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We describe the results of  a high-statistics simulation of the SU (2) Higgs model at 2=  0% fl= 2.4, 2.7 and 3.0, on lattices of  
sizes ranging between 83 X 16 and 143 × 28. The measured quantities are the Higgs and W masses, the potential between two static 
sources from which the renormalized gauge coupling is extracted, and the vacuum overlap order parameter which defines the 
Higgs expectation value in a gauge invariant way. Strong finite-size effects are observed. They seem to come under  control for the 
larger latnces, at least at fl= 2.7. Renormalized tree level relations are found to hold remarkably well a t / ?=  2.7 and 3.0. 

1 .  I n t r o d u c t i o n  

Nonperturbative studies of the SU(2) gauge the- 
o13i with a scalar matter field in the fundamental rep- 
resentation, usually referred to as the SU(2) Higgs 
model, have been fruitful both from a phenomeno- 
logical and from a more theoretical point of view. The 
model is a laboratory for investigating the Higgs 
mechanism in the standard model. Among the best 
tools available for performing nonperturbative stud- 
ies are lattice Monte Carlo (MC) simulations. 

On a hypercubic lattice, the SU (2) Higgs model is 
given by the action ~L 

S=  - f l  ~ ½Tr U(p) - x  ~ 2 Re(~ox, U~,~ox+~) 
p X , / /  

+ Z (q~x, ~0x)+2 ~ [(~0~, (0x) - l ]  2, (1) 
x x 

where the lattice gauge field Ux.u is an SU(2) matrix 
in the fundamental representation that lives on the 
link starting from x and going in the ~-direction 
(#=0 ,  1, 2, 3), U(p) stands for the product of U's 
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around the plaquette p, ~0x is a complex two-compo- 
nent scalar field, and/1 denotes the unit vector in di- 
rection #. As usual, the continuum bare parameters g 
(gauge coupling), 2 c (the subscript c means "contin- 
uum"),  and m~ (the coefficient of the ~02 term in the 
lagrangian), are replaced by the parameters fl, 2, and 
~c [ 1 ] (a is the lattice spacing): 

g 2 = 4 / f l ,  2 c = 2 / t C  2, 

1 - 2 2  - 8 to  
m 2 - (2) 

Rsa 2 

the lattice scalar field is rescaled: ~0x = ale-1/2~0 c (x) .  
There have been numerous previous MC studies of 

this model. First the phase diagram was explored [ 1 ]. 
Later nonlocal quantities were computed in the Higgs 
region: masses in refs. [2-4 ], Wilson loops and the 
renormalized gauge coupling in refs. [ 2,5,4 ], and the 
vacuum overlap order parameter (VOOP) [6 ] in ref. 
[ 5 ]. While providing a coherent overall picture, these 
"first-generation" studies tended to either underes- 
timate or neglect the dependence of the results on the 
lattice size. Moreover, at g> 0 no thorough quantita- 
tive comparison between MC results and perturba- 
tion theory has been done. since the model is of in- 
terest for obtaining real physical results, like an upper 
bound on the Higgs mass [7,2,4,8-10], it is worth- 
while to perform a more precise study, that concen- 
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trates on a relatively small portion of  the three-pa- 
rameter phase diagram (the previous investigations 
are an invaluable guide to finding a suitable region). 
In performing such a "second-generation" study we 
set ourselves the following goals: 
- to compare simulation results with predictions from 
renormalized perturbation theory; 
- t o  estimate the magnitude of  finite size effects 
(FSE) for the lattice sizes accessible to simulations; 

- to show how to use the VOOP as a gauge invariant 
version of  the "Higgs vacuum expectation value" 
(VEV). 

Notice that we will not deal with the confining re- 
gion at all here, which, due to huge autocorrelations, 
is much more difficult to handle numerically [ 11 ]. 

As a first step in comparing simulation results with 
perturbative predictions, we try to determine the va- 
lidity range for tree level relations between the quan- 
tities that we measure. In this paper we discuss two 
such relations: the Yukawa form for the potential be- 
tween two static sources, obtained in the one-W-ex- 
change approximation, and the formula relating the 
W mass to the renormalized values of  the gauge cou- 
pling and of  the VEV. 

