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Abstract. We report preliminary results from the first large scale numerical
study of critical spin dynamics in the two dimensional classical XY model.
We integrate the hamiltonian equations of motion, starting from a set of
configurations generated by Monte Carlo. In addition to the expected spin
wave peak in the Kosterlitz-Thouless phase, we find a strong central peak,
and unexpected structure below the spin wave peak. The dynamic critical
exponent is measured to be z = 1.00(4) in the KT-phase.

1 Introduction

We have investigated the dynamic critical behavior of the two-dimensional
classical anisotropic Heisenberg model (XY-model)
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The statics of this model are similar to those of the “plane rotator model”,
i.e. the model with two-component spins: at all temperatures T ≤ TKT the
model is in a Kosterlitz-Thouless phase [1], where it is dominated by vortex-
pairs, does not have long range order, and is critical, with static correlations
decaying like 〈S(0)S(r)〉 ∼ r−η. The static critical exponent η is 1/4 at TKT .
Above TKT , vortices unbind and the correlations decay exponentially.

The dynamics, however, are very different: The XY-model possesses equa-
tions of motion
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where êx and êy are unit vectors in the x- and y-directions respectively. Eq.
(2) is a set of coupled equations and can be integrated numerically. The plane
rotator model, on the other hand, does not possess hamiltonian equations of
motion; there is only relaxational dynamics.

To obtain the dynamic critical behavior for each temperature, we gen-
erated a set of equilibrium configurations by Monte Carlo simulations and
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integrated the hamiltonian equations of motion for each configuration up to
a maximum time tmax. For each time evolution, we measured the time-
displaced, space-displaced spin-spin correlation function. The time- and
space-fourier transform of this function is the dynamic structure factor (neu-
tron scattering function) S(q, ω).

In the present paper we emphasize several technical aspects of our study,
as well as an unexpected structure observed in S(q, ω). We will present a
detailed physical discussion of S(q, ω) elsewhere [2]. An earlier exploratory
study [3] indicated a rich structure in the neutron scattering function which
was not adequately described by theory.

2 Simulations and Time Integration

Most of our simulations were performed below TKT , where the system is crit-
ical. The spatial correlation length there is only limited by the system size.
Standard Monte Carlo procedures will therefore suffer from severe Critical
Slowing Down. In order to reduce autocorrelations we employed a hybrid
method in which each update consisted of 2 fully vectorized checkerboard
Metropolis updates, 8 Overrelaxation updates [4], and one Single-Cluster up-
date [5]. In the overrelaxation algorithm [4] each spin is reflected with respect
to a plane, in such a way that its contribution to the total energy remains
constant. The spin z-component is not changed during this update. The al-
gorithm is vectorized in checkerboard fashion. The cluster algorithm is also
restricted to changes in the xy-plane. A single cluster is constructed, in com-
plete analogy with Wolff’s cluster algorithm [5] for the plane rotator model.
Since both overrelaxation and Cluster updates leave the z-components of
spins unchanged, Metropolis updates are necessary to ensure ergodicity. In-
clusion of the cluster updates reduced autocorrelations drastically, e.g. at
T = 0.6, L = 128, from about 300 hybrid sweeps when omitting the cluster
updates down to about 3 hybrid sweeps.

We generated between 500 and 1200 independent spin-configurations for
each combination of temperatures T = 0.4, 0.6, 0.725 ≈ TKT , T = 0.8
and lattice sizes from 162 to 1922, with about 200 hybrid sweeps between
configurations. We found this many configurations to be necessary in order
to sufficiently reduce thermal fluctuations in the resulting neutron scattering
function. The error bars in our figures represent the statistical errors for
averages over the equilibrium configurations.

Starting with each equilibrium configuration, the time dependence of the
spins was determined from the coupled set of equations of motion, eq. (2),
which was integrated numerically using a vectorized fourth order predictor-
corrector method [6], with a time step size of δt = 0.01J−1. This method
has a very small systematical error, of order (δt)5. The maximum integration
time was tmax = 400J−1. (A few runs were also performed for lattice size
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2562 with tmax = 800J−1 and produced the same physical results.) We
chose a very large tmax in order to sufficiently reduce cutoff effects in S(q, ω),
as discussed below. This value of tmax is much larger than any employed in
previous studies, and the time integration could potentially become unstable.
We checked stability by verifying that S(q, ω) remained unchanged when we
introduced an additional time integration of length 200J−1 before starting
to measure space-time correlation functions. In addition, we found that the
total energy changed by a relative factor of less than 3× 10−6 between t = 0
and tmax.

