
OVERCOMING CRITICAL SLOWING DOWN IN QUANTUM

MONTE CARLO SIMULATIONS1

Hans Gerd Evertz1,2 and Mihai Marcu3

1 Supercomputer Computations Research Institute,
Florida State University,

Tallahassee, FL 32306-4052, USA
evertz@scri.fsu.edu

2 Department of Physics and Astronomy
and Center for Simulational Physics

University of Georgia,
Athens, GA 30602, USA

3 Racah Institute of Physics,
Hebrew University,

91904 Jerusalem, Israel
marcu@vax.huji.ac.il

Abstract

The classical d+1-dimensional spin systems used for the simulation of quan-
tum spin systems in d dimensions are, quite generally, vertex models. Standard
simulation methods for such models strongly suffer from critical slowing down.
Recently, we developed the loop algorithm, a new type of cluster algorithm
that to a large extent overcomes critical slowing down for vertex models. We
present the basic ideas on the example of the F model, a special case of the
6-vertex model. Numerical results clearly demonstrate the effectiveness of the
loop algorithm. Then, using the framework for cluster algorithms developed
by Kandel and Domany, we explain how to adapt our algorithm to the cases
of the 6-vertex model and the 8-vertex model, which are relevant for spin 1

2

systems. The techniqes presented here can be applied without modification
to 2-dimensional spin 1

2
systems, provided that in the Suzuki-Trotter formula

the Hamiltonian is broken up into 4 sums of link terms. Generalizations to
more complicated situations (higher spins, different uses of the Suzuki-Trotter
formula) are, at least in principle, straightforward.

1PUBLISHED IN ”QUANTUM MONTE CARLO METHODS IN CONDENSED MATTER
PHYSICS”, ED. M. SUZUKI, WORLD SCIENTIFIC, 1993, P. 65.

1



2 H. G. Evertz and M. Marcu

1 Introduction

Simulations of quantum spin systems are based on mapping the problem to a
sequence of simulations of an increasingly anisotropic classical spin system in one
more dimension [1]. For example, the spin 1

2
xxz chain is mapped onto a model with

Ising-like spin variables, 4-spin interaction, and constraints. This model is identical
to the 6-vertex model, when using eigenstates of Sz as complete sets of intermediate
states, or to the 8-vertex model, when using eigenstates of Sx.

For simulations of many interesting physical situations, critical slowing down
(CSD) is a major problem. Standard simulation algorithms employ local update
procedures like e.g. the Metropolis and the heat bath algorithm. With local updates,
“information travels slowly”, like a random walk [2]. If the relevant length scale is
the correlation length ξ, the number of updates necessary to decorrelate large regions,
i.e. the autocorrelation time τ , grows like

τ ∝ ξz, (1)

where z ≈ 2 for local updates, as suggested by the random walk analogy. The
dynamical critical exponent z is the quantitative measure of CSD.

A possible way out of this difficulty is to employ nonlocal updates, which decorre-
late a configuration much more quickly. This is a constructive approach, since up to
now no general recipe is known for devising efficient nonlocal moves. The hope that
multigrid algorithms would be such a general procedure has unfortunately not been
fulfilled. However, in recent years cluster algorithms have been successful in a variety
of instances [3, 4, 5, 6, 7, 8, 9] (this is a nonexhaustive list of references).

The first cluster algorithm was invented by Swendsen and Wang (SW) [3] for the
case of the Ising model. The basic idea is to perform moves that significantly change
the Peierls contours characterizing a configuration. As the size of Peierls contours
is, typically, anything up to the order of the correlation length, critical slowing down
may be strongly reduced or even completely eliminated by this approach. The SW
algorithm has been modified and generalized for other spin systems, mostly with two-
spin interactions [4, 5, 7]. Notice that for these systems clusters are connected regions
of spins, with the same dimensionality as the underlying lattice. A few generalizations
along different lines were also done [6, 8, 9].

Recently [10, 11, 12] we introduced cluster algorithms for vertex models and quan-

tum spin systems, which are the first cluster algorithms for models with constraints.
While [10] is an adaptation of the valleys-to-mountains-reflections (VMR) algorithm
[7], originally devised for solid-on-solid models, the loop algorithm introduced in
[11, 12] does not resemble any existing scheme.

In vertex models the dynamical variables are localized on bonds, and the interac-
tion, usually defined by giving the Boltzmann weights, is between all bonds meeting
at a vertex. The possible bond variable values at a vertex are subject to constraints.
The statistical weight of a configuration is given by the product over all vertices of
the vertex weights.



Loop Cluster Algorithm 3

- -
6

6

1

� �
?

?

2

- -
?

?

3

� �
6

6

4

- �
?
6

5

� -
6

?

6

- �
6

?