Perturbation theory is an expansion around fl= ce, 
2=0 ,  and ~c= ~. The farther away from this point we 
find agreement between perturbative and nonpertur- 
bative results, the better our check on the accuracy of  
perturbation theory will be. One of  the consequences 
of  the triviality of  the SU(2 ) Higgs model, for which 
a lot of  evidence exists [ 8 ], is that the renormalized 
(04 coupling 2 ten is smaller than the bare coupling 2. It 
has been checked nonperturbatively for the case of  
the O (4) pure matter theory at fl = oo [ 9,10 ] that this 
effect is strong enough for renormalized perturbative 
relations to hold even at 2 =  co (which is also where 
the upper bound on the Higgs mass is obtained).  In 
view of  the arguments in refs. [7,8 ] there is a good 
chance that this is true for the full model too. We thus 
decided to run our simulations at 2 = oo. 

The choice of  values for 13 is related to our ability 
to control the FSE reliably. At large values of  fl (small 
gauge couplings g),  where tree level relations hold 
best, correlation lengths are large and critical slowing 
down decreases the accuracy of  MC simulations; for 
the lattice sizes accessible today, FSE can easily be- 
come an insurmountable problem. At small values o f  
fl the reverse is true: tree level relations are not well 

obeyed, but correlation lengths are small, so that sim- 
ulations are easier to perform; we can expect that FSE 
are relatively harmless here. 

Unfortunately, in contrast to pure matter theories 
[ 12 ], a theory of  the FSE has not yet been worked 
out for the SU(2 )  Higgs model. We therefore have 
no choice but to adopt an empirical approach 
[ 11,13 ]. First we try to get a numerical handle on the 
FSE at small enough values of  fl by performing very 
accurate simulations on lattices of  increasing sizes, 
until the changes in the measured quantities become 
smaller than the statistical errors. Then we go to larger 
values of  fl in a controlled way, i.e. in small steps. It 
is not a priori clear whether there is a window in cou- 
pling constant space where both FSE can be over- 
come and perturbative predictions can be checked. 

Early on in our investigation [ 11 ] it became clear 
that, for lattice sizes well accessible with the present 
computing resources, the FSE are large, even at the 
fairly small f l= 3.0 (this value of  fl is fairly small when 
compared to 8 ~< fl~ 10, which corresponds to a real- 
istic value for the renormalized weak coupling - at 
least at large Higgs masses [2,4] ). We observed large 
discrepancies between values amw and amH for the 
W and Higgs masses measured on an 83× 16 versus 
those on a 123 × 24 lattice. In order to get control over 
the FSE we could either increase the lattice size fur- 
ther, or go to even smaller values of  ft. We decided to 
start with the latter, taking f l=2.4  and 2.7. Then we 
also considered different lattice sizes at f l= 3.0. 

The interest in studying the VOOP comes from the 
fact that it is not possible to measure the convention- 
ally defined VEV if the gauge is not fixed, which is 
the case in most  simulations. Besides, the usual VEV 
is a gauge dependent quality. We would like however 
to test perturbative relations between physical, i.e. 
gauge invariant quantities. In tree level relations, 
where this gauge dependence is not felt, the VOOP 
and the conventional VEV are identical. It was there- 
fore proposed [ 6 ] to use the VOOP as an alternative 
definition of  the VEV. 

As seen from the results o f  ref. [ 5 ], there are a few 
pitfalls in performing numerically the limits neces- 
sary for determining the value of  the VOOP. We show 
here how to avoid such problems. Moreover, we test 
some of  the theoretical expectations [6] for the 
VOOP. In particular, we check that two different 
methods to compute it give the same result on large 

144 



Volume 221, number 2 PHYSICS LETTERS B 27 April 1989 

enough lattices (N.B. not in a free charge phase). 
Comparing the results obtained with the two meth- 
ods provides a useful estimate of  the FSE. 

In section 2 we shall give the technical details of 
our simulation. Then, in section 3, we describe the 
quantities we have measured. In section 4 the results 
are presented. Finally we state our conclusions in sec- 
tion 5. 

