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We present new Monte Carlo cluster algorithms which eliminate critical slowing down in the simulation of solid-on-solid models. 
In this letter we focus on the two-dimensional discrete gaussian model. The algorithms are based on reflecting the integer valued 
spin variables with respect to appropriately chosen reflection planes. The proper choice of the reflection plane turns out to be 
crucial in order to obtain a small dynamical exponent z. Actually, the successful versions of our algorithm are a mixture of two 
different procedures for choosing the reflection plane, one of them ergodic but slow, the other one non-ergodic and also slow when 
combined with a Metropolis algorithm. 

1. Introduction 

Computer  simulations have become a major tool 
for investigating statistical mechanical systems and 
lattice field theories. The main limiting factor in such 
studies is critical slowing down (CSD).  To overcome 
this problem, various proposals for nonlocal Monte 
Carlo algorithms were put forward over the years, one 
of  the most successful approaches being that of  clus- 
ter algorithms [ I - 4  ]. 

In this letter we describe a class of  cluster algo- 
rithms for the discrete gaussian model (Z-ferromag- 
net) defined by the partition function 

~ = m ~ e X p ( -  ~1 ~ ( r e x - m y )  2)  ( I )  
2fl <x,y> 

where x and y are sites of  a square lattice (with peri- 
odic boundary conditions),  m is an integer valued 
field (spin) which takes the value mx~ Z at the site x, 
and the sum in the exponential runs over all unor- 
dered nearest neighbor pairs (x,  y ) .  This model is 
also called the SOS (solid-on-solid) model, and it is 
a realistic model of  a crystal surface (m~ describes 

the surface height at the two-dimensional point x)  

[51. 
The model ( 1 ) is the dual o f  the two-dimensional 

X Y  model with Villain (heat kernel) action. For r <  Bc 
the global Z-symmetry is spontaneously broken. As a 
consequence, there is a nonzero mass gap, and the 
(SOS) surface thickness, defined as the square root 
of  l imlx_yl~oo( ( rex-my)2) ,  is finite. According to 
the Kosterlitz-Thouless (KT)  scenario [6 ], the cor- 
relation length diverges exponentially as fl ap- 
proaches tic. In the SOS terminology this is due to the 
fact that the surface fluctuates more and more. At the 
critical point the surface becomes rough; for all r >  fie 
the surface thickness diverges logarithmically with the 
volume of  the system. The large-fl phase corresponds 
to the spin wave (massless) phase o f  the XYmodel .  

Although there have been numerous numerical in- 
vestigations of  the KT transition, there is still no 
completely conclusive confirmation o f  the KT sce- 
nario. In order to supplement existing studies (see 
e.g. ref. [ 2 ], and, for a recent finite-size scaling anal- 
ysis and further references, see ref. [ 7 ] ), a fast algo- 
rithm for large scale simulations in the SOS represen- 
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tation is highly desirable. Furthermore, SOS models 
are interesting in their own right, and the algorithms 
we describe here can be applied to related surface 
models. 

This letter is organized as follows. In section 2 we 
describe the general ideas and formal aspects of our 
cluster algorithms. Section 3 deals with the proper 
choice of the reflection plane, which is the crucial in- 
gredient in speeding up the algorithm. Simultane- 
ously, the main results concerning the autocorrela- 
tion times are discussed. In section 4 we attempt to 
give a physical explanation of why our algorithms are 
successful in overcoming CSD. Conclusions are given 
in section 5. 

2. The cluster algorithms 

The picture of the critical physics in the discrete 
gaussian model can be obtained by visualizing a con- 
figuration as a relief landscape over a plane base rep- 
resented by the lattice. The integer field variable mx 
is the height of the landscape at the point x. The ob- 
jects dominating the critical dynamics are hills and 
valleys. The usual Metropolis algorithm, offering at 
each step a change of a single variable, is of course 
very inefficient in moving the hills and valleys around. 