7

� -
?
6

8

Figure 1: The 8 vertex configurations, u = 1, ..., 8, using the notations of [13, 14].

Our scheme is devised such as to take into account the constraints automatically,
and to allow a simple way to construct clusters. For usual spin systems most cluster
algorithms start by “freezing” (also called “activating”) or “deleting” bonds. Clusters
are then sets of sites connected by frozen bonds. In the case of vertex models our idea
is to define clusters as closed paths of bonds (“loops”). To construct such clusters, we
have to perform operations at vertices that generalize the freeze-delete procedure. In
this context we introduce the concept of break-up of a vertex.

In this paper we discuss the loop algorithm in detail for the cases of the 6-vertex
and the 8-vertex model [13, 14]. The 8-vertex model is defined on a square lattice.
On each bond there is an Ising-like variable that is usually represented as an arrow.
For example, arrow up or right means +1, arrow down or left means −1. At each
vertex we have the constraint that there is an even number of incoming arrows (and
consequenly an even number of outgoing ones). In fig. 1 we show the 8 possible
configurations u at a vertex, numbered as in [13, 14]. The vertex weights ρ(u) are
symmetric under reversal of all arrows; in standard notation [13, 14], we have:

ρ(1) = ρ(2) = a ,
ρ(3) = ρ(4) = b ,
ρ(5) = ρ(6) = c ,
ρ(7) = ρ(8) = d .

(2)

The 6-vertex model is defined by d = 0. That means that only those 6 vertex
configurations are allowed, for which there are exactly two incoming and two outgoing
arrows.

The 6-vertex model has two types of phase transitions: Kosterlitz-Thouless (KT)
and KDP [13]. For the xxz chain at zero temperature, the former corresponds to the
transition at the Heisenberg antiferromagnet point, while the latter corresponds to the
transition at the Heisenberg ferromagnet. A submodel exhibiting the KT transition is
the F model, defined by c = 1, a = b = exp (−K), K ≥ 0. The coupling K plays the
role of inverse temperature. The KT transition is at Kc =ln 2. The correlation length
is finite for K >Kc and infinite for K ≤Kc. For the KDP transition, an example is
the KDP model itself, defined by a = 1, b = c = exp (−K), K ≥ 0.

In section 2 we shall describe the loop algorithm on the example of the F model.
Besides describing the break-up of a vertex operation and explaining how clusters are
constructed, we shall employ the principle of minimal freezing in order to optimize the
algorithm with respect to a free parameter. In section 3 we analyze the performance
of the loop algorithm for the F model. We investigate the exponential autocorrelation



4 H. G. Evertz and M. Marcu

times at K =Kc and at K =Kc/2. It turns out that the above mentioned optimization
is crucial for reducing CSD. In the case of the optimal algorithm, we find a dynamical
critical exponent of z(Kc) = 0.71(5) and z(Kc/2) = 0.19(2). In section 4 we review
the general formalism for cluster algorithms developed by Kandel and Domany [6],
which we then use in section 5 to formulate the loop algorithm for the general arrow
flip symmetric 6-vertex model. For this case too, we show how to find the optimal
algorithm by minimizing freezing. In section 6 we develop the loop algorithm for
the 8-vertex model. As opposed to the 6-vertex model, it is no longer possible to
obtain a unique algorithm by minimizing freezing. We propose a way to overcome
this problem. For further generalizations of our algorithm, this is an essential issue.
While the discussion of the F model and the 6-vertex model was published before
[11, 12], the algorithm for the 8-vertex model is published here for the first time. We
present our conclusions in section 7. In particular, we briefly discuss the successful
use of the loop algorithm for the study of the the spin 1

2
Heisenberg antiferromagnet

in two dimensions [15].

2 The Loop Algorithm for the F Model

If we regard the arrows on bonds as a vector field, the constraint at the vertices is
a zero-divergence condition. Therefore every configuration change can be obtained as
a sequence of loop-flips. By “loop” we denote an oriented, closed, non-branching (but
possibly self-intersecting) path of bonds, such that all arrows along the path point in
the direction of the path. A loop-flip reverses the direction of all arrows along the
loop.

Our cluster algorithm performs precisely such operations, with appropriate prob-
abilities. It constructs closed paths consisting of one loop or of several loops without
common bonds. All loops in this path are flipped together.

We shall construct the path iteratively, following the direction of the arrows. Let
bond b be the latest addition to the path. The arrow on b points to a new vertex
v. There are two outgoing arrows at v, and what we need is a unique prescription
for continuing the path through v. This is provided by a break-up of the vertex v.
In addition to the break-up, we have to allow for freezing of v. By choosing suitable
probabilities for break-up and freezing we shall satisfy detailed balance.