2. The Monte Carlo simulations 

As described in the introduction, we chose to do 
our simulations in the Higgs region of the phase dia- 
gram, at 2 = ~ ,  fl= 2.4, 2.7 and 3.0. The W mass amw, 
which at fixed 2 and fl does not vary strongly with t¢ 
[2-4] ,  always turned out to be smaller than 0.5. On 
the other hand, for 2 and fl fixed, the Higgs mass area 
is a rapidly increasing function of x [ 2-4 ]. Our choice 
of  values for x was restricted by two considerations. 
If  we increase i¢ too much, amH becomes larger than 
1 and we can no longer assume that the lattice model 
is an approximation of the continuum model (notice 
that 1 is a somewhat arbitrary cut; notice also we do 
not have this problem for amw). I f  we decrease x too  
much, we get too close to the first order [ 1,2 ] Higgs- 
confinement transition, and on a finite lattice there 
will be flip-flops between the two phases. Since we 
were interested here in the properties of  the system 
inside the Higgs phase and not in studying the tran- 
sition itself, we decided to avoid the situations where 
flip-flops occur. 

We have performed calculations on lattices of size 
L 3 X L t = 8 3 X t 6 ,  83X24, 103>(24, 123X24 and 
143X28, with 15 000 thermalization and 90 000- 
120 000 measurement sweeps for each data point. We 
employed Creutz's heat bath algorithm [ 14 ], slightly 
modified for full (and easy) vectorization [15], 
which in a comparison at 13= 2.4 needed about three 
times less sweeps and computer time than a six-hit 
Metropolis algorithm in order to obtain the same sta- 
tistical precision. 

We were very careful with the error analysis. By the 
central limit theorem, the averages of the measured 
physical quantities over a long time series are ap- 
proximately gaussian random variables. The gaus- 
sian distribution is characterized by a covariance ma- 
trix. One way to estimate it is to partition the time 

series into bins and compute the covariance matrix 
for the bin averages. As the bin size is increased, this 
bin average covariance matrix divided by the num- 
ber of bins converges to the covariance matrix for the 
whole-run averages. In computing functions of  the 
measured quantities or in fitting them, we did the er- 
ror analysis using the whole covariance matrix. 

The more widespread procedure of only consider- 
ing the variances (i.e. the diagonal of the covariance 
matrix) may produce numerical mistakes. It nor- 
mally results in smaller values of the reduced Z 2, 
which may mislead us to declare a fit to be good when 
in fact this was not the case. What often happens is 
that by only using the variances to compute the Z 2, 
we take too many data points for the fit. This alters 
the value of the fitted quantity and (typically) re- 
duces the estimated error. On the other hand, for ex- 
actly the same data the error estimated with the full 
covariance matrix is often smaller than when using 
the variances alone. In practice we did find a number 
of cases where the values of the fitted quantities and/  
or of the errors varied by more than one standard de- 
viation between the two procedures. Besides, when 
testing the stability of  fits with respect to leaving out 
data points (e.g. varying the smallest and the largest 
distances used to fit the masses from euclidean two- 
point functions), we found better consistency while 
using the whole covariance matrix. 

3. The measured quantities 

The Higgs mass amu and the W mass amw were 
obtained from euclidean time correlations of  zero 
three-momentum combinations of the usual link 
quantities [ 2-4,11,13 ], fitted with a periodic expo- 
nential decay. 

The potential Vw ( R ) ( 1 <~ R <~ Ls/ 2 ) between two 
fundamental representation static sources was deter- 
mined from R × TWilson loops W(R, T) by fitting 

W(R, T)= Cw(R) e x p [ -  Vw(R)TI (3) 

(1 << T<~Ls/2). Then Vw was fitted with a Yukawa 
potential 

Vw(R) = - ~o~re,3 Y(R, amw)+2Eq, (4) 

for which we took both the continuum version 
Yco,t(R, a m w ) = e x p ( - a m w R ) / R ,  and the lattice 
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version[4,3]. This potential is a first perturbative 
approximation (one-W-exchange, no loops) and 
cannot be expected to fit the data well for all cou- 
plings and for the full range of R. If  the fit is good, 
then a~en=g{e,/4z: with gre, the renormalized gauge 
coupling, and Eq is the energy of a single fundamen- 
tal static source. Depending on the version of the 
Yukawa potential used, we will write Eq .... t and 
OLren,cont , o r  Eq , la t t  and are,,~att. Since the fits are too 
insensitive to changes in the W mass, we fixed amw 
at the value obtained from the correlations. 