3 Extracting S(q, ω)

In order to determine S(q, ω), we measured the space displaced, time dis-
placed spin-spin correlation function Ckk(r − r

′, t − t′) =
〈

Sk
r
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r
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〉

for
each time evolution, with t − t′ ≤ tcut ≡ 0.9 tmax, and averaged results over
the different time evolutions, and over t ∈ {0, tmax/10}. Fourier transforms
in space and time then gave Skk(~q, ω). Spatial xy symmetry allows averag-
ing over Sxx and Syy. We saved a large amount of storage space by fixing
the direction of ~q to (q, 0) or (0, q), and averaging over the results. Since
S(q, ω) is a convolution, it can be computed efficiently by use of Fast Fourier
Transforms, which saved a large amount of CPU time.

Note that a temporal fourier transform with a finite time cutoff tcut pro-
duces oscillations in S(q, ω), with period 2π/tcut. These oscillations hinder
analysis of S(q, ω), for example at the very narrow spin wave peak. To reduce
the impact of the cutoff, one can smoothen S(q, ω) by multiplying the cor-
relation function with a damping factor, e.g. exp(− 1

2
(t δω)2). Smoothening

widens all features in S(q, ω), similar to the effect of finite ω-resolution in an
experiment. It also complicates analysis of the data by Dynamic Finite Size
Scaling [6].

Fig. 1 shows an example of S(q, ω) with different values of tmax. For
small tmax = 100J−1, oscillations are strong, and the spin wave peak is too
broad. A damping factor of δω = 0.02 smoothens the oscillations, but it also
further broadens the peak. Both oscillations and broadening are overcome by
integrating up to tmax = 400J−1. For critical dynamics, larger lattice sizes
necessitate larger integration times. We found dynamic finite size scaling to
be a very sensitive tool to determine which values of tmax are sufficient [2].

4 Results

We summarize briefly the main conclusions from a first analysis of our data.
Detailed results will be presented elsewhere [2].
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Figure 1: Sxx(q, ω) at T = 0.725, L = 192, q = 2 × 2π

L
, with (a) tmax = 400,

δω = 0, (b) tmax = 100, δω = 0, and (c) tmax = 100, δω = 0.02.

The two main physical features in S(q, ω) are the spin wave peak and
an unexpectedly large central peak around ω = 0. The spin wave peak is
present in Sxx at all temperatures T ≤ TKT ; above TKT there is only a
large central peak. As T increases, the spin wave peak in Sxx becomes wider
and moves to smaller ω; with increasing q it becomes wider and weaker. Its
shape is not well described by existing theoretical calculations [7]. There is
a sizeable central peak in Sxx even at T ≤ TKT , which was not predicted. It
becomes wider and stronger with increasing T . The out-of-plane correlations
Szz also show a weak and rather sharp spin wave peak at all temperatures. It
is wider than the predicted delta function [7] would produce with our finite
integration time. The dispersion relation (position of the spin wave peak
versus momentum) is linear at small q for T ≤ TKT , and nonlinear above
TKT , as expected.

By dynamic finite size scaling [2] we determined the dynamic critical
exponent z. Both a characteristic frequency ωm and S(q, ω) itself scale very
well, and we obtained z = 1.00(4) for all T ≤ TKT , in agreement with
theoretical predictions [7].

In addition to the spin wave peak and central peak, there is additional
unexpected structure in Sxx, namely several smaller peaks at multiples of a
basic frequency ωb. An example is shown in fig. 2. Note that the logarithmic
scale strongly overemphasizes the additional peaks. The positions of these
peaks coincide with the positions of spin-wave peaks at smaller momenta.
Analysis of this intriguing structure is in progress.
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Figure 2: Sxx(q, ω) at T = 0.600, L = 192, q = 8× 2π

L
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