawa potential were satisfac-
tory in all cases except one. For distances R in the range 2 < R < L,/2 the fits
were always good. Furthermore, the results did not change when the values of the
potential for R = 6 and/or R = 5 were excluded. All results quoted in table 1 are
for 2 < R < 4. Only in one case (s = 0.363, medium lattice, continuum potential)
the fit for 3 < R < 5 was quite bad and gave results that were different from the

ones quoted in table 1. For this reason we marked this case by a *.

For our data at 3 = 2.4 and 5 = 0.390 the fitting of potentials was not
successful for two reasons: the data are noisier and the renormalized gauge coupling
is quite large. Usually the fit including only distances from 3 to 5 was good, but
these results are not very reliable because the fitted parameters are quite insensitive
to the data for large distances. [f we include the data for R = 2 the fits become bad.
The explanation is that for these values of the parameters and for these distances the
one-particle-exchange approximation breaks down and different potential functions
should be used. Previous simulations at similar values of 3 ¢ also found that close
to the phase transition the Yukawa fits do not work well. On the other hand, for
x = 0.400 the fitting was as good as for the two « values at # = 2.7. This is probably
due to the fact that by increasing %, amp increases and e, decreases®®l. In table 2

we have again quoted the results for 2 < R < 4, even for x = .390.

The energy .Eq of a static source can be computed in four different ways. On
a finite lattice with large Ly, Eq.pot and Egine should be equal. The finite size
corrections to Eg cont and g jq4 however should neither be equal to each other, nor
to those of Eg p,; and E, jine. This different finite size dependence can indeed be
seen from our data. For the small lattice the four values for the source energy are
usually somewhat apart. At 8 = 2.4, x = .400, they converge towards compatible
values as the lattice size is increased. At 8 = 2.7 however, they are still not equal

within error bars on the large lattice.



3.3. VOOP

For the small lattice it is very difficult, if not impossible, to obtain a reliable
value for VOOP;, because it is not feasible to check whether the asymptotic value
has already been reached. However from the data for the large lattices one clearly
sees that this limit has already been reached within error bars for R = 3 or 4. For
this reason the values and errors quoted for the small lattice in the tables are the
ones for B = 3.

As described in section 2.3 there is a more reliable way to determine the
VOOP, by taking at fixed R the limit T — oo for the numerator and the denominator
independently (VOOP,q4:). For the small lattices the subsequent limit B — oo is
again problematic but for the larger lattices this procedure gives a stable asymptotic
value. A third method to determine the VOOP is to use C; (see (9) ). In the data
Cy is always larger or equal (within error bars) than the values for the VOOP
calculated in the two previous ways. Again the different methods should not have
identical finite size effects. For 8 = 2.7 they converge towards compatible values.
For 8 = 2.4 the procedure to determine C7 was not so successful and the values for
Cy are still larger than VOOP 4, or VOOP, ;.

It should be noticed that the values that we obtained for VOOP,,; hardly
change with growing lattice size. This is one additional reason to trust this method

more than the other ones.

3.4. Tree-level relations

From our discussion of the VOOP (= p(oo,00)) it is clear that the gauge
invariant two-point function p{ R, o0) can be determined numerically in a consistent
way in the Higgs region. It is instructive to check the validity of the tree-level

relation that gives my as a function of p(co, 00) and ayeqn:
(amw)? = 27 otpen (av)? = 2 Oren K p(00,00) . (16)

In this relation we can use ®yen fatt OF Qren,cont, and the values for my are labeled
correspondingly. The values obtained in this way were included in the tables.

The results for § = 2.7 agree quite well numerically with the values for mw
obtained directly, at least for the larger lattices where we do no longer expect strong
finite-size effects. A similar result was found for 4 = 3.0°), This indicates that the
renormalized perturbation theory can still be used here. Notice that the bare and

the renormalized weak couplings differ considerably at 8 = 2.7. Perturbation theory
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predicts that at fixed § the r. h. s. of (16) grows with (k — Kcriz). This too seems to

be reflected in the behavior of the data. As pointed out before, our values for the

directly measured my show (within ertor bars) no & dependence, both at 3 = 2.7
and 3.0. '

' " For 8 = 2.4, the tree-level relation for the W mass does not hold., even for

the large lattice. This should be expected for small values of 5.

4. CONCLUSIONS _

We performed a simulation in the Higgs region of the SU(2) lattice gauge the-
ory with a fundamental scalar matter field, close to the transition to the confinement
region. We investigated the finite size effects for several quantities: masses my and
mw , renormalized gauge coupling ayen, source energy F, and gauge invariant Higgs
expectation value defined by the VOOP. _

As we had hoped at the outset, the finite size effects at 8 = 2.7 are smaller
than fhey had been at 3 = 3.0°, and our results here convergé to the values on the

112% x 24 lattice (with the noteable exception of E;). Somewhat sﬁrprisingly, there
are larger finite size effects at the still smaller 5 = 2.4.

In the data presented here, and also at 8 = 3.09], we do not see (within error
bars) an increase with « of the directly measured value of amw close to the Higgs
phase transition. |

It is remarkable that the tree level relation (16) is fullfilled quite well at
B = 2.7 (and 3.0) although aren/apgre is large (2 to 3). The values of ayen itself and
of A;er, defined by Ayep, = m% /4v? are not too lazge for the renormalized perturbation
theory to be applicable. On the other hand, the values of v as computed from the
VOOP are very different from the values of v in the pure matter theory at A = oo

and similar <4

Thus we cannot expect that all corrections due to the gauge
coupling can be computed using the tree-level approximation. In order to really
compare the simulation with perturbation theory, a one-loop calculation with the .

results expressed in terms of the renormalized couplings is needed.
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