The static source energy Eq can also be determined 
in two more ways: from a fit to the expectation values 
of gauge invariant timelike lines, 

G l (74 )=~] r~  =C,  exp(-Eq,l,ne T) (5) 

(I<<T<~LJ2),  or directly from the timelike 
Polyakov loop P t -  Gi (Lt), 

Eq,po~ = - (1/Lt) ln(Pt). (6) 

In general we expect the finite-size corrections for the 
different determinations of the same quantity Eq to 
be different. In addition, the fitted values of Eq.po~ and 
Eq,hn e o n  the one hand and those of Eq . . . .  t and Eqjau 

on the other hand can differ because the corrections 
to the Yukawa form of the potential are not really 
negligible. 

The VEV, v= (~0 °) (~0 c is the continuum Higgs 
field), cannot be defined beyond tree level unless the 
gauge is fixed. A gauge invariant alternative is to con- 
sider the VOOP [ 6 ]. Let us define 

R 

and 

p(R, T) = G2(R, T ) / W ( R ,  2T)~/2. (8) 

The VOOP is obtained from p(R, T) in the limit 
R, T--,o% taken such that Tgrows at least linearly in 
R. For all gauges it is related to v at tree level by 

V O O P - p ( ~ ,  ~ )  = (av)2/~c. (9) 

Beyond tree level, the wave function renormalization 
of the VOOP is needed, but has not yet been 
determined. 

The quantity p (R, T) is the vacuum overlap of a 
candidate for a charge-anticharge state with bounded 
energy [ 6 ]. If T is increased at fixed R, the energy of 
this state decreases and therefore its vacuum overlap 

increases. On the other hand, ifR is increased at fixed 
T, p(R, T) decreases, similarly to the decrease of a 
usual two-point function as the distance is increased. 
Thus if R and T are increased simultaneously, strange 
things may happen, as noticed in refs. [ 1,5 ]. A con- 
sistent way to determine the VOOP is to take the limit 
T ~  first while keeping R fixed. We can do this for 
the numerator and the denominator separately: we 
fit the Wilson loops with (3) and the "staples" (7) 
with 

G2(R, T) =C2(R)  e x p [ -  V2(R)T]. (10) 

Vw and V2 represent the same potential, fitted from 
two different quantities. If  the fits (3) and (10) are 
both good and after checking that Vw = V2, we have 

p(R, ~ )  = C2 ( R ) / C w ( R )  ~/2. ( 11 ) 

p(R, co ) is a gauge invariant alternative to the Higgs 
field two-point function. As R becomes large, it sta- 
bilizes to a value that is the VOOP. 

It has been suggested theoretically [ 6 ] that in a 
phase without free charges the VOOP is equal to the 
constant C~ obtained from the fit (5) 

P ( ~ , ~ ) = G .  (12) 

This is a numerically easier way to determine the 
VOOP. As in the case of the source energy, having 
more than one method to determine a given quantity 
provides a useful check on the magnitude of the FSE 
and on the consistency of the whole numerical 
approach. 

The tree level result for the W mass is 

( amw)2=2~xO~renP(~, ~ ). (13) 

We shall denote by amw .... t and amw,tatt the results 
obtained for the RHS of (13) using the measured (i.e. 
fitted) values for o~ ....... t and O~ren,latt , respectively, and 
those for the VOOP. In order to test the validity of 
the tree level relation, we shall compare the values of 
the W mass obtained using (13) to the directly mea- 
sured ones. 

A tree level relation can also be used to define the 
renormalized ~0 4 coupling: 

2~en = (amH)2/4xP(~,  co). (14) 
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4. Results 

Our analysis of the MC results is summarized in 
tables 1-3. All numbers except those followed by an 
asterisk are results of fits where both ;(2< 1 (see sec- 
tion 2) and an asymptotic value had clearly been 
reached. For all fits we also checked for insensitivity 
of the results against variations in the range of dis- 
tances considered. The last three lines in the tables 
were obtained using the tree level relations ( 13 ) and 
(14). 

From the point of view of the numerical analysis, 
the data at r =  2.7 turned out to be the easiest to han- 
dle. At r =  2.4 the analysis was more difficult because 
the data were noisier (this is due to the stronger gauge 
coupling). At r =  3.0 some difficulties were caused 
by the smallness of the W mass. 

Let us start the discussion of the results with the 
masses. For fl=2.4 and 2.7 the general trend is that 
the changes in the masses are rather drastic between 
L~=8 and 10, but between Ls= 10 and 12 they are 
not significant. Actually for r =  2.4 the data are also 
consistent with a drop in the W mass as L~ goes from 
10 to 12. This would mean that the FSE are stronger 
at r =  2.4 than at r =  2.7, which is somewhat surpris- 
ing, since we would naively expect the FSE to be 
smaller where the masses are larger, i.e. at fl=2.4. 