The break-up operation is defined by splitting v into two corners, as shown in fig. 2.
We shall label the two possible break-ups of a vertex by ul–lr (upper-left–lower-right)
and ll–ur (lower-left–upper-right). At any corner one of the arrows points towards v,
while the other one points away from v. Thus we will not allow e.g. the ul–lr break-up
for a vertex in the configuration 3. A “corner flip” is a flip of both arrows. For a
given break-up, we only allow the configuration changes resulting from independent
corner flips. This preserves the zero divergence condition at v. Notice that a single
corner flip transforms a vertex of weight 1 into a vertex of weight e−K and vice-
versa. Detailed balance is satisfied with the following probabilities for choosing a



Loop Cluster Algorithm 5

ul–lr ll–ur

Figure 2: The two break-ups of a vertex used for the F model algorithm.

given break-up (these probabilities depend on the current vertex configuration u):

pul-lr(u) =











reK u = 1, 2
0 u = 3, 4
r u = 5, 6

, p ll-ur(u) =











0 u = 1, 2
reK u = 3, 4
r u = 5, 6

; (3)

Here r is a free parameter for now.
Freezing of a vertex means that its weight must not change. Since there are

only two different vertex weights, we introduce two freezing probabilities. They are
already determined by the requirement that for a given vertex configuration the sum
of freezing and break-up probabilities must be one:

pfreeze(u) =

{

1 − reK u = 1, 2, 3, 4
1 − 2r u = 5, 6

. (4)

Notice that if we freeze a vertex of type 1, 2, 3 or 4, and we choose to flip the
incoming arrow on the bond b, then we must also flip the outgoing arrow that lies on
the straight-line continuation of b. We may in addition flip the remaining two arrows,
but we do not have to. If on the other hand we freeze a vertex of type 5 or 6, and
we choose to flip one of the incoming arrows, then we have to flip all remaining three
arrows.

The range of possible values for r is obtained by requiring that all probabilities
are between zero and one:

0 ≤ r ≤ min(
1

2
, e−K) . (5)

Assume now that we have broken or frozen all vertices. Starting from a bond b0,
we proceed to construct a closed path by moving in the arrow direction. As we move
from vertex to vertex, we always have a unique way to continue the path. If a vertex is
broken, we enter and leave it along the same corner. If the vertex is frozen and of type
1, 2, 3 or 4, we pass through it on a straight line. At such vertices the path may be
self-intersecting (like e.g. at the center of an “8”). Finally, if the latest bond b added
to the cluster points to a frozen vertex v of type 5 or 6, the path continues both to the
right and to the left of b. One of these directions can be considered as belonging to
the loop we came from, the other one as belonging to a new loop, which also contains
the second incoming arrow of v. The two loops have to be flipped together. Actually,
the zero-divergence condition guarantees that all loops will eventually close.

The break-or-freeze decision for all vertices determines a unique partitioning of
the lattice into closed paths that can be flipped independently. We choose to perform



6 H. G. Evertz and M. Marcu

single cluster updates, i.e. we “grow” a single path from a random starting bond b0,
and flip it. The break-or-freeze decision is only needed for the vertices along the path.
Thus the computer time for one path is proportional to the length of that path.

It is easy to see that our algorithm is correct. The proof of detailed balance is
completely analogous to that for other cluster algorithms [5, 6]. The simplest formal
proof is to show that the algorithm fits into the framework of Kandel and Domany
[6]; we shall do this later, for the more general case of the 6-vertex model. The
main ingredient here is that pul-lr and p ll-ur already satisfy detailed balance locally.
Furthermore, it is not difficult to see that any two allowed configurations can be
connected by a finite number of cluster flips. Thus a finite power of the Markov
matrix is ergodic.

How do we choose an optimal value for the parameter r ? We have seen that
freezing of a vertex of type 5 or 6 forces us to flip two loops together. If we had
broken up the vertex instead, we might have been allowed to flip the two loops
independently. Thus more freezing leads to larger clusters. We conjecture that the
least possible freezing is optimal. This is confirmed by numerical tests (see below).
From eq. (4) we then obtain

ropt =

{

1

2
K≤Kc

e−K K≥Kc

. (6)

By maximizing r we also minimize the freezing probability for vertices of type 1, 2, 3
and 4. Notice that if we choose r = ropt, then for K≤Kc vertices of type 5 and 6 are
never frozen, so every path consists of a single loop. For K >Kc on the other hand,
vertices of type 1, 2, 3 and 4 are never frozen, so we do not continue a path along a
straight line through any vertex.

There are some distinct differences between our loop-clusters and more conven-
tional spin-clusters. For spin-clusters, the elementary objects that can be flipped are
spins; freezing binds them together into clusters. Our closed loops on the other hand
may be viewed as a part of the boundary of spin-clusters (notice that the boundary
of spin clusters may contain loops inside loops). It is reasonable to expect that, in
typical cases, building a loop-cluster will cost less work than for a spin-cluster. This
is an intrinsic advantage of the loop algorithm.