One way to perform large scale changes of a config- 
uration is to select an arbitrary point on the land- 
scape, draw a horizontal plane through it, consider 
the connected regions above and below the plane, and 
reflect them (with respect to the plane) indepen- 
dently, with an appropriate probability. In order to 
implement this qualitative picture in a rigorous way, 
consistent with the Boltzmann distribution, we pro- 
pose the following cluster algorithm. 

Let us denote the height of the horizontal reflection 
plane by M. A reflection of mx with respect to M 
means 

m z ~ 2 M - m x .  (2) 

Obviously, M has to be either an integer or a half- 
integer. One way of explaining how the clusters are 
built is in terms of the embedded Ising variables [ 1 ] 
ax= + 1, defined by the decomposition 

m ~ = a x l m x - M l + M .  (3) 

ax= 1 means that mx is above the reflection plane M, 

~x = - 1 that it is below M. Note that a~ is not well 
defined if m~ = M; this is not going to cause difficul- 
ties, as can be seen from eq. (4) below. 

In order to define the cluster procedure we intro- 
duce the deleting and freezing probabilities [ 3 ] for a 
link (x, y )  (in the language of ref. [ 1 ] the term "ac- 
tivating" is used instead of"freezing" ): 

Pdel( x, Y) =q 

( '  ) Xexp - ~ l m x - M l l m y - M l ( a ~ o ' y + l )  , (4) 

where q~< 1 can explicitly depend on mx-M[ and 
[ m y - M I ,  and 

Pfr . . . .  (X, y )  ~--- 1 --Pdel(X, y)  . (5 )  

In contrast to other cluster algorithms investigated in 
the literature, the possibility of choosing q~ 1 will 
prove to be useful in our case. Let us however assume 
for the moment that q= 1. 

After freezing or deleting all the links of the lattice 
with the above probabilities, two sites are defined to 
be connected if they are at the endpoints of a frozen 
link. The clusters are then defined to be the con- 
nected components of the lattice. 

Notice that Pdej(X, Y)= 1 if either axe ay, i.e. mx 
and my are on different sides of the reflection plane, 
or if [mx-M[ 1my-M[ =0, i.e. at least one of the 
points lies on the reflection plane itself. Thus, simi- 
larly to the Ising model, the clusters will contain only 
spins for which the embedded Ising variables have 
the same value. On the other hand, the spins with 
mx=M are always monomers. The most important 
difference to the Ising model is however the strong 
dependence of the clusters on the choice of M. Con- 
sider for example a situation where M lies above most 
of the mx. Since Pde~(x, y) becomes exponentially 
small with increasing distance from M, there will be 
with high probability one very large cluster, contain- 
ing almost all spins. 

Flipping a cluster means flipping the embedded 
Ising variables. In terms of the original integer vari- 
ables mx, this is equivalent to performing the reflec- 
tion (2) for all spins in the cluster. Notice that the 
cluster boundaries are not in general exactly at the 
intersection of the relief landscape with the reflection 
plane, since Pd~(x, y) is nonzero also if both mx and 
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my are away from and on the same side of M. Never- 
theless, the intuitive picture of clusters as hills or val- 
leys which are flipped through the reflection plane is 
approximately realized. 

In our simulations we used the single cluster algo- 
rithm [2], i.e. a cluster is built starting from a ran- 
domly chosen site (the seed), and it is flipped with 
probability one. 

In order to establish a valid algorithm one has to 
ensure detailed balance. Once M is given, detailed 
balance follows from standard arguments [3,2 ] for 
the restricted set of configurations related by reflect- 
ing the clusters with respect to M. A sufficient con- 
dition for detailed balance to hold for the entire pro- 
cedure is to choose M with an a priori probability 
prob (M) that is a function of M itself and of the ob- 
jects that are unchanged by the reflection, i.e. of the 
values of ]mx-MI  for all lattice sites: 

prob (M) =f(  I m - M [ ;  M ) .  (6) 

This condition still leaves a lot of freedom in the 
choice of M. Note that if one starts with an unnor- 
malized distribution of the form (6), one has to make 
sure that the normalization constant does not depend 
o n  m.  