However, as pointed out to us by I. Montvay, we can 
also expect to have stronger FSE for the W mass if 
the gauge coupling is stronger, and this effect may well 
win in our case. The FSE are most likely under con- 
trol at r =  2.7. For our largest value of r, r =  3.0, the 
FSE for a m w  do not seem to be completely under 
control yet. 

Within error bars, the W mass decreases (or be- 
comes constant) with Ls for all sets of couplings we 
considered. For the Higgs mass however, this is only 
true in two cases, where for the larger lattices the Higgs 
particle is stable (am~ < 2amw) .  In a number of cases 
amH is below the 2amw threshold for Ls = 8, but when 
Ls is increased a m w  goes down, amH goes up, and the 
combined effect is strong enough to make the Higgs 
a resonance. 

Unfortunately there is no theoretical prediction for 
the influence of a threshold on the FSE. In order to 
predict what happens in the thermodynamic limit, we 
have to rely on the apparent stabilization of the re- 
sults as Ls is increased. For the large lattices then the 
standard picture [ 1-3 ] emerges: for fixed r, amH in- 
creases rapidly with x, whereas a m w  stays almost 
constant. For x close to the transition (almost as close 
as we could get without having flip-flops between the 
two phases), both masses seem to stay finite, which 

Table 1 
Collected results for r =  2.4 for various lattice sizes. 

x=0.390 ~=0.400 

83X24 103X24 123X24 83X24 103X24 123X24 

amw 0.47(2) 0.41(2) 0.38(2) 0.47(1) 0.44(1) 0.40(2)* 
am~ 0.80(2) 0.55(6)* 0.67(4) 0.91(3) 0.96(3) 0.94(3) 

a . . . . . . . .  0.56(12)* 0.61(7)* 0.58(4)* 0.64(4) 0.58(3) 0.51(8) 
~re,,,a,t 0.51(11)* 0.53(6)* 0.50(4)* 0.60(3) 0.51(3) 0.42(7) 

Eq.hne 0.312(3) 0.298(2) 0.301(2)* 0.288(2) 0.286(1) 0.282(1)* 
Eq,pot 0.306(9) 0.301(4) 0.297(3) 0.290(6) 0.281(3) 0.279(2) 
Eq ..... 0.283(8)* 0.293(5)* 0.293(4)* 0.287(2) 0.281(l) 0.280(3) 
Eq,,,u 0.270(5)* 0.283(2)* 0.284(3)* 0.268(1) 0.276(1) 0.275(2) 

VOOP 0.172(14) 0.168(4) 0.171(4) 0.216(7) 0.215(9) 0.215(12) 
C, 0.183(3) 0.170(3) 0.178(2)* 0.228(3) 0.231(1) 0.226(1)* 

a m w  ..... 0.48(7)* 0.50(3)* 0.49(2)* 0.59(3) 0.56(3) 0.52(6) 
amw,,,u 0.46(7)* 0.47(3)* 0.46(2)* 0.57(3) 0.53(3) 0.48(5) 
2~ 2.4(3) 1.2(3) 1.7(3) 2.4(3) 2.6(3) 2.6(3) 

147 



Volume 221, number 2 

Table 2 
Collected results for/?= 2.7 for various lattice sizes. 
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x=0.365 Jc=0.370 

83X24 103×24 123X24 83224 103X24 123×24 

amw 0.41(2) 0.32(2) 0.33(2) 0.40(2) 0.31(1) 0.31(1) 
amH 0.59(2) 0.53(3) 0.53(3) 0.56(8) 0.73(2) 0.74(2) 

a ........ 0.297(6) 0.39(2)* 0.36(2) 0.296(4) 0.37(2) 0.37(2) 
~en,~a, 0.279(4) 0.36(2) 0.34(1) 0.276(4) 0.34(2) 0.32(1) 

Eq,~m~ 0.267(6)* 0.251(5) 0.243(3) 0.257(4) 0.242(2) 0.235(2) 
Eq,pe , 0.277(4) 0.258(2) 0.243(1) 0.256(3) 0.241(I) 0.234(1) 
Eq ..... 0.219(1) 0.228(2)* 0.228(1) 0.218(1) 0.225(2) 0.224(1) 
Eq,lau 0.206(2) 0.218(3) 0.220(1) 0.210(1) 0.216(1) ~ 0.217(1) 