The last remark can be exemplified nicely for the F model, where a spin-cluster
algorithm – the VMR algorithm [10] – is also available. At Kc one can see that if we
use r = ropt, loop-clusters are indeed parts of the boundary of VMR spin-clusters.
Since flipping a loop-cluster is not the same as flipping a VMR cluster, we expect
the two algorithms to have different performance. We found (see [10] and the next
section) that in units of clusters, the VMR algorithm is more efficient, but in work
units, which are basically units of CPU time, the loop algorithm wins. At Kc/2,
where the loop-clusters are not related to the boundary of VMR clusters, we found
the loop algorithm to be more efficient both in units of clusters and in work units,
with a larger advantage in the latter. More details on the comparison between the
VMR algorithm and the loop algorithm will be published elsewhere.



Loop Cluster Algorithm 7

3 Numerical Study of the Algorithm’s Performance

We tested our new algorithm on L × L square lattices with periodic boundary
conditions2, both at the transition point Kc and at 1

2
Kc deep inside the massless

phase. We carefully analyzed autocorrelation functions and determined the exponen-
tial autocorrelation time τ . At infinite correlation length, critical slowing down is
quantified by the relation [5]

τ ∝ Lz . (7)

Local algorithms are slow, with z ≈ 2. To be on the safe side, we performed runs
with a local algorithm that flips arrows around elementary plaquettes with Metropolis
probability, and indeed found z = 2.2(2) at K = Kc.

In order to make sure that we do observe the slowest mode of the Markov matrix,
we measured a whole range of quantities and checked that they exhibit the same τ .
As in [10], the slowest mode is strongly coupled to the sublattice energy3. The two
sublattice energies [10] add up to the total energy. The constraints of the model cause
them to be strongly anticorrelated. Within our precision the true value of τ is not

visible from autocorrelations of the total energy, which decay very quickly. Only for
the largest lattices do we see a small hint of a long tail in the autocorrelations. A
similar situation occurred in [10], where, when decreasing the statistical errors, the
decay governed by the true τ eventually became visible. Note that as a consequence
of this situation, the so-called “integrated autocorrelation time” [5] is much smaller
than τ , and it would be completely misleading to evaluate the algorithm based only
on its values.

We shall quote autocorrelation times τ in units of “sweeps” [5]. We define a sweep
such that on average each bond is updated once during a sweep. Thus, if τ cl is the
autocorrelation time in units of clusters, then

τ = τ cl < cluster size >

2L2
. (8)

Each of our runs consisted of between 50000 and 200000 sweeps. Let us also define

the exponent zcl by τ cl ∝ Lzcl
, and a cluster size exponent c by < cluster size >∝ Lc.

We then have:
z = zcl − (2 − c) . (9)

2In order to make contact with studies of the related BCSOS model [10], we did not allow
loops that wind around the lattice. In [16] we allowed such loops and found somewhat smaller
autocorrelation times.

3The sublattice energy is easily defined in the equivalent BCSOS model [10]. In vertex language,
it is defined, up to irrelevant additive and multiplicative constants, as follows. Assign value +1
to arrows pointing in positive Cartesian directions, −1 otherwise. Label all vertices black or red
in checkerboard fashion. Break black vertices ul–lr and red ones ll–ur (see fig. 2). Multiply the
two arrow values at each resulting corner with each other, and, for black vertices only, with −1.
Add all products. The other sublattice energy is obtained by interchanging black with red in the
checkerboard assignment.



8 H. G. Evertz and M. Marcu

L K = Kc K = 1

2
Kc

8 1.8(1) 4.9(4)
16 3.0(2) 5.6(2)
32 4.9(4) 6.2(3)
64 7.2(7) 7.4(3)

128 15.5(1.5) 8.3(2)
256 20.5(2.0)

z 0.71(5) 0.19(2)

Table 1: Autocorrelation time τ at r=ropt, and the resulting dynamical exponent z.

Table 1 shows the autocorrelation time τ for the optimal choice r = ropt. At
K = 1

2
Kc, deep inside the massless phase, critical slowing down is almost completely

absent. A fit according to eq. 7 gives z = 0.19(2). The data are also consistent with
z = 0 and only logarithmic growth. For the cluster size exponent c we obtained
c = 1.446(2), which points to the clusters being quite fractal. At the phase transition
K = Kc we obtained z = 0.71(5), which is still small. The clusters seem to be less
fractal: c = 1.060(2).

We noted above that at K = Kc and for the optimal choice of r, the loop-clusters
are related to the VMR spin-clusters. In [10] we obtained for the VMR algorithm
at K = Kc the result zcl = 1.22(2), but we had c = 1.985(4), which left us with
z = 1.20(2). In this case it is the smaller dimensionality of the clusters that make the
loop algorithm more efficient.