It turned out that the proper choice of the reflec- 
tion plane is the crucial ingredient in overcoming 
CSD. We shall proceed now to the discussion of our 
choices for M and of our main simulation results. 

3. Choice of the reflection plane and results 

Using the picture of a configuration as a relief 
landscape, with hills and valleys, we were at the be- 
ginning led to the following choice for M. First we 
select randomly a lattice site Xo as the seed of the clus- 
ter to be built. Typically Xo will be neither on the top 
of a hill, nor on the bottom of a valley, but on a slope. 
If the reflection plane M is chosen close to mxo, there 
is a good chance that the cluster algorithm will cut a 
hilltop or a valley of reasonable size from the land- 
scape and flip it. The simplest choice of M leading to 
an ergodic algorithm is, in this framework, to take 
M= mxo +- ½, each of the two possibilities with prob- 
ability ½, and q= 1 (see eq. (4)) .  Taking M=mxo is 
not helpful for q= 1 since all the links starting from 
Xo would be deleted with probability one. Let us de- 

note the procedure just described as the H-algorithm 
( H for half-integer). 

We tested the H-algorithm extensively. In order to 
make sure that we do observe the slowest modes of 
the Markov matrix [4], we measured a whole range 
of quantities: mean energy and specific heat, surface 
thickness, various block spin correlation functions, 
and the order parameters ~g~= ( V - ' l ~ x  exp(2ni 
×amx)  [ ) for a=O.1,0.2 ..... 0.5 (Vis the volume of 
the lattice; J / ,  is a good finite size approximation for 
the square root of limlx_yl~oo(exp[2niot(mx-- 
my)] )  ). 

For all these quantities we studied the autocorre- 
lation function and tried to determine the exponen- 
tial autocorrelation time z. Not that z should in prin- 
ciple be the same for all our quantities, since it only 
depends on the second largest eigenvalue of the Mar- 
kov matrix [ 4 ]. In practice, there always were quan- 
tities that did not couple well to the slow modes and 
exhibited a misleadingly small r. Sometimes some 
quantities showed a clear crossover from one clean 
exponential regime to a slower second one. In other 
instances there were quantities that did not decay at 
all exponentially until the limits of our precision were 
reached. These difficulties notwithstanding, we were 
usually able to reach a clearcut conclusion with re- 
spect to the "true" value of z because there was a 
whole set of "slowest decaying quantities" which ex- 
hibited this value. 

The autocorrelation time z is always quoted in 
"works units" (sweeps). A work unit is the work nec- 
essary to build a cluster of the size of the entire lat- 
tice. Each of our runs consisted of between 100 000 
and 500 000 work units. 

Determining the errors on z is a delicate business. 
First we plotted the autocorrelation functions with 
error bars and decided, for each quantity, at what 
value of the Monte Carlo time a clean exponential 
regime started. In practice, we chose a logarithmic 
scale for the y-axis and looked for the onset of a linear 
regime. Then we drew the highest and the lowest slope 
straight lines compatible with the data that were 
deemed to be in that regime. The value quoted for z 
is the average of the inverses of the two slopes. The 
errors are quoted such that the inverses of the highest 
and the lowest slope are at the ends of the interval 
value + error. 
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The canonical  procedure  for de te rmining  r and  its 
error  is different. After  deciding by hand  the extent  
of  the clean exponent ia l  regime, we have to actually 
fit the data  with an exponential .  For  this purpose,  a 
least-square-fit  procedure  can be used. It is however  
crucial to take into account  the covariances between 
the values of  the autocorre la t ion function at different  
t imes (these covariances are by no means  smal l ) .  
Otherwise it is not  only that  the es t imated  error  bars  
for r are unreliable,  but  we also lack a meaningful  
goodness-of-fi t  test. Then,  we also have to check for 
consistency with respect to varying the t ime value for 
which the l inear regime sets on. Such an analysis is in 
progress and we checked that  the results for r are con- 
sistent with those obta ined  using the highest - lowest  
slope method.  As expected, the values o f  the errors 
are consistently smaller  when using the least-square- 
fit method.  The results o f  a more  complete  analysis, 
using both methods,  will be publ ished elsewhere. 

