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Abswact. Using a cluster algorithm without critical slowing down for the discrete Gaussian sos

model, we verily to high precision the linear dependence of the surface thickness on the logarithm of

the lattice s12e.

Solid-on-solid (SOS) models are of great interest both theoretically and in the study of crystal
interfaces [I]. We recently developed a cluster algorithm for SOS models [2], which allows us to

obtain very accurate results from simulations. Here we present a numerical study of the loga-
rithmic dependence of the surface thickness on the lattice size in the rough phase. Although for

very high temperatures T thb behavior was proven in [3], doubts were repeatedly raked in the

literature as to its validity for moderately high temperatures [4].
We chose to work with the dbcrete Gaussian model (see e.g. [fl for an introduction to this

model), which is defined as follows. lb each point ~ of a two-dimensional L x L square lattice

with periodic boundary conditions an integer valued spin h~ b assigned, which can be viewed as

the height of a surface without overhangs. The interaction Hamiltonian b a sum over nearest

neighbors < ~, y >,

H(h)
=

~ )(h« hy)~
,

(i)
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and the panition function Z b defined by

z
=

~e~+H(h)
~~~

h

From standard convergent expansion techniques it follows that at low temperatures the SOS sur-

face b smooth, Le. the surface thickness a,

a~
.=

lim < (h~ hy)~ > =
2 < (h~ I)~ >

,

(3)
1«-Yl-CO

b finite. Here I is the average over the lattice of the h~ (I is not an expectation value). The

second equality in (3) holds in the thermodynamic limit, and for finite lattice measurements we

use the last term in the expression (3) for a2, averaged over lattice translations.

As the temperature T b increased, the surface fluctuates more and more. At high temperatures
the dbcreteness of the spins b hardly felt. The surface thickness b infinite in the thermodynamic
limit, I.e. the sur&ce becomes rough. The large dbtance behavior is that of the massless ~ee field

theory (Le. the model (I) with real instead of integer spins) [6, 3,1]. In particular, we have the

prediction

a~
=

~~
(ln L + ci

,

(4)
~

with the constant T~fl ("effective temperature") defined such that in the free field theory T
=

T~fl.
The phase transition, which b of the Kosterlitz-Thouless type [6], b located at TKT

=
0.752(2) [7j

(in a recent preprint [8], the value TKT
=

0.752(5) b quoted from a Villain model simulation). We

chose to perform our simulations at T
=

I, which is not a very high temperature, but already far

enough from TKT to expect only small deviations from (4) (if the theoretical prediction is correct).
Let us give some technical details of these simulations. We considered lattice sizes L

=
8, 16,

32, 64, 128, and 256. For each lattice size we performed a total of between 3.5 and 4 million clus-

ter updates. Each cluster was grown around a randomly chosen seed, according to the procedure
which was found in [2] to have no critical slowing down at all. The average cluster size was be-

tween 0.3 and 0.4 of the lattice volume. We used a new method for vectorizing the cluster update
[9], which nn a CRAY YMP resulted in a speed-up factor for the update of between three and

four (the speed-up increases somewhat with the lattice size). With vectorization, even a lattice

of L
=

512 is accessible with a reasonable amount of computer time. However, the following
analysis of the results for lattice sizes up to L

=
256 is already veTy convincing.

lhble I presents our values for the surface thickness. The main result is that (4) fltK all data

lhble 1. 7he su~ace thickness for the DGSOSmVdeI at T
=

1.

L 8 16 32 64 128 256

~~ 0.75471(36) 0.97523(36) 1,19415(34) 1.41442(32) 1.63364(39) 1.85396(42)

pe~ect~/. Furthermore, the least square fit results are compatible with one another for different

ranges Lo < L < 256 and Lo < L < 128, with Lo
=

8,16,32,64. We shall argue below that,

in order to be on the safe side, we should only use the values of ~~ for L > 32. The fit for

32 < L < 256 yields
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T~fl
=

0.9965(8) for T
=

(5)

Notice that T~fl < T, as predicted by the flow equations of the Kosterlitz-Thouless theory [6]. For

the constant in (4) we obtained ci =
0.302(2). The data and the fit are plotted in figure I. The

solid line b the fit with (4) for L > 32, the dashed line b its continuation to smaller L. In order to

make the size of the errors more visible, we plotted in the inset the quantity ~~ ln L.
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Fig. I. surface thickness for the DGSOS model at T
=

I. The z-axis is logarithmic. The solid line is the

fit with (4) for L > 32. The dashed line is its continuation towards small L.

Equation (4) ha finite volume continuum approximation for ~~
=

2 < (h~ -I)2 >. Our model

is however defined on a finite volume lattice. In order to estimate the magnitude of the finite lattice

spacing effects, we compared the values of a2 for the free field theory at T
=

2~fl on the lattice and

in the continuum. On the lattice, a2 h a sum over momenta that can be evaluated numerically
with high precision. For L

=
8 the difference between the lattice and continuum values is not

insignificant compared to the errorbars of our DGSOS simulation. At L > 16 however, this effect

disappears. Thus taking L > 32 as a basis for the result (5) seems veTy safe.

The data are very preche, so we hoped to exclude with a high degree of confidence cenain types
of behavior different from (4). And indeed, the various least square fits we are going to discuss

all indicate that the data strongly favor the linear dependence on In L.

We first tried a power fit, since quite often a logarithmic dependence looks very similar to a

power law with a small exponent. The fits with

a~
# Cl L~ + C2 ~~~

were not very stable with respect to changes in the subset of data used. The constants ci and

c2 had a tendency to be very large. However, a reasonably small value for the x2 per degree of

freedom could only be obtained with very small values of a (< 0.001). Thus the power law (6) can

be excluded.

An ansatz sometimes discussed in the literature [4] is the power-of-log form

a~
=

~~ (ln Lj~+~ + c2 (~J
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Fits with this form go rather well through all data. Fbr L > 32 the fit results in (b( < 0.01,
with a statistical error larger than (b(, and in ci =

1.00(2 ), which is consistent with the value we

determined for T~fl using (4). Thus a linear dependence on In L is favored.

Next we tried to see if log-log corrections may play a role. We fitted the data with

~~= ~~ lnL+c2lnlnL+c3, (8)
~

and the fits were good for all L-ranges. For L > 32 we got c2 #
0.01(5), which shows that the

absence of log-log corrections is favored. We also got ci =
0.994(11), which is consistent with the

previously determined value for Tefl.
Finally we fitted the data with

~~
#

~~
ln L + ln(Cl L~~~~~') + C2 (9)

~ ~

This is the renorma1i2ation group improvement of (4) [6,7~. For large enough L the difference

between (9) and (4) is negligible. Close to but still above TXT we found this form to fit simulation

results over a much wider L-range than (4) does y. Here, at T
=

I, there was practically no

difference between the fits with (9) and with (4). In particular, the fitted values for Tefl were

almost identical in the two cases. Thus we have established that at T
=

I the asymptotic regime
(large L) is reached very quickly.

We conclude that we have confirmed the validity of (4) with a high degree of accuracy.
Currently we are using our new cluster algorithm for a high precision study of the Kosterlit2-

Thou1ess transition in various SOS models [~. This includes the interface of the three-dimensional

Ising model, which can be simulated with the duster algorithm of [10].
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