As mentioned, no critical slowing down is visible for the integrated autocorrelation
time of the total energy. At K = Kc, τint(E) is only 0.80(2) on the largest lattice,
and we find zint(E) ≈ 0.20(2). At K = 1

2
Kc, τint(E) is 1.1(1) on all lattice sizes, so

zint(E) is zero.
What happens for non-optimal values of r ? Table 2 shows our results on the

dependence of z on r. z rapidly increases as r moves away from ropt. This effect
seems to be stronger at 1

2
Kc than at Kc. We thus see that the optimal value of r

indeed produces the best results, as conjectured from our principle of least possible

freezing.
In the massive phase close to Kc, we expect that z(Kc) will determine the be-

haviour of τ in a similar way as in ref. [10]. To confirm this, a finite size scaling
analysis of τ for K < Kc is required.

4 The Kandel-Domany framework

Cluster algorithms are conveniently described in the general framework of Kandel
and Domany [6], which guarantees that we are using a correct Markov process. More
important than convenience is the fact that this framework allows for a lot of flexibility



Loop Cluster Algorithm 9

K r z

1

2
Kc 0.500 0.19(2)

1

2
Kc 0.450 1.90(5)

1

2
Kc 0.400 ≥ 2.6(4)

Kc 0.500 0.71(5)

Kc 0.475 0.77(6)

Kc 0.450 0.99(6)

Kc 0.400 ≥ 2.2(1)

Table 2: Dependence of the dynamical critical exponent z on the parameter r. We use “≥” where
for our lattice sizes τ increases faster than a power of L.

in defining new algorithms.

Let us consider the system defined by the partition function

Z =
∑

u

ρ(u) , (10)

where u are the configurations to be summed over, and ρ(u) is the Boltzmann weight of
u. Let us define a set of new Boltzmann weight functions ρi(ũ). The index i numbers
these “modified interactions”. Usually ρ(u) is a product over local Boltzmann weights
ρc(u), where c are cells in the lattice. In this case the index i will be a multiindex
over the relevant set of cells.

Assume now that during a Monte Carlo simulation we arrived at a particular
configuration u. We choose a new configuration in a two step procedure. The first
step is to replace the weight function ρ with one of the functions ρi. The probability
pi(u) of choosing a specific i only depends on the current configuration u. It has to
satisfy the following equations:

pi(u) = qi

ρi(u)

ρ(u)
,

∑

i

pi(u) = 1 , (11)

where qi ≥ 0 are constants independent of u. The second step is to update the
configuration by employing a procedure that satisfies detailed balance for the chosen
Boltzmann weight ρi. Kandel and Domany have shown that this two-step procedure
satisfies detailed balance for the original Boltzmann weight function ρ.

If ρ is a product over some set of lattice cells as described above, and we decide
upon ρi’s with a similar product structure, it is sufficient to choose for each component
of the multiindex i (i.e. for each cell) the modified interaction independently. In this
case we shall have to fulfill (11) independently for each cell. For vertex models, the
cells will be the vertices themselves.



10 H. G. Evertz and M. Marcu

ll–ur ul–lr

�

�

straight

Figure 3: All three possible break-ups of a vertex.

5 The Loop Algorithm for the Full 6-Vertex Model

For the purpose of the loop algorithm, the main difference between the F model
and the full arrow flip symmetric 6-vertex model is that, for the Boltzmann weights
of (2), a 6= b. Consequently, we have to replace the freezing operation for the vertex
configurations 1, 2, 3, 4, by three different operations. Firstly there is the freezing of
1, 2 (i.e. the freezing of the weight a), secondly the freezing of 3, 4 (i.e. the freezing
of the weight b). Thirdly there is a new break-up operation, that allows transitions
between the groups of weights 1,2 and 3, 4. This new break-up is not a break-up into
two corners, but into two straight lines, as shown in fig. 3. As with the ul–lr and
ll–ur break-ups, the straight break-up splits a vertex into two pieces, each of which
contains an incoming and an outgoing arrow. During a cluster flip, each piece may
be flipped independently.

Clusters are contructed in a very similar fashion to the case of the F model.
Starting from a random bond b0, we go from vertex to vertex on a path in the
direction of the arrows. If we encounter a vertex v for which one of the break-ups
was chosen, there is a unique way to pass through it. If on the other hand v is frozen,
we continue the path in the direction of one of the outgoing arrows, and mark the
other two arrows as also belonging to the cluster. Two things can now happen. If
the path returns at a later stage to the vertex v, this will automatically be along the
two marked arrows. If the path closes without returning to v, we have to append
to the cluster a new “elementary loop” starting with the two marked arrows. The
constraint guarantees that all such loops will eventually close.