VOOP 0.103(6) 0.105(4) 0.105(2) 0.133(4) 0.133(3) 0.131(5) 
C~ 0.101(6)* 0.104(4) 0.103(3) 0.138(5) 0.137(2) 0.135(1) 

amw ..... 0.27(1) 0.31(1)* 0.29(1) 0.30(1) 0.34(I) 0.33(1) 
amw,~a~t 0.26(1) 0.29(1) 0.29(1) 0.29(1) 0.32(1) 0.31(1) 
2~ 2.3(3) 1.9(3) 1.9(3) 1.6(5) 2.7(2) 2.8(3) 

Table 3 
Collected results for fl= 3.0 for various lattice sizes. 

x=0.354 x=0.355 ~'=0.357 x=0.360 

123X24 143X28 123X24 123)<24 83X 16 103X24 123×24 

amw 0.24(1) 0.22(1) 0.25(1) 
amH 0.53(3) 0.54(1) 0.50(3) 

. . . . . . . .  0.254(18) 0.288(5) 0.292(6) 
a~,.l,~, 0.234(14) 0.255(4) 0.259(6) 

Eq.tm e 0.213(2) 0.203(1) 0.205(3) 
Eq,po ~ 0.207(1) 0.2004(7) 0.2045(8) 
Eq ..... 0.188(2) 0.1924(5) 0.1906(5) 
Eq,la u 0.182(1) 0.1857(4) 0.1831(5) 

VOOP 0,085(6)* 0.071(6) 0.084(3) 
C~ 0.087(1) 0.0828(8) 0.089(3) 

amw ..... 0.22(2) 0.22(2) 0.24(2) 
amw,La, 0.21(2) 0.21(2) 0.22(2) 
2~n 2.4(4) 2.8(4) 2.1(3) 

0.26(1) 0.37(2) 0.30(2) 0.26(1) 
0.58(3) 0.63(6) 0.77(6) 0.73(3) 

0.287(5) 0.276(11) 0.279(11) 
0.253(6) 0.252(8)* 0.245(10) 

0.200(2) 0.205(1) 0.197(2) 
0.1992(6) 0.203(1) 0.1964(9) 
0.1889(5) 0.185(2) 0.187(1) 
0.1817(2) 0.177(1)* 0.180(1) 

0.097(5) 0.113(7) 0.120(3) 
0.101(2) 0.122(1) 0.119(2) 

0.25(2) 0.27(2) 0.27(2) 
0.24(2) 0.26(2)* 0.26(2) 
2.4(4) 3.4(5) 3.1(3) 

supports  the general bel ief  that  the t ransi t ion is first 
order. 

The Y u k a w a f i t s  were generally good for f l=  2.7 and 
f l=3.0.  At  f l=2 .4  the same was true for the higher 
value of  ~ only.Notice that  the errors are smaller  for 
larger ft. The fi t ted values differ between the contin-  
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uum and the lat t ice version o f  the potent ia l  by  ~< 15% 
for OZren and by ~< 5% for Eq. Again, the results for 
Ls=  8 differ by a lot from the results on the larger lat- 
tices, which are stable within error  bars. The only ex- 
cept ion is at f l=  3.0, ~c=0.354, which shows that  also 
for the Yukawa fits the FSE are not  completely under  
control  at our  largest ft. 
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The renormalization effects are stronger for 
stronger gauge couplings: the ratio between the re- 
normalized and the bare value of a is around 2.5 at 
/ /= 3.0, around 3 at fl= 2.7, and around 4 a t / / =  2.4. 

We have determined the static source energy also 
independently of the potential calculation, using (5) 
and (6). The results for Eq,hn~ and Eq,po! agree very 
well with each other in all cases except at / /= 3.0, 
~=  0.354. For the values of Eq determined in this way, 
the FSE at/~= 2.7 and 3.0 seem to be somewhat larger 
than from the potential determination. There is, 
however, no contradiction in this. The former are ob- 
tained from properties of  a state containing one 
source, the latter from a two-source state. 

