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Breadth-first search for a single cluster on a regular lattice is shown to be 
vectorizable. It is applied to construct clusters in the single-cluster variant of the 
Swendsen-Wang algorithm. On a Cray-YMP, total CPU time has been reduced 
by factors of 3.5-7 in large-scale applications. A multiple-cluster version is also 
described. 
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1. I N T R O D U C T I O N  

The vectorization described in this paper applies to "breadth-first search ''(~) 
on a regular lattice in general. We shall describe it in the framework of 
cluster construction in a spin system. Monte Carlo simulations of many 
discrete- and continuous-spin systems have been revolutionized in recent 
years by the advent of cluster algorithms that eliminate or strongly reduce 
critical slowing down Iz3) (for reviews see, e.g., refs. 4). As an improvement 
over the original multicluster Swendsen-Wang algorithm, (2) the sing&- 
cluster variant (3) further reduces critical slowing down for many systems. 
Where possible, it is now often the method of choice in computer-time- 
intensive simulations. 

The Swendsen-Wang algorithm is computationally dominated by the 
task of identifying all dusters. This is equivalent to the well-known 
problem of connected component labeling, important for, e.g., image 
processing. For the multicluster version there exist several SIMD parallel 
(i.e., vectorizable) algorithms to do this efficiently (5-7) (see also the overviews 
in refs. 8 and 9). 
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The single-cluster variant, however, seemed to have the severe draw- 
back of not being efficiently vectorizable. The corresponding loss in speed 
often greatly reduced the original gain over critical slowing down. The 
problem here is that only a (small) fraction of all lattice sites is inside the 
single cluster on average, so that algorithms which require processing of all 
lattice sites become inefficient. 

In the present paper we avoid this problem. We treat the dynamically 
favorable single-cluster algorithm and show how to efficiently vectorize 
over "generations" in the corresponding breadth-first search. The proce- 
dure can also be iterated to construct multiple clusters. 

2. CLUSTER C O N S T R U C T I O N  A N D  B R E A D T H - F I R S T  SEARCH 

For simplicity, let us work on a Euclidean "square" lattice of arbitrary 
size and dimension. More general graphs are possible. Let lattice sites be 
labeled by a set of integers. The above-mentioned cluster algorithms specify 
a procedure for defining "bonds" to be on or o f f  between two lattice sites. 
The sites are connected if the bond is on. The connected components of 
lattice sites are called clusters. 

In the single-cluster algorithm, an initial site is chosen at random, 
and the cluster to which it belongs is then determined (constructed) by a 
search. Bonds are often evaluated only during this search. Two commonly 
used search algorithms are "depth-first" and "breadth-first" search. We 
shall use the latter. 

Breadth-first  search: 
(1) Start a list C with one entry i, where i = io = initial site. 

(2) For  each neighbor j of site i that does not yet belong to the 
cluster: 

- -  determine if bond (0}  is on or off; 

- -  if bond is on, then: 
add j to list C of cluster members; 
mark site j as belonging to cluster. 

(3) Repeat (2) for i =  next entry in list C, until list is exhausted. 

3. V E C T O R I Z E D  SEARCH 

The above search contains "generations" of sites, where the first 
generation is {io}, and each following generation consists of those direct 
neighbors of the previous generation that are newly entered into the list C. 

This list can now be employed to vectorize over each generation in 
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order to create the next generation. There is one possible vector conflict, 
namely that a new site could be neighbor of more than one site of the 
current generation, and could thus be added to the list more than once. 
This conflict is easily avoided by considering only neighbors in one 

d i rec t ion  during each vectorized loop, and then treating directions in an 
outer loop. 2 

What follows is the Fortran code for vectofized cluster search, as it 
runs on a Cray-YMP. The initializations are only sketched. The cluster 
construction is written out in full. 

** Initializations (sketch): 
* Once: 
C define array: neighbor_site(site,direction) ~latticegeometry 
C define function: bond_is_on(site_l,site_2) 
C declare array list_entry(site) [the list 'C' 
* For each cluster: 
C (re)initialize array: site_is_in_cluster(site)=.false. 
C define initial_site 

** Cluster construction by Breadth First Search (full code): 
list_end=l 
list_entry(list_end)=initial_site 
end_of_generation=0 

!0 start_of_generation=end_of_generation+i ! Loop 
end_of_generation=list_end 
do 20 direction=l, number_of_directions 

CDIR$ IVDEP ! tell compiler to ignore vector dependencies in "do 30" 
do 30 index=start_of_generation, end_of_generation 
site_i=list_entry(index) 
site_j=neighbor_site(site_i,direction) 
if(site_is_in_eluster(site_j)) goto 30 
if(bond_is_on(site_i,site_j)) then 
site_is_in_eluster(site_j)=.true. 
list_end=list_end+l 
list_entry(list_end)=site_j 

endif 
30 continue 
20 continue 

if(list_end .gt. end_of_generation) goto I0 

After the search terminates, array "list_entry" contains the list C of all sites 
in the cluster. Each cluster site occurs once in C. The existence of this list 
can be quite helpful, as it can be used to perform subsequent vectorized 
operations on all cluster sites. 

2Thus the vectorization will work on any graph in which the number of neighbors 
per site is bounded (preferrably constant) and in which there is a one-to-one map 
"neighbor__site(site,direction)." 
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Note that the program contains multiple indirect addressing. It 
vectorizes on a Cray-YMP. Its complexity can be reduced to simple 
indirection by using additional temporary arrays. 

The code can easily be extended to do multicluster searches: Just 
replace the definition of "initial_site" with an outer loop starting like 

do 5 initial_site=l,lattice_size 
if(site_is_in_cluster(initial_site) ) goto 5 

This will work well as long as there are not too many very small clusters. 
An integer array "site__is___in__cluster" might be used in order to label 
clusters. In Swendsen-Wang multicluster dynamics a large fraction of all 
clusters normally has size 1. Small clusters like these are more efficiently 
treated in initial vectorized scans over the whole lattice. 

4. D ISCUSSION 

The vector length during a cluster search is initially 1. It will rise one 
or more times and in the end be small again. Maximum and average vector 
length are influenced by cluster size, cluster shape, and dimensionality of 
the lattice. A small additional gain in speed (about 10-30% on a Cray) can 
be obtained be letting small loops run in scalar mode (below a length of 
about 4 on the Cray-YMP). 

Our vectorization works very well for the single-cluster Swendsen- 
Wang algorithm ~3) because that algorithm has a large average cluster 
size. ~4) We did not evaluate the performance of a multicluster version. 

The actual gain in CPU time will be machine dependent. On a given 
machine it is determined by the distribution of vector lengths, which in 
turn depends on the simulated physical system through its duster proper- 
ties. Let it therefore suffice to quote a few real-life examples in order to 
show that the vectorization works well. 

We have been using the vectorized algorithm in several large-scale 
Monte Carlo simulations on a Cray-YMP. For a two-dimensional spin 
model (1~ at an average cluster size of 1000, the observed average vector 
length was 34, and the complete update routine ran about 3.5 times faster 
than the optimized nonvectorized version. A three-dimensional simula- 
tion ~m of an Ising-like system with complicated inner loop (complicated 
function "bond___is__on") ran about 7 times faster at average cluster size 
1000. A similar gain was observed for a four-dimensional 0(4) model3 ~2) 

We have thus shown how a rather small modification will efficiently 
vectorize the breadth-first-search algorithm, resulting in a large gain in CPU 
time. 
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