After having constructed the cluster, we flip it, as in the case of the F model.
Thus we have completely characterized our algorithm, up to the definition of the
probabilities to choose a break-up or freeze for a vertex. These probabilities are most
conveniently described by using the framework of Kandel and Domany [6].

For a given vertex, which is in the current configuration u with the Boltzmann
weight ρ(u), we define 6 modified Boltzmann weights ρi, i = 1, ..., 6, corresponding
to specific break-up and freeze operations. These definitions are contained in table 3.
The labelling of the modified Boltzmann weights is completely arbitrary, and the fact
that their number – six – is the same as the number of allowed vertex configurations
is just a coincidence. As discussed in [6] (see also table 3), freezing is described by
introducing one modified weight for each different value of ρ(u). For example, to
freeze the value a, we choose the interaction ρ1 to be ρ1(ũ) = 1 if ρ(ũ) = a, and
ρ1(ũ) = 0 otherwise. In other words, when ρ1 is chosen, transitions between ũ = 1



Loop Cluster Algorithm 11

i action ρi(ũ) pi(u)

1 freeze 1,2
1, ρ(ũ) =
a
0, else

q1/a, ρ(u) =
a
0, else

2 freeze 3,4
1, ρ(ũ)=b
0, else

q2/b, ρ(u) =
b
0, else

3 freeze 5,6
1, ρ(ũ)=c
0, else

q3/c, ρ(u) =
c
0, else

4 ll–ur
0, ρ(ũ) =
a
1, else

0, ρ(u)=a
q4/ρ(u), else

5 ul–lr
0, ρ(ũ)=b
1, else

0, ρ(u)=b
q5/ρ(u), else

6 straight
0, ρ(ũ)=c
1, else

0, ρ(u)=c
q6/ρ(u), else

Table 3: The modified Boltzmann weight functions ρi and the probabilities pi(u) to choose them at
a vertex in current configuration u.

and ũ = 2 cost nothing, whereas the vertex configurations 3, 4, 5, and 6 are not
allowed. Each break-up is also described by one modified weight. As an example take
the ul–lr break-up. It is given by the modified weight number 5, with ρ5(ũ) = 1 if
ρ(ũ) = a or c, and ρ5(ũ) = 0 if ρ(ũ) = b. In other words, with the new interaction ρ5,
transitions between 1, 2, 5 and 6 cost nothing, while the vertex configurations 3 and
4 are not allowed. This corresponds precisely to allowing independent corner flips in
a ul–lr break-up.

Notice that, in general, the break-ups correspond to allowing transitions between
two groups of two configurations, each group being defined as the set of all configu-
rations having the same given weight. By a slight abuse of language, we shall talk
about the transition between the two weights. This point of view will be useful for
the 8-vertex model.

In table 3 we also give the probabilities pi(u) to replace the original Boltzmann
weight ρ by the modofied one ρi. Fulfillment of (11) ensures detailed balance and the
proper normalization of probabilities. With the definitions in table 3, the first part
of (11) is automatically fulfilled. Normalization of probabilities (i.e. the second part
of (11) ) implies constraints on the qi:

q1 + q5 + q6 = a ,
q2 + q4 + q6 = b ,
q3 + q4 + q5 = c .

(12)

We have seen that freezing forces loops to be flipped together. Previous experi-



12 H. G. Evertz and M. Marcu

ence with cluster algorithms suggests that it is advantageous to be able to flip loops
independently, as far as possible. We therefore introduce the principle of minimal

freezing as a guide for choosing the optimal values for the constants qi: we shall min-
imize the freezing probabilities, given the constraints (12) and qi ≥ 0. From (12)
we immediately see that it is possible to minimize q1, q2 and q3 simultaneously (by
increasing q4, q5 and q6). But let us discuss in detail the optimal values of the qi for
all 4 phases of the model [13, 14].

Let us first look at phase IV, where c > a + b. To minimize the freezing of weight
c, we have to minimize q3. From (12), q3 = c− a− b + q1 + q2 + 2q6. With qi ≥ 0 this
implies q3,min = c− a− b. The minimal value of q3 can only be chosen if at the same

time we set q1 = q2 = 0, i.e. minimize (in this case do not allow for) the freezing of
the smaller weights a and b. The optimized parameters for phase IV are then:

q1 = 0, q2 = 0, q3 = c − a − b,
q4 = b, q5 = a, q6 = 0 .

(13)

In phase I the situation is technically similar. Here a > b + c, and we minimize
freezing with q1 = a − b − c and q2 = q3 = 0. The same holds for phase II, b > a + c,
where we obtain minimal freezing for q2 = b − a − c and q1 = q3 = 0.