Although the results for Eq,~ine and Eq,po~ on one side 
and those for Eq .... t and Eq.~tt on the other side ap- 
proach one another as L~ increases, it seems that a 
small discrepancy would persist in the thermody- 
namic limit. The discrepancy is larger for Eq,lat~, al- 
though in principle the correct tree level form for the 
potential is the lattice Yukawa form. This sheds some 
doubt on the reliability of the Yukawa fits. Further- 
more, at large distances, close to Ls/2, the statistical 
errors for the potential are larger, so these data points 
have less influence in determining the outcome of the 
fit, It is however at large distances that the correct 
value of Eq is determined. 

Let us assume that the corrections to the tree level 
formulas cannot be completely neglected. The gauge 
coupling would then run, and since it is asymptoti- 
cally free it would be stronger for the potential at large 
distances. To compensate for this, Eq,latt would have 
to increase too, i.e. to move towards Eq,~l,~ and Eq,po~. 
One should however not forget that this is a small ef- 
fect, and one can trust that the Yukawa fit results are 
accurate to within at least 10-20%. 

Some of the most important results of our analysis 
concern the VOOP and the tree level relation for amw. 

As opposed to the quantities discussed up to now, 
there are, within error bars, no significant FSE for the 
VOOP (with the exception of/~= 3.0, ~c=0.354). The 
theoretical prediction (12) that the two different ways 
of determining the VOOP should give the same re- 
sult, are well supported by the data. As expected, the 
VOOP increases with ~c. The number of Monte Carlo 
sweeps needed for a good determination of the VOOP 
is considerably smaller than e.g. for the masses. 

A t / /=  2.7 and 3.0 and for L~ >~ 10, the renormalized 

tree level relation ( 13 ) is fulfilled remarkably well, to 
within about 5%. This is all the more noteworthy as 
the ratio arch~abate is not at all small. Notice that the 
FSE in amw,cont and amw,latt, i.e. in the W mass com- 
puted from ( 13 ), are small. This is partly due to the 
fact that we take the square root of  the RHS of (13), 
but there may also be compensations between the FSE 
for a~en and for the VOOP (as suggested by the re- 
sults at p=3.0,  x=0.354) .  At //=2.4, to=0.4 how- 
ever, (13) is no longer well obeyed, the discrepancy 
being about 25% 0c=0.39 cannot be considered since 
the Yukawa fits are not good). 

Another indication for the applicability of  renor- 
malized perturbation theory are the values of  2~en, 

C which stay well below the unitarity bound 2ten ~ 5 
[10]. 

5. Conclusions and outlook 

We performed high-statistics simulations of  the 
lattice SU(2) Higgs model at 2=o0 for three values 
of//, with the aim of studying finite-size effects (FSE) 
and then comparing the numerical results with per- 
turbation theory. 

The FSE, the greatest numerical obstacle, are most 
likely under control on the largest lattices employed 
a t / /=  2.7. We have thus found a suitable starting point 
for gaining a quantitative numerical understanding 
of the model. Somewhat surprisingly, the FSE seem 
to increase at / /=2.4.  There, and also a t / /=  3.0, where 
the FSE seem to be coming under control now, sim- 
ulations on larger lattices are necessary. 

We showed how to determine the VOOP in a Higgs 
phase reliably from finite lattice simulations. Thus we 
have a method of computing the VEV nonper- 
turbatively. 

The potential between two static sources agrees well 
with a Yukawa form a t / / = 2 . 7  and 3.0, but clearly 
deviates from this form a t / / =  2.4. 

The renormalized tree level relation between the 
W mass, the gauge coupling (obtained from the Yu- 
kawa fits ), and the VEV (obtained from the VOOP ), 
holds remarkably well a t / / =  2.7 and 3.0. Moreover, 
in the range 0.5<~amH<~ 1 considered by us, the val- 
ues of 2r%, turned out to be well below the unitarity 
bound and quite similar to those from the calcula- 
tions [9,10] that show the triviality of the 0 ( 4 )  
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model. Sizeable deviations from tree level behaviour 
occur, on the other hand, at fl= 2.4. 

It will be very interesting to see to what extent dis- 
crepancies between the nonperturbatively obtained 
data and tree level predictions can be reduced by one- 
loop corrections, calculated on the finite lattice, and, 
of course, renormalization group improved. In par- 
ticular, if the potentials can then be fitted well at 
fl= 2.4, we would have a highly nontrivial test for the 
accuracy of perturbation theory. 
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