
Journal of Statistical Physics, Vol. 70, Nos. 3/4, 1993

Vectorized Search for Single Clusters

Hans Gerd Evertz ~

Received August 5, 1992

Breadth-first search for a single cluster on a regular lattice is shown to be
vectorizable. It is applied to construct clusters in the single-cluster variant of the
Swendsen-Wang algorithm. On a Cray-YMP, total CPU time has been reduced
by factors of 3.5-7 in large-scale applications. A multiple-cluster version is also
described.

KEY WORDS: Cluster search; breadth-first search; vectorization; Swendsen-
Wang algorithm.

1. I N T R O D U C T I O N

The vectorization described in this paper applies to "breadth-first search ''(~)
on a regular lattice in general. We shall describe it in the framework of
cluster construction in a spin system. Monte Carlo simulations of many
discrete- and continuous-spin systems have been revolutionized in recent
years by the advent of cluster algorithms that eliminate or strongly reduce
critical slowing down Iz3) (for reviews see, e.g., refs. 4). As an improvement
over the original multicluster Swendsen-Wang algorithm, (2) the sing&-
cluster variant (3) further reduces critical slowing down for many systems.
Where possible, it is now often the method of choice in computer-time-
intensive simulations.

The Swendsen-Wang algorithm is computationally dominated by the
task of identifying all dusters. This is equivalent to the well-known
problem of connected component labeling, important for, e.g., image
processing. For the multicluster version there exist several SIMD parallel
(i.e., vectorizable) algorithms to do this efficiently (5-7) (see also the overviews
in refs. 8 and 9).

1 Supercomputer Computations Research Institute, Florida State University, Tallahassee,
Florida 32306.

1075

0022-4715/93/0200-1075507.00/0 �9 1993 Plenum Publishing Corporation

1076 Evertz

The single-cluster variant, however, seemed to have the severe draw-
back of not being efficiently vectorizable. The corresponding loss in speed
often greatly reduced the original gain over critical slowing down. The
problem here is that only a (small) fraction of all lattice sites is inside the
single cluster on average, so that algorithms which require processing of all
lattice sites become inefficient.

In the present paper we avoid this problem. We treat the dynamically
favorable single-cluster algorithm and show how to efficiently vectorize
over "generations" in the corresponding breadth-first search. The proce-
dure can also be iterated to construct multiple clusters.

2. CLUSTER C O N S T R U C T I O N A N D B R E A D T H - F I R S T SEARCH

For simplicity, let us work on a Euclidean "square" lattice of arbitrary
size and dimension. More general graphs are possible. Let lattice sites be
labeled by a set of integers. The above-mentioned cluster algorithms specify
a procedure for defining "bonds" to be on or o f f between two lattice sites.
The sites are connected if the bond is on. The connected components of
lattice sites are called clusters.

In the single-cluster algorithm, an initial site is chosen at random,
and the cluster to which it belongs is then determined (constructed) by a
search. Bonds are often evaluated only during this search. Two commonly
used search algorithms are "depth-first" and "breadth-first" search. We
shall use the latter.

Breadth-first search:
(1) Start a list C with one entry i, where i = io = initial site.

(2) For each neighbor j of site i that does not yet belong to the
cluster:

- - determine if bond (0} is on or off;

- - if bond is on, then:
add j to list C of cluster members;
mark site j as belonging to cluster.

(3) Repeat (2) for i = next entry in list C, until list is exhausted.

3. V E C T O R I Z E D SEARCH

The above search contains "generations" of sites, where the first
generation is {io}, and each following generation consists of those direct
neighbors of the previous generation that are newly entered into the list C.

This list can now be employed to vectorize over each generation in

Vectorized Search for Single Clusters 1077

order to create the next generation. There is one possible vector conflict,
namely that a new site could be neighbor of more than one site of the
current generation, and could thus be added to the list more than once.
This conflict is easily avoided by considering only neighbors in one

d i rec t ion during each vectorized loop, and then treating directions in an
outer loop. 2

What follows is the Fortran code for vectofized cluster search, as it
runs on a Cray-YMP. The initializations are only sketched. The cluster
construction is written out in full.

** Initializations (sketch):
* Once:
C define array: neighbor_site(site,direction) ~latticegeometry
C define function: bond_is_on(site_l,site_2)
C declare array list_entry(site) [the list 'C'
* For each cluster:
C (re)initialize array: site_is_in_cluster(site)=.false.
C define initial_site

** Cluster construction by Breadth First Search (full code):
list_end=l
list_entry(list_end)=initial_site
end_of_generation=0

!0 start_of_generation=end_of_generation+i ! Loop
end_of_generation=list_end
do 20 direction=l, number_of_directions

CDIR$ IVDEP ! tell compiler to ignore vector dependencies in "do 30"
do 30 index=start_of_generation, end_of_generation
site_i=list_entry(index)
site_j=neighbor_site(site_i,direction)
if(site_is_in_eluster(site_j)) goto 30
if(bond_is_on(site_i,site_j)) then
site_is_in_eluster(site_j)=.true.
list_end=list_end+l
list_entry(list_end)=site_j

endif
30 continue
20 continue

if(list_end .gt. end_of_generation) goto I0

After the search terminates, array "list_entry" contains the list C of all sites
in the cluster. Each cluster site occurs once in C. The existence of this list
can be quite helpful, as it can be used to perform subsequent vectorized
operations on all cluster sites.