Phase III (the massless phase) is characterized by a, b, c < 1

2
(a + b + c). Here we

can set all freezing probabilities to zero. Thus,

q1 = 0, 2q4 = b + c − a ,
q2 = 0, 2q5 = c + a − b ,
q3 = 0, 2q6 = a + b − c .

(14)

We finish this section by showing how to obtain the F model algorithm described
in section 2 from the more general 6-vertex algorithm. For the particular case of the
F model, we only have phases III and IV, so we can set the freezing probabilities
q1 = q2 = 0, i.e. we completely renounce these two freezing operations. Since a = b,
(12) then implies q4 = q5. It is now straightforward to see that, with the identification
of the straight break-up to the freezing of 1, 2, 3, 4, we have recovered the algorithm
of section 2.

6 A Proposal for the 8-Vertex Model

For the 8-vertex model, the constraint at the vertices is no longer a zero-divergence
condition. Therefore we cannot expect any more to have clusters that are made
out of loops for which all the arrows point in the same direction. In the 6-vertex
case this requirement was needed in order to preserve the constraints. The 8-vertex
constraints on the other hand are already preserved if at each vertex the number of
flipped arrows is even. This will allow us to devise an algorithm with clusters that
are again collections of loops, but for which the orientation plays no role.



Loop Cluster Algorithm 13

Let us consider the freeze and break-up operations for a given vertex v. Since
we are dealing with the arrow flip symmetric 8-vertex model (see section 1), freezing
would mean that the only allowed configuration change is the flip of all four arrows
around v. This is similar to the 6-vertex case. Of course, we have here one extra
weight that can be frozen, namely d = ρ(7) = ρ(8). For the break-up the situation is
only slightly more complicated. Consider as an example the ul–lr break-up. A corner
flip performs transitions not only between the weights a and c, but also between
the weights b and d. Within the framework of Kandel and Domany we can thus
define two modified Boltzmann weights. The first, which we shall denote ρac(ũ),
obeys ρac(ũ) = 1 for ρ(ũ) = a or c, and ρac(ũ) = 0 otherwise; it allows transitions
without any cost between the vertex configurations 1, 2, 5, 6, and it prohibits the
configurations 3, 4, 7, 8, from ever occuring. The second Boltzmann weight, which
we shall denote ρbd(ũ), is obtained in the same way, by interchanging a ↔ b, c ↔ d,
and {1, 2, 5, 6} ↔ {3, 4, 7, 8}. For the ll–ur and the straight break-ups we can also
define two modified Boltzmann weights each in a completely analogous fashion.

The 10 modified Boltzmann weights can be described very elegantly using a sym-
metric matrix. To denote a weight, we use greek letters: α, β take values in the
set {a, b, c, d}. The modified weights associated with freezing are denoted by ραα,
while those associated with the break-ups (two for each break-up) are denoted by
ραβ ≡ ρβα, α 6= β. They are fully characterized by:

ραβ(ũ) =

{

1 ρ(ũ) = α or ρ(ũ) = β
0 else

. (15)

The probabilities pαβ to choose one of these modified weights are then given by the
first part of (11), while the second part of (11) implies the following 4 relations for
the 10 constants qαβ (≡ qβα):

∑

β

qαβ = α . (16)

At this stage we again employ the principle of minimal freezing. In the case of the
6-vertex model, there were 3 freezing operations, hence 3 constants to minimize.
Together with the 3 relations (12) this was enough for obtaining a unique optimal
choice for the 6 q’s. Here we have 4 freezing operations and 4 relations in (16). Thus
even after minimizing freezing, we are left with two free parameters. We do not have
any additional physical principle that allows us to fix them. Minimizing something
else than freezing is certainly not good. It is also easy to check that no miraculous
cancellations happen. The two undesired parameters are here to stay.

Let us indicate one possible solution to this problem. It is straightforward to
prove that detailed balance is still fulfilled if the q’s are chosen stochastically at each
step, provided that this choice is independent of the current configuration u. Thus we
propose the following procedure. Parametrize the q’s such that freezing is minimal
and (16) is fulfilled. For each vertex, then choose the two free parameters randomly,
according to some fixed distribution.



14 H. G. Evertz and M. Marcu

After choosing a modified weight at each vertex, the clusters can be constructed
in exactly the same way as for the 6-vertex model. If we start at a link b0, “grow” a
cluster and flip it, the amount of work will again be proportional to the cluster size.
This completes the description of the loop algorithm for the 8-vertex model.

7 Conclusions and Outlook

We have presented a new type of cluster algorithm that considerably accelerates
the simulation of vertex models. The clusters are closed paths of bonds, and the
constraints at the vertices are automatically satisfied. We have successfully tested our
algorithm for the F model and found remarkably small dynamical critical exponents.