We per formed s imulat ions  in two physically dis- 
t inct  regimes: 
- At f l= 1, deep in the massless ( rough)  phase. Since 
the correlat ion length ~ is infinite,  the only scale is set 
by the l inear extent  L of  the lattice. The dynamica l  
crit ical exponent  z is defined by r ~ L z [ 8 ]. 
- In the massive ( smoo th )  phase at large ~, i.e. close 
to the KT transi t ion.  In this regime, z is def ined by 
the finite-size scaling law T= ~- F (~/L) [ 7 ], where F 
is some unknown universal  function which we could 
in principle measure.  

In the smooth phase we es t imated  ~ by analyzing 
the exponent ial  decay of  the two-point  function 
( ( m x -  my)2)  (appropr ia te  subtract ions,  Four ie r  
t ransforms,  etc., were done in s tandard  fashion) .  In 
this phase the pan ic le  states are kinks ~, which cor- 
respond to one-dimensional  ( t ime-zero)  configura- 
t ions that  have an integer value n at minus  infini ty 
and n +  1 at plus infinity. With  per iodic  boundary  
condi t ions  however,  there are in the Hi lber t  space o f  
the problem only states conta ining k ink -an t i k ink  
pairs. Thus we t r ied to de te rmine  the correlat ion 
length from proper t ies  of  two-part icle  states, not  one- 
pan ic l e  states, and we regard our  values for ( as po- 

"~ Since the discrete gaussian model is the large fugacity limit of 
the sine-Gordon model, the kinds discussed here are nothing 
but the well known kinks of the renormalizable phase of that 
model. 

tential ly unrel iable  ( therefore the symbol  ~ in table 
2 ). Nevertheless,  we can only underes t imate  ~, so our 
conclusions regarding critical slowing down are not 
spoiled. 

The H-algor i thm was not successful in e l iminat ing 
CSD in ei ther  of  the two regimes. The exponent ial  
autocorre la t ion t imes displayed in tables 1 and 2 sug- 
gest that  z is a round  1 at f l=  1 ( f rom the two largest 
la t t ices) ,  and consistent  with 2 in the massive phase 
(recall  that  z =  2 or  slightly above is typical  for local 
algori thms, which strongly suffer from CSD [ 8 ] ). 
However,  we should be careful in drawing a definite 
conclusion concerning the value of  z, since at f l=  1 
there are strong deviat ions from the L z behaviour  (for 
L = 64),  and for the ~< L runs we considered only two 
different  latt ice sizes. 

A careful analysis of  the cluster size d is t r ibut ion  re- 
vealed that  the H-algori thm produces  both small and  
very large clusters quite frequently,  while in termedi-  
ate-size clusters are compara t ive ly  rare. Nearly half  
of  the work is spent in clusters larger than 90% of  the 
lattice, which, s imilarly to the Ising model  studies, do 
not considerably change a configuration.  This situa- 

Table 1 
Exponential autocorrelation times forfl= I (~=oo). 

L Algorithm 

H IH QH QM 

16 13.5(3.5) - - 
32 60(20) 7(1) - - 
64 82(18) 8(1) 12.5(1.5) 26.5(4.5) 

128 165(33) 11.5(1.5) 13(1.5) 58(12) 
256 - 11(2) - - 

Table 2 
Exponential autocorrelation times for/~< tic. 