2Thus the vectorization will work on any graph in which the number of neighbors
per site is bounded (preferrably constant) and in which there is a one-to-one map
"neighbor__site(site,direction)."

1078 Evertz

Note that the program contains multiple indirect addressing. It
vectorizes on a Cray-YMP. Its complexity can be reduced to simple
indirection by using additional temporary arrays.

The code can easily be extended to do multicluster searches: Just
replace the definition of "initial_site" with an outer loop starting like

do 5 initial_site=l,lattice_size
if(site_is_in_cluster(initial_site)) goto 5

This will work well as long as there are not too many very small clusters.
An integer array "site__is___in__cluster" might be used in order to label
clusters. In Swendsen-Wang multicluster dynamics a large fraction of all
clusters normally has size 1. Small clusters like these are more efficiently
treated in initial vectorized scans over the whole lattice.

4. D ISCUSSION

The vector length during a cluster search is initially 1. It will rise one
or more times and in the end be small again. Maximum and average vector
length are influenced by cluster size, cluster shape, and dimensionality of
the lattice. A small additional gain in speed (about 10-30% on a Cray) can
be obtained be letting small loops run in scalar mode (below a length of
about 4 on the Cray-YMP).

Our vectorization works very well for the single-cluster Swendsen-
Wang algorithm ~3) because that algorithm has a large average cluster
size. ~4) We did not evaluate the performance of a multicluster version.

The actual gain in CPU time will be machine dependent. On a given
machine it is determined by the distribution of vector lengths, which in
turn depends on the simulated physical system through its duster proper-
ties. Let it therefore suffice to quote a few real-life examples in order to
show that the vectorization works well.

We have been using the vectorized algorithm in several large-scale
Monte Carlo simulations on a Cray-YMP. For a two-dimensional spin
model (1~ at an average cluster size of 1000, the observed average vector
length was 34, and the complete update routine ran about 3.5 times faster
than the optimized nonvectorized version. A three-dimensional simula-
tion ~m of an Ising-like system with complicated inner loop (complicated
function "bond___is__on") ran about 7 times faster at average cluster size
1000. A similar gain was observed for a four-dimensional 0(4) model3 ~2)

We have thus shown how a rather small modification will efficiently
vectorize the breadth-first-search algorithm, resulting in a large gain in CPU
time.

Vectorized Search for Single Clusters 1079

ACKNOWLEDGMENTS

I am grateful to Clive Baillie and Paul Scholten for helpful comments.

REFERENCES

1. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms (MIT Press,
Cambridge, Massachusetts, 1990).

2. R. H. Swendsen and J. S. Wang, Phys. Rev. Lett. 58:86 (1987).
3. U. Wolff, Collective Monte Carlo updating for spin systems, Phys. Rev. Lett. 62:361

(1989); see also P. L, Leigh, Cluster size and boundary distribution near percolation
threshold, Phys. Rev. B 14:5046 (1976).

4. U. Wolff, Critical slowing down, in Lattice '89, Capri 1989, N. Cabbibo etaL, eds.,
Nucl. Phys. B (Proc. SuppL) 17:93 (1990); A. D. Sokal, How to beat critical slowing down:
1990 update, in Lattice '90, Tallahassee 1990, U.M. Heller et aL, eds., Nucl. Phys. B
(PrOc. SuppL) 20:55 (1991).

5. Y. Shiloach and U. Vishkin, An O(log n) parallel connectivity algorithm, J. Algorithms
3:57 (1982).

6. J. L. C. Sanz and R. Cypher, Data reduction and fast routing: A strategy for efficient
algorithms for message-passing parallel computers, Algorithmica 7:77 (1992).

7. R. C. Brower, P. Tamayo, and B. York, A parallel multigrid algorithm for percolation
clusters, J. Stat. Phys. 63:73 (1991); J. Apostolakis, P. Coddington, and E. Marinari,
A multi-grid cluster labeling scheme, Europhys. Lett. 17:189 (1992); P. Rossi, and
G.P. Tecchiolli, Finding clusters in a parallel environment, preprint, (October 1991);
H. Mino, A vectorized algorithm for cluster formation in the Swendsen-Wang dynamics,
Computer Phys. Commun. 66:25 (1991).

8. R. G. Edwards and A. D. Sokal, Sequential and vectorized algorithms for computing the
connected components of an undirected graph, in preparation.

9. C. F. Baillie and P. D. Coddington, Cluster identification algorithms for spin models--
Sequential and parallel, Concurrency: Practice Experience 3:129 (1991).

10. H. G. Evertz, M. Hasenbusch, M. Marcu, K. Pinn, and S. Solomon, Stochastic cluster
algorithms for discrete gaussian (SOS) models, Phys. Lett. B 254:185 (1991); High preci-
sion measurement of the SOS surface thickness in the rough phase, J. Phys. 1 1:1669
(1991).

11. H. G. Evertz, R. Ben-Av, M. Marcu, and S. Solomon, Critical acceleration of finite
temperature SU(2) gauge simulations, Phys. Rev. D 4,t:2953 (1991).

12. M. Klomfass, private communication.

Communicated byD. Stauffer