The most important application of our algorithm seems to be the critical acceler-

ation of Quantum Monte Carlo simulations This application is based on the fact that
quantum spin systems in one and two dimensions can be mapped into vertex models
in 1 + 1 and 2 + 1 dimensions via the Suzuki-Trotter formula and suitable splittings
of the Hamiltonian [1].

The simplest example is the spin 1

2
xxz quantum chain, which is mapped directly

into the 6-vertex model or the 8-vertex model. For higher spins, more complicated
vertex models result (e.g. 19-vertex model for spin one) [1].

For (2+1) dimensions, different splittings of the Hamiltonian lead to quite different
vertex models, in particular on quite different lattice types [1]. For example, in the
case of spin 1

2
we can choose between simple 6-vertex or 8-vertex models on a quite

complicated 2 + 1 dimensional lattice (if the Hamiltonian is split into 4 sums of link
terms), and models on a bcc lattice, with 8 bonds and a large number of configurations
per vertex (if the Hamiltonian is split into 2 sums of plaquette terms).

For the simulation of the 2-dimensional Heisenberg antiferromagnet and ferro-

magnet using the former splitting, all relevant formulas have been worked out in the
present paper. Actually, the low temperature properties of the antiferromagnet have
recently been investigated by Wiese and Ying [15] using our algorithm. Their cal-
culation is, in our opinion, the first high quality verification of the magnon picture
for the low lying excitations. In particular, this excludes to a much higher degree of
confidence than before the speculation (some years ago widespread) that the model
had a nonzero mass gap.

Notice that, similar to other cluster algorithms [5], it is straightforward to define
improved observables. The investigation [15] in fact uses them.

Let us also remark that the loop algorithm can easily change global properties like
the number of world lines or the winding number (see [1]). Thus it is well suited for
simulations in the grand canonical ensemble.

Last, but not least, the loop algorithm just might open up a new avenue for taming
the notorious fermion sign problem.



Loop Cluster Algorithm 15

References

1. For basics of the Quantum Monte Carlo method see this volume, and, especially,
its precursor (from which references to the original articles may be taken):
M. Suzuki editor, Quantum Monte Carlo methods in equilibrium and nonequilib-

rium systems , Taniguchi symposium, Springer series in Solid State Physics ; 74
(1987).

2. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49 (1977) 435.
3. R. H. Swendsen and J. S. Wang, Phys. Rev. Lett. 58 (1987) 86.
4. R. C. Brower and P. Tamayo, Phys. Rev. Lett. 62 (1989) 1087;

U. Wolff, Phys. Rev. Lett. 62 (1989) 361, Nucl. Phys. B322 (1989) 759, and
Phys. Lett. 228B (1989) 379.

5. For reviews, see e.g.:

U. Wolff, in Lattice ’89 , Capri 1989, N. Cabbibo et al., editors, Nucl. Phys. B
(Proc. Suppl.) 17 (1990) 93;

A. D. Sokal, in Lattice ’90 , Tallahassee 1990, U. M. Heller et al., editors, Nucl.
Phys. B (Proc. Suppl.) 20 (1991) 55.

6. D. Kandel and E. Domany, Phys. Rev. B43 (1991) 8539.
7. H. G. Evertz, M. Hasenbusch, M. Marcu, K. Pinn and S. Solomon, Phys. Lett.

254B (1991) 185, and in Workshop on Fermion Algorithms, Jülich 1991, H. J.
Herrmann and F. Karsch editors, Int. J. Mod. Phys. C3 (1992) 235.

8. R. Ben-Av, D. Kandel, E. Katznelson, P. Lauwers and S. Solomon, J. Stat. Phys.
58 (1990) 125.

9. D. Kandel, R. Ben-Av and E. Domany, Phys. Rev. Lett. 65 (1990) 941.
10. M. Hasenbusch, G. Lana, M. Marcu and K. Pinn, Cluster algorithm for a solid-

on-solid model with constraints, Phys. Rev. B46 (1992) 10472.
11. H.G. Evertz, G. Lana and M. Marcu, Phys. Rev. Lett. 70 (1993) 875.
12. H.G. Evertz and M. Marcu, in Lattice 92, Amsterdam 1992, ed. J. Smit et al.,

Nucl. Phys. B (Proc. Suppl.) 30 (1993) 277.
13. E. H. Lieb, Phys. Rev. Lett. 18 (1967) 1046;

E. H. Lieb and F. Y. Wu, Two-dimensional Ferroelectric Models, in Phase Tran-

sitions and Critical Phenomena Vol. 1, C. Domb and M. S. Green, editors, (Aca-
demic, 1972) p. 331.

14. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, 1989).
15. U.J. Wiese and H.P. Ying, Bern preprint, bulletin board cond-mat/9212006.
16. M. A. Novotny and H. G. Evertz, in Quantum Monte Carlo Methods in Condensed

Matter Physics, ed. M. Suzuki (World Scientific 1993).