/~ ~ L Algorithm 

H IH 

0.65 ~ 14 64 12.3(1.5) 9(2) 
0.65 ~ 14 128 - 9(3) 
0.68 ~44 64 - 8(2) 
0.68 ~44 128 41.5(7.0) 11(2) 
0.68 ~44 256 - 13(2) 
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tion can be understood if we take into account the 
fact that for the couplings and lattice sizes considered 
in our study, the surface thickness is rather small: at 
~=20 it is less than 1; in the massless phase it in- 
creases logarithmically with L, but at fl= 1 for L =  256 
it is still only 1.4. As a consequence, the reflection 
point M often lies above the top of a hill or below the 
bottom of a valley, in contradistinction with our orig- 
inal intuitive picture. 

A natural attempt to improve the situation is to in- 
clude reflections with respect to integer valued planes 
M. In order to get clusters of sizes larger than one site 
(which cannot happen when M equals the seed spin 
mxo and q= 1 ), but still assure that the reflection plane 
lies frequently enough within the (rather narrow) 
vertical bounds of the hill-and-valley landscape, we 
devised the following two algorithms: 

Algorithm Q. M= mxo, i.e. the the reflection plane 
equals the seed spin, but q=qo for Imx-MI 
× I m y -  MI = 0 with qo some constant strictly smaller 
than 1, and q= 1 otherwise. 

Algorithm L M= myo, where Y0 is a randomly cho- 
sen lattice site which is different from the seed Xo, 
and q= 1 always. 

Both these algorithms are non-ergodic, since they 
only change the spins by even amounts. Therefore 
they have to be combined with other procedures. We 
studied the combinations IH and QH of the I and Q 
algorithms with the H-algorithm. 

Notice that for the Q-algorithm, a cluster grown 
from the seed Xo may contain spins that are above, 
below and equal to M. This is a quite unusual situa- 
tion in the context of embedded Ising variables, but 
is perfectly allowed within the framework for cluster 
algorithms that we used here [ 3 ]. 

From the values of z displayed in table 1, one can 
conclude that the value of z for the IH algorithm is 
very small, possibly zero, at fl= 1. The results for f l</~ 
also suggest a small value of z, but more data are nec- 
essary to reach a definite conclusion (see table 2). 
Thus the IH algorithm turned out to be extremely ef- 
ficient in eliminating CSD. Furthermore, the results 
in table 1 show that there is no significant difference 
between the performance of the IH algorithm and that 
of the QH algorithm. 

By varying the ratio of  the number of I and H clus- 
ters (within reasonable bounds) the autocorrelation 
times did not change significantly. In tables 1 and 2 

we only presented the results of runs where this ratio 
was one-to-one. Similarly, changing the value of qo 
such that the mean cluster size ranged between a 
quarter and a third of the lattice (qo was around 0.7 ) 
did not have a significant impact on the performance 
of the QH algorithm. 

The IH and QH algorithms generate considerably 
more medium-size clusters and less large clusters than 
the H-algorithm alone. This confirms our expecta- 
tion that choosing the reflection plane equal to one of 
the spins, not at a distance of _+ ½ away, is very help- 
ful in the case of a thin SOS surface. However, the 
good performance of these algorithms is not a func- 
tion of the cluster size distribution alone, it is also 
sensitive to other details of the configuration changes 
that occur when the various types of clusters are 
flipped. 

Let us attempt an explanation of why the IH and 
QH algorithms work so well. 

4. Why does it work? 

At small fl the important configurations consist of 
a large flat surface, with a few two-dimensional re- 
gions that are one unit higher or lower. We shall call 
these regions single-step-islands (SSI). In hamilto- 
nian (transfer matrix) language, the SSI's corre- 
spond to the surface between the world lines of a kink- 
antikink pair (remember that the kinks are the small 
fl particle excitations, see footnote 1 ). As tic is ap- 
proached, SSI's become larger, more frequent, and 
more often on top of one another. Their condensa- 
tion causes the SOS surface roughening at tic. 

If  we have an SSI on top of a flat background of 
height M, there is a large probability that the I or Q 
algorithms reflect it with respect to that background. 
Since the original and the reflected configuration have 
the same Boltzmann weight, the reflection of the SSI 
is a kind of microcanonical move. Such low-energy- 
cost large-scale changes in the configurations are usu- 
ally very efficient in decreasing the autocorrelation 
time. We believe that this is the main reason why the 
cluster flips with respect to an integer valued reflec- 
tion plane M improve the situation so dramatically. 

The I and Q algorithms have to be combined with 
another algorithm in order to ensure ergodicity. We 
now ask the question whether, in order to overcome 
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CSD, it is crucial to combine I or Q with the H-algo- 
rithm, or whether we may also use a local ergodic al- 
gorithm. I f M i s  an integer, no large SSI's can be cre- 
ated or destroyed by cluster reflections. The H- 
algorithm on the other hand can achieve this easily. 
Of course, a local algorithm like Metropolis cannot 
create or destroy any large scale objects. We may 
therefore expect that a combination IM or QM of I 
or Q with a Metropolis procedure will exhibit CSD. 
The study of the QM algorithm, whose results are also 
shown in table 1, clearly shows that this is indeed what 
happens. 

For the QM algorithm we did one Metropolis sweep 
for, roughly, one work unit of the cluster part. The 
values of r quoted in table 1 disregard the contribu- 
tion of the Metropolis sweeps to the total amount of 
work. Even if we weigh the work done by the two pro- 
cedures equally (which increases the values of z by a 
factor of roughly 2) the QM algorithm seems to be 
more efficient than the H-algorithm. 

We conclude that our picture of the SSI's as the rel- 
evant objects for understanding our cluster algo- 
rithms is correct, and that is absolutely crucial to use 
both the integer and half-integer reflection planes. 

5. Conclusions 

We described a new class of cluster algorithms 
which eliminate critical slowing down for SOS 
models. We also provided the physical intuition for 
understanding why this kind of algorithms are 
successful. 

It is remarkable that the successful algorithms are 
mixtures of a slow algorithm (the H-algorithm) with 
a non-ergodic algorithm (I or Q), which by itself is 
also slow in the sense that supplementing it with a 
local ergodic algorithm is not sufficient to overcome 
CSD. 

We would like to point out that our algorithms can 
also be applied to other SOS-type models. If in ( 1 ) 
(rex-my) 2 is generalized to some function of 
Imx-myl ,  our simulation methods apply almost 
without any modification. Generalizations to re- 
stricted SOS models are also possible. 

Furthermore, the type of cluster algorithms we de- 
scribed can be adapted for continuous-spin models 
(two-dimensional scalar field theories ), like the sine- 
Gordon model, the dipole gas, and the massless free 
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field theory. Actually, for the massless free field the- 
ory and for the sine-Gordon model we already have 
results that show (almost) no critical slowing down. 

For the integer M part of our algorithm, we expect 
a Swendsen-Wang multicluster procedure [1] to 
perform similarly well to the single cluster procedure, 
one reason being that no work at all would be per- 
formed in connection to the spins equal to M. 

Detailed numerical investigations of the KT tran- 
sition in SOS models and in the sine-Gordon model 
are in progress. 

In ref. [ 9 ] a related surface-cluster algorithm is de- 
scribed for the interface of the three-dimensional 
Ising model with mixed boundary conditions. 

A study of our algorithms for the three-dimen- 
sional discrete gaussian model is also in progress. The 
results obtained so far are much less spectacular than 
in two dimensions. This is an indication that the rel- 
evant excitations of the model (long-wavelength spin 
waves) are not as effectively updated as the SSI's of 
the SOS model. On the other hand, we have very en- 
couraging results for the massless free field theory in 
three dimensions. This indicates that cluster algo- 
rithms of the type described may be efficient also in 
the case of spin waves, and that it is worth while to 
continue the investigations in three dimensions. The 
most promising path to be pursued in this context 
seems to be a combination of the cluster algorithm 
with a multigrid procedure. 
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